The University of Southern Mississippi
The Aquila Digital Community

Faculty Publications

8-15-2009

The Tbhx20 Homologs midline and H1S Specity
Ventral Fate in the Drosophila melanogaster Leg

Pia C. Svendson
University of Calgary

Ann Formaz-Preston
University of Calgary

Sandra M. Leal
University of Southern Mississippi, Sandra.Leal@usm.edu

William J. Brook
University of Calgary

Follow this and additional works at: https://aquila.usm.edu/fac_pubs

b Part of the Genetics and Genomics Commons

Recommended Citation

Svendson, P. C., Formaz-Preston, A., Leal, S. M., Brook, W. J. (2009). The Thx20 Homologs midline and H1S Specify Ventral Fate in
the Drosophila melanogaster Leg. Development, 136(16), 2689-2693.
Available at: https://aquila.usm.edu/fac_pubs/8421

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by

an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.


https://aquila.usm.edu?utm_source=aquila.usm.edu%2Ffac_pubs%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/fac_pubs?utm_source=aquila.usm.edu%2Ffac_pubs%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/fac_pubs?utm_source=aquila.usm.edu%2Ffac_pubs%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=aquila.usm.edu%2Ffac_pubs%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

RESEARCH REPORT 2689

Development 136, 2689-2693 (2009) doi:10.1242/dev.037911

The Tbx20 homologs midline and H15 specify ventral fate in
the Drosophila melanogaster leg

Pia C. Svendsen’, Ann Formaz-Preston', Sandra M. Leal? and William J. Brook'*

Regional fates in the developing limbs of Drosophila melanogaster are controlled by selector gene transcription factors. Ventral
fate in the fly leg is specified by the expression of the ligand Wingless. We present evidence that midline and H15, members of the
Tbx20 class of T-box transcription factors, are key mediators of the Wingless signal in the formation of the ventral region of the fly
leg. midline and H15 are restricted to identical ventral domains of expression through activation by Wingless and repression by the
dorsal signal Decapentaplegic. midline and H15 function redundantly and cell autonomously in the formation of ventral-specific
structures. Conversely, midline is sufficient to induce ventral fate. Finally, the induction of ectopic ventral fate by mid is
compromised when Wingless signaling is attenuated, suggesting that Wingless acts both upstream and in parallel with midline/H15
to specify ventral fate. Based on these results, we propose that midline and H715 may be considered as the selector genes for ventral

leg fate.

KEY WORDS: T-box transcription factor, Limb development, Pattern formation, Selector gene

INTRODUCTION

Selector genes subdivide the developing limbs of Drosophila
melanogaster into distinct regions (Curtiss et al., 2002; Garcia-
Bellido, 1975; Mann and Carroll, 2002). Selector gene expression
is necessary and sufficient to assign a regional fate: groups of cells
expressing a selector gene will assume one fate, whereas cells not
expressing the selector gene will either assume a default fate or fail
to survive altogether (Curtiss et al., 2002; Mann and Carroll, 2002).
As an example, the engrailed (en) gene and its paralog invected (inv)
encode homeodomain transcription factors expressed in the
posterior halves of all imaginal discs, including the limb primordia
(Brower, 1986). Loss of en/inv expression autonomously transforms
posterior limb cells into an anterior fate, and ectopic expression
transforms anterior cells into a posterior fate (Garcia-Bellido and
Santamaria, 1972; Lawrence and Struhl, 1982; Lawrence et al.,
1979; Morata and Lawrence, 1975; Simmonds et al., 1995; Tabata
etal., 1995; Zecca et al., 1995).

Whereas anterior versus posterior (A/P) fate is controlled by
en/inv expression, the selection of proximal versus distal (P/D) fate
and dorsal versus ventral (D/V) fate in the fly leg is controlled
through distinct interactions downstream of the secreted signals
Wingless (Wg) and Decapentaplegic (Dpp). Dpp is a BMP ligand
that is expressed at high levels in a stripe of dorsal cells at the
boundary between A and P cells. Wg, a Wnt ligand, is expressed in
ventral cells near the A/P boundary (Basler and Struhl, 1994; Diaz-
Benjumea et al., 1994). Wg and Dpp act cooperatively to specify
distal fates. Cells in the center of the leg imaginal disc receive high
levels of both Wg and Dpp and are specified as distal through the
Wg- and Dpp-dependent induction of several genes, including
Distal-less (DII) (Kojima, 2004; Lecuit and Cohen, 1997), which
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acts as a selector gene for distal versus proximal fate (Gorfinkiel et
al., 1997). The D/V decision is regulated by antagonistic signaling
between Wg and Dpp. Dpp represses wg, limiting its expression in
dorsal cells, and ventral Wg in turn reduces dpp expression in the
ventral leg. Dpp expression specifies dorsal fate and represses
ventral, whereas Wg specifies ventral fate and represses dorsal (Fig.
1A) (Brook and Cohen, 1996; Jiang and Struhl, 1996; Johnston and
Schubiger, 1996; Morimura et al., 1996; Penton and Hoffmann,
1996; Theisen et al., 1996).

One problem is how cells in the distal leg, which are exposed to
high levels of both Wg and Dpp, are able to properly discriminate
between the two signals in order to assume either dorsal or ventral
fate. One solution would be the ventral- or dorsal-specific
expression of a selector gene downstream of Wg and Dpp signaling.
Candidates for such a selector are H/5 and its paralog midline. An
enhancer trap in HI5 is activated downstream of Wg and is
repressed by Dpp (Brook and Cohen, 1996; Estella and Mann, 2008;
Wilder and Perrimon, 1995). HI5 and mid (also known as
neuromancer 1 and neuromancer 2, respectively) are members of
the Tbx20 class of T-box transcription factors and have previously
been shown to be required redundantly in several developmental
processes (Buescher et al., 2004; Buescher et al., 2006; Miskolczi-
McCallum et al., 2005; Qian et al., 2005; Reim et al., 2005). In this
report, we show that the ventral-specific expression of H75 and
midline downstream of Wg and Dpp is both necessary and sufficient
to specify ventral fate. Based on our results, we argue that mid and
H15 act as selector genes for ventral fate.

MATERIALS AND METHODS

Drosophila stocks

Flies were grown under standard conditions at 25°C. To generate the H15
mid double mutant chromosome necessary for mosaic analysis, we
screened 4500 EMS-treated H15% b’ cn! chromosomes (Buescher et al.,
2004) and found a mutant, mid'®’, that failed to complement mid’
embryonic lethality. Sequence analysis indicated that mid’®’ is a nonsense
mutation at codon 144, truncating the protein just prior to the T-box domain,
and is probably null because it is in a similar location to two other mid null
mutations, mid’ and mid%4'’? (see Fig. S3E,F in the supplementary
material), and because the HI15% mid'® double mutant has a lethal
phenotype similar to embryos with mid and H15 deleted (data not shown).
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Other stocks were obtained from Bloomington Indiana and Kyoto Stock
Centers or have been described previously (Brook and Cohen, 1996;
Buescher et al., 2004; Lecuit et al., 1996).

Genotypes shown in figures: Fig. 1C,D, Oregon-R; Fig. 1E-H, y w hsFLP;
HI15 mid'® FRT404/4" ry* 25F FRT404; Fig. 2A, y w hsFLP; H15%
mid'® FRT404/w" GFP FRT404; BS3.0(dpp-lacZ) ry’"%/+; Fig. 2B, y w
omb-lacZ hsFLP; H15% mid'® FRT404/w" GFP FRT404; Fig, 2C,EF, y
w hsFLP; H15% mid'® FRT404/w* GFP FRT404; Fig. 2D, H15-lacZ b cn;
Fig. 3A,C,D, omb-GAL4; UAS-mid2.12/+; Fig. 3B, y w omb-lacZ hsFLP;
Fig. 3E-H, yw hsFLP; AyGAL4 UAS-GFP/+; UAS-mid2.12/+; Fig. 4B,C,
ywhsFLP; UAS-Lefl/AyGAL4 UAS-GFP; and Fig. 4D, y w hsFLP; UAS-
Lef1/4yGAL4A UAS-GFP; UAS-mid2.12/+.

Genetics mosaics and ectopic expression of midline

H15% mid'® loss-of-function clones, null for both H15 and midline, were
induced with the Flp/FRT technique (Xu and Rubin, 1993) at 24-48 or 48-
72 hours after egg laying (ael) with similar outcomes. H15%* mid'® loss-of-
function clones were generated by crossing y w; HI5Y mid'®
P{neoFRT}404/CyO toyw hsFLP; P{w" GFP}33 P{neoFRT}40A4 to detect
GFP clones in imaginal discs or to y w hAsFLP; P{y" }25F P{neoFRT}40A to
detect y clones in adult cuticle. Ectopic mid expression was driven with omb-
GAL4 (Lecuit et al., 1996), rn-GAL4 (St Pierre et al., 2002) and NP2113-
GAL4 (Hayashi et al., 2002). Clones expressing UAS-arm*’’ (Pai et al.,
1997), UAS-tkv* (Lecuit et al., 1996), UAS-Lef1 (Riese et al., 1997) or UAS-
mid and/or LefI were induced using the y w; P{w* AyGAL4}25 P{w"UAS-
GFP}T2 driver.

Antibodies and reporter constructs

Discs were stained as in Pattatucci and Kaufman (Pattatucci and Kaufman,
1991). H15, omb and dpp expression was monitored with H15-lacZ, omb-
lacZ and BS3.0(dpp-lacZ) reporters. Primary antibodies were mouse anti-f3-
Gal (1:1000, Promega), rabbit anti-B-Gal (1:1000, Jackson
ImmunoResearch Laboratories, Cedarlane), rabbit anti-Nmr1 and rabbit
anti-Nmr2 [1:2000 and 1:100, which recognize H15 and Mid, respectively;
Jim Skeath, Washington University School of Medicine, St Louis, MO, USA
(Leal et al., 2009)], mouse anti-Wg (1:50, DHSB), and mouse anti-Scr
(1:100, DHSB). Secondary antibodies were as in Ciechanska et al.
(Ciechanska et al., 2007).

RESULTS AND DISCUSSION

mid and H15 mediate a subset of Wg functions in
the ventral leg

W signaling specifies ventral fate in the fly leg. The Wg-dependent
domain is best delineated in the second leg tarsus, where eight rows
of bristles are organized around the circumference and run the length
of all five tarsal segments (Held et al., 1994) (Fig. 1B). Wg is
secreted from a stripe of cells between the primordia of the two
ventral-most rows of bristles (1 and 8) (Joshi et al., 2006), which are
distinct from more dorsal rows because they are peg-shaped instead
of rapier-shaped (Held et al., 1994) (Fig. 1B,C). The Wg morphogen
diffuses to pattern a wedge of the imaginal disc that is broader than
and centered on the wg expression domain. In wg hypomorphic
mutants, rows 1 and 8 are replaced with a mirror image duplication
of dorsal rows 3 through to 6, resulting in a leg with double dorsal
symmetry (Held et al., 1994). Similar transformations are observed
in clones of cells blocked for Wg signaling, where the row 1/8
bristles are transformed to rapier-shape (Heslip et al., 1997). Other
prominent Wg-dependent ventral structures include the apical bristle
(AB) of the distal ventral tibia in the second leg (Fig. 1C) and the
ventral transverse rows (TRs) and sex combs (SCs) of the first leg
(Fig. 1D).

The Thx20 homologs mid and H15 are essential for the proper
development of the Wg-dependent structures in the leg. In the
imaginal discs, mid and HI5 are expressed in identical ventral
domains that are broader than and centered on the Wg domain (see
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Fig. 1. mid and H15 are required for Wg-dependent ventral leg
structures. (A) Diagram of a leg imaginal disc showing the expression
domains of Wg, Dpp, mid and H15. The A/P boundary, dorsal (D) and
ventral (V) ends, and the distal (center) and proximal (outer) segments
of the leg are indicated. The longitudinal bristle rows of the adult leg
(1-8) are projected onto the tarsal region of the disc. Areas fated to give
ventral apical bristle (AB), dorsal pre-apical bristle (PAB), and transverse
rows (TR) and sex combs (SC) are shown. (B) Cross-section of adult
tarsus with the positions of the eight longitudinal bristle rows (1-8) and
the expression of Dpp, Wg, mid and H75 (as in A). The expression
domain of mid and H75 (light green) corresponds to the Wg-
dependent domain (dark green) deleted in wg mutants (Held et al.,
1994). (C) Wild-type second leg showing the peg bristles of row 8 on
the ventral basitarsus, and the pre-apical bristle (PAB), apical bristle (AB)
and spur bristles (SB, arrow) on distal tibia. In this and all cuticle images,
distal is to the left and dorsal is up. (D) Wild-type male first leg showing
transverse rows (TR) on distal tibia and on the basitarsus and the sex
comb (SC). (E) mid H15 yellow loss-of-function (LOF) clones in the peg
row are transformed to the dorsal rapier shape (arrows). (F) A mid H15
yellow LOF clone in the ventral distal tibia results in the loss of the AB
and the formation of a PAB-like phenotype (arrow). (G) A mid H15
yellow LOF clone in the distal ventral tibia results in a spur to rapier-
shaped bristle transformation (arrowhead). (H) A mid H15 yellow LOF
clone in the basitarsus is associated with a gap in the sex comb (arrow).
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Fig. 2. mid and H15 are required for ventral Scr expression but
are not required to regulate dorsal gene expression. All stained
disc images are oriented dorsal up and anterior to the left. (A-C) mid
H15 loss-of-function clones (GFP-) do not change the expression of
dorsal markers dpp-lacZ (A) and omb-lacZ (B) or the ventral marker Wg
(C) (red). (D) Scr expression (red) in the first leg counterstained with
antibodies to B-galactosidase to visualize H15-lacZ expression (green).
(E,E") Decreased Scr expression (arrowhead in E’) is seen in a mid H15
ventral LOF clone (GFP-). (F,F') A dorsal mid H15 LOF clone with
normal Scr expression (arrowhead in F’).

Fig. SIA,B,E in the supplementary material). In the tarsus, the mid
H15 domain is similar to the Wg-dependent domain, encompassing
row 1 and 8 bristles and extending to, but not including, rows 2 and
7, as determined by co-staining with an antibody to Achaete, a
bristle row marker (Fig. 1A,B; see Fig. S1C,D in the supplementary
material). Both mid and H15 are activated in ventral cells by Wg and
restricted from dorsal cells by the dorsal morphogen Dpp (see Fig.
S2 in the supplementary material), but neither /15 nor mid alone is
essential for leg development (see Fig. S3 in the supplementary
material). However, loss of both mid and H15 in marked clones
caused the autonomous transformation of the Wg-dependent peg-
shaped row 1/8 bristles into lateral or dorsal rapier-like bristles (Fig.
1E). In one sample, 54 out of 56 clones transformed bristles in row
1 or 8. Similar cell-autonomous transformations were observed in
the second leg tibia, in which the ventral AB was lost in mid H15
clones that span the distal tibia of the second leg. In 24 out of 26 such
clones, a large bristle similar to the dorsally located pre-apical bristle
(PAB) developed in place of the AB (Fig. 1F). The AB is associated
with a cluster of peg-shaped bristles called spur bristles (SBs),
which, like the row 1/8 bristles, were autonomously transformed to
dorsal-like rapier-shaped bristles in mid H15 clones (Fig. 1G). The

omb>mid

Fig. 3. Ectopic mid expression can induce ventral fate.

(A) Expression of mid in the dorsal omb domain results in ectopic sets
of sex combs (arrows) and transverse rows (arrowheads). (B) A high
level of Scr (red) is excluded from the omb-lacZ expression domain
(green). (C) Mid expression (green) in an omb-GAL4; UAS-mid leg
results in Scr expression (red) in the omb domain. Note that the
endogenous ventral Mid staining is often difficult to detect with this
antibody. (D) A second leg showing the induction of an apical-like
bristle (arrow) and spurs (arrowheads) resulting from the expression of
mid in the dorsal omb domain. (E,F) Induction of an AB-like bristle (E,
arrow) and an ectopic spur (F, arrowhead) by dorsal mid-expressing
clones marked with yellow. (G,H) Clones expressing mid and marked
with yellow can produce ventral-type bristles (peg-shaped) in
dorsolateral (G, arrow) and ventrolateral (H, arrow) rows.

SCs and TRs of the first leg were also deleted in mid H15 clones
(Fig. 1H). Other ventral structures were either lost or disorganized
within mid H15 clones (see Fig. S4 in the supplementary material).
Clones located outside the mid H15 expression domain were normal
and the few ventral clones with no phenotype were small and located
in structures that have no obvious D/V differences (see Fig. S4 in the
supplementary material).

The effects of wg mutants and clones of cells unable to detect the
Wg signal differ from the effects of mid H15 clones, because they
also cause non-autonomous effects such as axis bifurcation or
ectopic bristle rows (Heslip et al., 1997; Joshi et al., 2006; Theisen
et al., 1994). The axis bifurcation caused by loss of Wg function is
due to ectopic dpp expression. However, we found that neither dpp-
lacZ (Fig. 2A) nor the dorsal marker omb-lacZ (Fig. 2B) were
increased in mid H15 clones located in ventral anterior cells. The
ventral-to-dorsal transformation in mid H15 clones is also not a
result of a decrease in the expression of Wg, which was unchanged
in ventral mid H15 clones (Fig. 2C). The homeotic gene Sex combs
reduced (Scr), which is required for the development of sex combs
and TRs, is expressed at high levels in the anterior tibia and
basitarsus segments (Fig. 2D) (Shroff et al., 2007). mid H15 mutant
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clones in ventral (Fig. 2E,E"), but not lateral or dorsal (Fig. 2F,F"),
positions downregulate Scr to background anterior levels. Taken
together, these results indicate that mid and H15 are required for the
specification of ventral fate downstream of Wg and for some ventral
gene expression. However, mid and H15 are not required to repress
dorsal gene expression.

Ectopic mid expression induces ventral fate

Ectopic expression of mid is sufficient to induce ectopic Wg-
dependent ventral structures. Since flies with H75 deleted have
normal ventral patterning (see Fig. S3 in the supplementary
material), mid can mediate the function of both genes. Expression of
mid in the dorsal omb (bi — FlyBase) domain resulted in ectopic SCs
and TRs in the dorsal basitarsus and distal tibia of all male first legs
(Fig. 3A). This was accompanied by the ectopic expression of Scr
in the omb domain, which was appropriately restricted in the P/D
axis to the basitarsus and tibia (Fig. 3C). In the second leg, ectopic
expression of mid in the dorsal tibia under the control of the omb-
GALA4 or in small clones of mid-expressing cells resulted in ectopic
bristles similar to the AB and SBs (Fig. 3D,E,F). Small clones of
mid-expressing cells either in or adjacent to rows 2/7 and 3/6
induced ventral row 1/8 bristles cell autonomously (Fig. 3G,H). We
saw similar results using other GAL4 drivers expressed in the tarsus
(see Fig. S5 in the supplementary material).

mid induces ectopic ventral fate in conjunction
with Wg signaling

The regions of the leg where mid induces ectopic ventral structures
are within the range of the ventral Wg signal, which reaches many
dorsal and lateral cells to induce P/D genes such as DIl (Estella et
al., 2008). This leaves open the possibility that Wg might act both
upstream of and in parallel with mid to specify ventral fate. To test
the requirement for Wg, we generated clones of cells that are
compromised for Wg signaling. We expressed mouse Lefl, which
acts as a dominant negative in Wg signaling in Drosophila (Riese et
al., 1997), and compared its effects on ventral development with and
without the expression of ectopic mid. We induced the clones in third
instar larvae, at 84 to 108 hours, when the P/D axis is independent
of Wg but Wg signaling is still necessary for specifying ventral fate

A _ IAS- o] Fig. 4. Induction of ectopic ventral fate by mid is
UAS-mid | UAS-Lefl | \\ ¢ ) ap influenced by Wg signaling. (A) Summary of the
Character effects of clones expressing mid and/or Lef1 on the
Region bri::lesl;?p’;:s bri:;es bf:i’ll: bris\iles ;‘;;’;ZS dorsal/lateral or ventral character of bristle rows 1
- ] - through to 8. Ventral rows 1/8 (green) are peg-shaped,
Dorsal olis| ol s0l ol 24 whereas lateral and dorsal rows 2 through to 7 (blue) are
(D) rapier-shaped in the wild type. Clones expressing mid are
A P | Dorso-lateral | 5 | o o | 21 o | 23 over-represented in the ventral region and can transform
(oL ventrolateral and dorsolateral regions to ventral fate. Both
Ventro-lateral of these effects are attenuated by the expression of Lef7.
6 | 15 0 17 5 18 .
(vL) (B) LefT-expressing clones can transform ventral peg to
Ventral dorsal-type rapier bristles (arrows). (C,D) Scr expression
(V) sl R ] = 12| il (red) is turned off in clones expressing Lef7 (C) and is not
94 clones | 94 clones | 93 clones rescued when mid is coexpressed with LefT (D).
63 legs 52 legs 56 legs (E) Genetic pathway for ventral leg development.
1 mid E
=
ve ntrfl fate

(Campbell, 2002; Galindo et al., 2002). mid-expressing clones
induced at earlier stages can cause more extensive repatterning, with
the occasional repression of dpp and non-autonomous induction of
wg (see Fig. S6 in the supplementary material). Lef] clones were
distributed evenly in the dorsal, ventrolateral, dorsolateral and
ventral regions of the tarsus (Fig. 4A). As expected, dorsal clones
were normal and clones in the ventral-most rows (Fig. 4B) often
showed transformation towards more dorsal fates (9/26). Clones
expressing mid were recovered much more frequently in ventral
regions, suggesting that dorsal mid-expressing clones either sort to
more ventral positions or they are lost. Ventrolateral or dorsolateral
mid-expressing clones are often transformed to ventral character. By
contrast, clones expressing both mid and Lef1 are recovered more
often in lateral and dorsal cells, indicating that the sorting behavior
of mid-expressing clones depends on the transduction of the Wg
signal. Dorsolateral clones expressing both mid and LefI do not
transform towards ventral fate (0/23), whereas ventrolateral clones
are still sometimes transformed to ventral fate. This is consistent
with a requirement for Wg in ectopic ventral development, as the
dorsolateral row 3/6 bristles are further from the source of Wg signal
and would be expected to be more sensitive to the effects of Lef].
We observed a similar effect on Scr, where UAS-Lef1 blocked Scr
expression (Fig. 4C); this was not rescued by the simultaneous
expression of UAS-mid (Fig. 4D). These results suggest that mid
regulates ventral fate and Scr expression in conjunction with Wg
(Fig. 4E).

Our results suggest that the ventral expression of mid and H15
represents a major function downstream of Wg and Dpp in the D/V
fate decision. The cell-autonomous requirement for mid and H15
and the ability of ectopic mid expression to induce ventral fate and
gene expression in dorsal cells mean that mid and H15 meet the
criteria to be defined as selector genes (Crick and Lawrence, 1975;
Garcia-Bellido, 1975). In the absence of mid and H15, ventral
structures may assume a dorsal fate due to the low levels of Dpp
signaling found in the ventral leg (Azpiazu and Morata, 2002).
However, it is not likely that dorsal is the default fate in the leg, as
lateral structures prevail when the expression of both wg and dpp is
greatly reduced (Held et al., 1994). Ventral fate also requires Wg
signaling, suggesting that mid and H15 act to provide a molecular
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context for the upstream Wg morphogen to direct ventral-specific
patterns of gene expression, as has been observed for other selector
genes (Curtiss et al., 2002; Mann and Carroll, 2002). The ventral-
specific expression of mid, HI15 and wg is conserved throughout
several arthropod orders, suggesting that it represents a fundamental
mechanism in limb patterning (Janssen et al., 2008; Prpic et al.,
2005).
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