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Abstract
Hard ticks feed for several days or weeks on their hosts. Blood feeding is assisted by tick

saliva, which is injected in the host skin regularly, alternating with blood ingestion. Tick

saliva contains hundreds or thousands of different peptides and other bioactive compounds

that assist feeding by inhibiting their hosts’ blood clotting, platelet aggregation, vasocon-

striction, as well as pain and itching. Immunomodulatory and antimicrobial peptides are also

found in tick saliva. Molecular characterization of tick salivary compounds, or its sialome

(from the Greek sialos = saliva), helps identification of possible antigens that might confer

anti-tick immunity, as well as identifying novel pharmacologically active compounds.

Amblyomma americanum is a major nuisance tick in Eastern and Southern US, being a vec-

tor of Theileria and Ehrlichia bacteria to animals and humans. Presently we report an RNA-

seq study concerning the salivary glands of adult female A. americanum ticks, which

involved sequencing of four libraries collected at different times of feeding. A total of 5,792

coding sequences were deduced from the transcriptome assembly, 3,139 of which were

publicly deposited, expanding from the previously available 146 salivary sequences found

in GenBank. A remarkable time-dependent transcript expression was found, mostly related

to secretory products, supporting the idea that ticks may have several “sialomes” that are

expressed at different times during feeding. The molecular nature of this sialome switching

remains unknown. The hyperlinked spreadsheet containing the deduced coding sequences

can be found at http://exon.niaid.nih.gov/transcriptome/Amb_americanum/Ambame-web.

xlsx.
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Introduction
Hard ticks feed for several days or weeks on their vertebrate hosts, acquiring a very large meal
relative to their size, which may be over 100 fold their pre-engorgement weight. Tick feeding is
usually divided into three phases associated with attachment, slow feeding and fast feeding
phases [1]. Tick attachment involves the penetration of the skin by the chelicera and secretion
of salivary cement that helps to fix the tick at the feeding site. Tick saliva also assists feeding
through its complex mixture of compounds that disarms their hosts’ hemostasis, which
includes platelet aggregation, vasoconstriction and blood clotting, as well as their innate and
acquired immunity arms of inflammation in the form of salivary anticomplement and lympho-
cyte inhibitors, among other activities; antimicrobial peptides have also been found in tick
saliva, perhaps controlling microbial infection at the tick bite and in the ingested meal [2–4].
Tick saliva composition as revealed by sialotranscriptomes (from the Greek, sialo = saliva)
indicates the existence of over 1,000 putative secreted peptides grouped into dozens of protein
families [3]. It appears that during the prolonged feeding period of ticks, which may last for
weeks, different members of related proteins are expressed at distinct times thus possibly
avoiding their hosts’ immune response [5].

The tick Amblyomma americanum is a three host tick, widespread in the Eastern and South-
eastern United States, being a major nuisance and confirmed vector of tularemia and ehrlichio-
sis to humans and animals, and Theileria cervi to white deer [6, 7]. Amblyomma americanum
bites additionally are a possible cause of IgE antibody responses to α-gal in the southeastern
United States [8]. The current known distribution of delayed anaphylactic reactions to red
meat is similar to known A. americanum distribution. Previously, a sialotranscriptome of this
tick has been reported consisting of 3,869 expressed sequence tags (EST’s) from which 142 cod-
ing sequences (CDS) have been deposited to GenBank [9]. We presently report an extension of
this sialome by assembling over 344 million Illumina sequences totaling over 34 billion nucleo-
tides deriving from four salivary gland cDNA libraries made from A. americanum adult female
ticks that were unfed, or fed for 12–48 h, 72–144 h and 7–11 days, allowing identification of
the changing profile of transcription in salivary glands as feeding progresses. We added 3,139
deduced protein sequences to the Transcriptome Shotgun Annotation (TSA) portal of the
National Center for Biotechnology Information (NCBI), providing for a discovery platform for
proteomic studies that will serve to mine proteins of antigenic or pharmacological interest. We
additionally describe the remarkable change in transcription levels of hundreds of transcripts
according to time of feeding, most of a secreted nature, and discuss the possible mechanisms of
sialome switching in feeding ticks.

Material and Methods

Ethics statement
All animal experiments were performed in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The
protocol of tick blood feeding on the sheep was approved by the Institutional Animal Care and
Use Committee of the University of Southern Mississippi (protocol # 10042001). All efforts
were made to minimize animal suffering.

Ticks and other animals
The lone star ticks (A. americanum) were maintained at the University of Southern Mississippi
according to established methods [10]. Unfed adult ticks were obtained from Oklahoma State
University’s tick rearing facility (Stillwater, OK) for this study. Unfed ticks were maintained at
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room temperature and 90% relative humidity under 14/10 hour light/dark photoperiod before
infestation on sheep. Ticks were fed on sheep and were either allowed to feed to repletion or
removed between 12–264 hours, depending on the experimental protocol. Adult ticks were
blood-fed specifically for this study and animal studies were performed in accordance with pro-
tocols approved by the Institutional Animal Care and Use Committee (IACUC) at the Univer-
sity of Southern Mississippi.

Tick salivary glands (SG) preparation
The unfed and blood-fed (12, 18, 24, 36, 48, 72, 120, 144, 168, 192, 216, 264 hrs post attach-
ment) female adult ticks were dissected within four hours of after removal from the sheep. Tick
salivary glands were dissected in ice-cold M-199 buffer [11, 12]. After removal, salivary glands
were washed gently in the same ice-cold buffer. The dissected SGs were stored immediately
after dissection in RNAlater (Invitrogen, Carlsbad, CA, USA) prior to extracting mRNA.

RNA Preparation
Total RNA was isolated from salivary glands dissected from unfed and partially blood-fed
adult female ticks using illustra RNAspin Mini RNA isolation kit (GE Healthcare, NJ, USA)
following the manufacturer’s protocol. The quality of the RNA samples was confirmed by lab-
on-chip analysis using the 2100 Bioanalyzer (Agilent Technologies, Inc. Santa Clara, CA,
USA). The total RNA quantity was determined by a Nanodrop, and the total RNA samples
(A260/280> 1.8–2) were pooled into 4 groups (Group I, UF: Unfed SGs only; Group II, 12–48
h: 12, 18, 24, 36, 48 hours post attachment; Group III, 72–144 h: 72, 120, 144 hours post attach-
ment and Group IV, 7–11 days: 168, 192, 216, 264 hours post attachmen) for further cDNA
synthesis.

Illumina Sequencing
Total RNA samples were submitted to Otogenetics Corporation (Norcross, GA USA) for
RNA-seq assays. Total RNA was treated with the Ambion GLOBINclear-Human Kit to deplete
globin mRNA that may have resulted from the blood meal; the Clontech SmartPCR cDNA kit
(Clontech Laboratories, Inc, Mountain View, CA USA, Cat#634926) was used to generate
1–2 μg of cDNA from 100 ng of total RNA, following the manual instructions that included
6 min at 68°C followed by 10 min at 70°C during the 14 cycles of the PCR reaction. Restriction
digestion was used to remove adaptor sequences and the resulting cDNA was fragmented
using Covaris (Covaris, Inc., Woburn, MA USA), profiled using Agilent Bioanalyzer, and sub-
jected to Illumina library preparation using NEBNext reagents (New England Biolabs, Ipswich,
MA USA). Agilent Bioanalzyer 2100 was used to assess the quality, quantity, and size distribu-
tion of the Illumina libraries. The libraries were then submitted for Illumina HiSeq2000
sequencing according to the standard operation. Paired-end 90 or 100 nucleotide reads were
generated and checked for data quality using FASTQC (Babraham Institute, Cambridge, UK).
The number of paired ended reads of 100 nt in length for each of the four libraries was: Group
I, 106,249,828; Group II 50,190,144; Group III, 99,582,182 and Group IV, 88,887,224 reads.
Sequence reads were deposited to the NCBI under Bioproject PRJNA218793, Biosample
SAMN02352759 and read files SRR1740607 (unfed), SRR1740608 (12–48h), SRR1740609
(72–144 h) and SRR1740611 (7–11 days).
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Bioinformatics Analysis
Assembly of all reads was done using the assemblers Abyss and Soapdenovo-Trans with every
other kmer (-k program switch) parameter from 17 to 85 [13–17]. Resulting contigs were re-
assembled by a pipeline of blastn and cap3 assembler [18] as described earlier [19]. Coding
sequences were extracted based on blastx [20] results deriving from several database matches,
including a subset of the non-redundant protein database of the National Center for Biotech-
nology Information (NCBI) containing tick and other invertebrate sequences, as well as the
Swissprot and Gene Ontology (GO) databases. The longest open reading frame was also
extracted if it had a signal peptide indicative of secretion as evaluated by version 3.0 of the Sig-
nalP program [21]. Reads from the four libraries were mapped back into the CDS by blastn
with a word size of 25 and allowing one gap. Reads were mapped up to a maximum of five dif-
ferent CDS if the blast scores were the same for all matches. Read number differences for each
CDS between libraries were compared by a X2 test. For heat map display [22] of the CDS tem-
poral expression, the number of reads for each treatment was normalized by multiplying it to
the grand total number of reads deriving from all libraries and dividing the product by the total
number of reads of the particular library, zeroes were replaced by one, then each row of data
was average normalized, and then log(10) transformed. Heatmaps were produced with the pro-
grams gplots and heatmap.2 using R [23]. Differential gene expression clustering was done
with the program Expander version 6.5 [24], using as input read fragments per thousand nucle-
otides per million (FPKM) data and the click1 algorithm. More details of the input are available
in the results section.

All coding sequences and their reads are available for browsing in the supporting S1 File
which also contains hyperlinks to several databases, as explained previously [19, 25]. FPKM
were calculated for each library [26]. Deduced coding sequences and their translations were
deposited at DDBJ/EMBL/GenBank under the accession GBZX00000000. The version
described in this paper is the first version, GBZX01000000.

Results and Discussion
Assembly of the 344,909,378 reads from 4 libraries allowed extraction of 5,792 CDS that
mapped 143,158,375 reads. Following blast and rpsblast comparisons to several databases,
these CDS were classified into 27 categories revealing 49% of the total reads mapping to CDS
associated with putative secreted proteins followed by 18% of reads mapping to CDS associated
with the protein synthesis machinery, a common finding in previous tick sialotranscriptomes
(Table 1). Transposable elements and bacterial/algal sequences were also identified. The
secreted CDS group was further classified into 8 major subdivisions as indicated in Table 2.
Noticeable are the abundance of members of the Lipocalin group (200 CDS and 27% of the
reads of the secreted class) as well as of the Kunitz group (over 100 CDS and> 8% of the
reads). The subclass of Glycine rich proteins, which includes cement proteins, contains 46 CDS
mapping 16% of the reads. Several previously orphan protein families were deorphanized and
novel protein families were discovered. Consult previous publications for further information
on the different protein families described in Table 2 [3, 19]. The hyperlinked spreadsheet con-
taining all CDS and their classifications can be found in the supporting S1 File. Three thousand
and forty one CDS and their translations were deposited in the TSA portal of the NCBI.

Differential gene expression following feeding according to RNAseq data
Comparisons within each CDS of the number of mapped reads or FPKM values deriving from
each of the four libraries (made from unfed ticks – UF, and from ticks feeding for 12–48 h, 72–
144 h and 11 days) allowed for determining their temporal expression patterns which can be
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visualized in a heat map, and also on S1 File, worksheet named DiffExp. Fig 1 displays 836
CDS that are significantly not uniformly expressed among the 4 libraries, as assessed by a X2

test, having a minimum FPKM of 5 in at least one of the 4 time points and showing a standard
deviation of 1 or more regarding the log(10) transformation of their average-normalized data
(Fig 1). Notice that this heat map was made with log(10) transforms, not the usual log(2) trans-
formations. Indeed, the difference from the blue to red in the Fig. represents 10,000 fold varia-
tion. This exquisitely high differential expression of transcripts according to time post-feeding
in ticks has been also observed for Ixodes ricinus [27]. Clusterization of these 836 coding
sequences with the click algorithm of the program Expander [24], using as input the FPKM
data, indicates five time dependent clusters, with exclusion of 19 singleton CDS, which could
not be taken into any of the 5 clusters (Fig 2). These clusters clearly define transcripts that
increase their expression towards the end of the blood meal (Fig 2A), or are overexpressed in
the unfed stage (Fig 2B), at 12–48 h post attachment (Fig 2C), at all stages except unfed (Fig
2D), or are overexpressed at 72–144 h post attachment, towards the middle of the blood meal
(Fig 2E).

While within the complete CDS set of 5,792 sequences, 37% belong to the secreted class
(Table 1), 79% of the differentially expressed set belongs to this class (Table 2 and Fig 3). Of

Table 1. Functional classification and associated mapped reads deriving from the sialotranscriptome of Amblyomma americanum.

Class Number of CDS Percent of CDS Number of Reads Percent of Reads

Secreted 2,153 37.172 69,544,089 48.578

Protein synthesis machinery 251 4.334 25,125,390 17.551

Unknown, conserved 494 8.529 16,195,994 11.313

Metabolism, energy 129 2.227 7,390,428 5.162

Protein export machinery 165 2.849 4,747,170 3.316

Unknown 636 10.981 3,004,072 2.098

Signal transduction 315 5.439 2,889,793 2.019

Protein modification machinery 164 2.831 2,734,514 1.910

Transporters/storage 176 3.039 2,447,877 1.710

Transcription machinery 249 4.299 1,408,049 0.984

Cytoskeletal 92 1.588 1,331,574 0.930

Proteasome machinery 121 2.089 1,315,949 0.919

Metabolism, carbohydrate 89 1.537 1,018,648 0.712

Oxidant metabolism/detoxification 63 1.088 741,259 0.518

Nuclear regulation 115 1.985 655,105 0.458

Storage 14 0.242 555,726 0.388

Metabolism, lipid 115 1.985 534,638 0.373

Transcription factor 69 1.191 405,461 0.283

Metabolism, nucleotide 66 1.140 241,402 0.169

Metabolism, amino acid 32 0.552 198,182 0.138

Immunity 27 0.466 150,807 0.105

Extracellular matrix/cell adhesion 39 0.673 140,583 0.098

Metabolism, intermediate 27 0.466 133,177 0.093

Nuclear export 17 0.294 52,429 0.037

Transposable element 97 1.675 87,648 0.061

Bacterial 59 1.019 86,794 0.061

Algal 18 0.311 21,617 0.015

Total 5,792 100.000 143,158,375 100.000

doi:10.1371/journal.pone.0131292.t001
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Table 2. Functional classification and associatedmapped reads deriving from the CDS associated with putative secreted proteins found in the sia-
lotranscriptome of Amblyomma americanum.

Class No. of CDS No. of Reads Percent of Reads

Enzymes

Salivary 5'-nucleotidase 3 5,118 0.007

Endonuclease 2 14,601 0.021

Carboxypeptidase 10 179,505 0.258

Metalloprotease reprolysin family 29 310,556 0.447

Metalloprotease M13 family 18 898,131 1.291

Phospholipase 5 18,696 0.027

Protease inhibitor domains

Serpins 10 23,169 0.033

Kunitz superfamily 85 5,330,593 7.665

Kunitz 45/50 family 14 462,788 0.665

Additional Kuniz peptides 46 815,657 1.173

Carboxyopeptidase inhibitor 1 1,144 0.002

Cystatin 13 144,850 0.208

Thyropin 3 18,331 0.026

TIL domain polypeptides 29 1,354,404 1.948

TIL II family 14 2,027,658 2.916

Lipocalins 200 18,815,797 27.056

Immunity related peptides

Leucine rich Toll like proteins 2 11,526 0.017

ML domain containing protein 5 10,293 0.015

Galectin 3 4,201 0.006

Lysozyme 2 132,879 0.191

Microplusin 11 124,504 0.179

Possible defensin 8 25,590 0.037

5.3 kDa peptide 23 161,938 0.233

Ubiquitous domains, function unknown

Antigen 5 SCP family 3 13,647 0.020

Tick specific families—known function

Glycine rich proteins, possible cement 46 11,177,996 16.073

Glycine rich small peptide 14 514,224 0.739

Cement-like protein 4 1,247,971 1.795

Peritrophin/Cuticle 4 18,458 0.027

Mucins 28 327,369 0.471

Evasin 43 625,939 0.900

Tick specific families—unknown function

Insulin growth factor binding family 1 1,808 0.003

23 kDa family 2 4,929 0.007

28 kda metastriate family 6 22,161 0.032

One of each family 12 28,339 0.041

Ixostatin family 8 1,236,225 1.778

10 kDa acidid metastriate family 8 212,768 0.306

18.3 kDa family 9 548,942 0.789

Ixodegrin 14 66,559 0.096

8 kDa Amblyomma peptide 25 2,598,552 3.737

Basic tail 5 816,944 1.175

(Continued)
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note, known multi-gene families expressed in tick sialotranscriptomes such as lipocalins (Fig
4), Kunitz (Fig 5), Cystatins, metalloproteases, TIL domain containing peptides, members of
the 8.9 kDa family and evasins [see [3] for description of these families] have CDS that are
remarkably differentially expressed (S1 File, worksheet “DiffExp”). Two cystatin genes from I.
scapularis have been shown to change their expression reciprocally during feeding and it was
postulated that these changes may reflect a form of antigenic variation of tick proteins exposed
to their hosts [28]. Overall, this pattern of differential expression of secreted proteins is extreme
and supports the idea that it might have evolved as a mechanism of antigenic variation of sali-
vary proteins.

Regarding highly differentially expressed housekeeping proteins, we identify a sulfotransfer-
ase that is up regulated toward the end of the feeding period (Aam-16214), which might be
associated with detoxification of dopamine agonists of salivary secretion [29] (S1 File, work-
sheet “DiffExp”). Several glucose dehydrogenase enzymes peak at the first 12–24 hours and
might be associated with the use of host glucose as an initial energy source. A FMRFamide-
related neuropeptide (Aam-32932) is maximally expressed in the unfed group, decreasing its
levels more than 100 x on the subsequent time periods examined. Proteins associated with apo-
ptotic messages, as expected, increase toward the end of the blood meal [30], as do heme lipo-
protein precursors and vitellogenin, and many transporters, including one aquaporin (Aam-
38627), sugar transporters and several monocarboxylate transporters. Some transposable ele-
ments also show remarkable time dependent expression levels, some being most expressed in
unfed and others at the 11 day-derived libraries.

Table 2. (Continued)

Class No. of CDS No. of Reads Percent of Reads

8.9 kDa family 27 1,819,462 2.616

8.9 kDa family 45–15 11 35,028 0.050

8.9 kDa family 45–22 9 2,279,320 3.278

Other members of the 8.9 kDa superfamily 98 2,407,249 3.461

8.5 kDa family 13 81,919 0.118

Small basic tail family 10 93,134 0.134

Tick specific family I 6 234,980 0.338

Other tick-specific salivary proteins 80 1,574,657 2.264

Other tick-specific salivary proteins, mostly fragments or novel 1,030 8,181,421 11.764

Novel or deorphanized families

Novel family 40–17 17 843,358 1.213

Pulchellus peptide family I 7 101,687 0.146

Pulchellus peptide family II 7 21,169 0.030

Pulchellus peptide family III 6 57,251 0.082

Ambvar protein family 20 1,326,506 1.907

Amlyomma specific family I 9 33,883 0.049

Ambam specific family II 12 3,148 0.005

Ambam specific family III 3 1,622 0.002

Ambam specific family IV 4 573 0.001

Ambam specific family V 4 4,734 0.007

Ambam specific family VI 6 4,899 0.007

Ambam specific family VII 6 83,329 0.120

Total 2,153 69,544,089 100.000

doi:10.1371/journal.pone.0131292.t002
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Fig 1. Heat map displaying 836 coding sequences (CDS) that are not uniformly expressed in the four libraries and showing a standard deviation of
1 or more regarding the log(10) transformation of the average normalized data. For more details, see text.

doi:10.1371/journal.pone.0131292.g001
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Among the highly differentially expressed CDS, 14 best matched bacterial proteins, 13 of
which best matching Coxiella. All these bacterial transcripts were most expressed in unfed
ticks. A. americanum has been found to harbor Coxiella sp. at high prevalence [31]. Somewhat
surprising was the finding of 11 CDS best matching plant or algal sequences, all of which are
most expressed in the 72–144 h library. Whether these sequences represent artifactual contam-
ination of the sample, derive from apicomplexa parasites or some symbiotic association
remains to be determined. For the record, plant-like sequences were also found in our previous
A.maculatum sialotranscriptome [19], such as that recorded at http://www.ncbi.nlm.nih.gov/
protein/346465067?report = genbank&log$=prottop&blast_rank=1&RID=0DKR925H013.

Invariant transcripts
We also evaluated those CDS that did not change their expression in the various libraries. For
that goal, considering only transcripts with FPKM> 10, we divided each contig FPKM value
for each library by the average FPKM of all libraries and determined the standard deviation
(SD) of these transformed values. Forty four transcripts had a SD< 0.05 indicating remarkable
time invariance among the libraries (Table 3). None of these transcripts belong to the secreted
class, and include histones, ubiquitin related proteins, transcription factors and ribosomal pro-
teins that are normally used to normalize transcript tissue expression in qPCR experiments.
Further details regarding these transcripts can be found in the worksheet named “ConstantEx-
pression” in the S1 File. This set of results serves to validate the differentially time expressed
contigs described above, and for selection of PCR primers for control transcripts when com-
paring transcript expression using qPCR.

Conclusions and Perspectives
This work provides for an increase from 142 to 3,281 proteins publicly deposited from A. amer-
icanum annotated as salivary proteins, thus vastly increasing the repertoire of this tick sialome
that might be useful as a platform for protein discovery using mass spectrometry protocols,
and to help genome annotations (gene exon/intron borders) when this tick genome is
sequenced and assembled.

As found before in other time-dependent tick sialotranscriptome studies, the tick salivary
secretory repertoire changes dramatically as blood feeding progresses [27, 32]. It appears that
ticks have several “built-in” sialomes that are selected for expression as time progresses. Indeed,
many transcripts have oscillations on the order of hundreds or thousands fold. This has been
proposed before [27] as a mechanism of antigenic variation, as for example, an antigen secreted
on Monday would be absent Friday and substituted by a functionally similar protein with dif-
ferent antigenic properties. The question remains whether the sialome switch occurs purely fol-
lowing an internal clock, or whether it responds to a feeding stress sensor. We have previously
suggested that sialome switch in A.maculatummight follow epigenetic determined variations
in histone acetylation, as serendipitously observed following the knock down of the selenocys-
teine elongation factor that led to an enormous increase of a sirtuin transcript involved in his-
tone acetylation, and a dramatic change in transcripts associated with secreted salivary
products [33]. This hypothesis might be tested by determining the sialotranscriptome of ticks

Fig 2. Clustering of the differential temporal expression of 817 transcripts from the Amblyomma
americanum sialotranscriptome, using the Click algorithm of the Expander program [24]. Nineteen
transcripts of the 836 shown in Fig 1 were not clustered. Each graph (A-E) represents an identified cluster.
The Y axis represent the log(10) of the normalized FPKM row data, where 0 reads were substituted by 1.
Symbols and bars represent the average and standard errors. For more details, see text.

doi:10.1371/journal.pone.0131292.g002
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Fig 3. Functional classification of coding sequences and their relative abundance in the 5,792 set (A)
or in the differentially expressed set of 836 sequences (B).

doi:10.1371/journal.pone.0131292.g003
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Fig 4. Heat map displaying 138 lipocalin coding sequences (CDS) that are not uniformly expressed in the four libraries and showing a standard
deviation of 1 or more regarding the log(10) transformation of the average normalized data. For more details, see text.

doi:10.1371/journal.pone.0131292.g004
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Fig 5. Heat map displaying 98 Kunitz domain containing coding sequences (CDS) that are not uniformly expressed in the four libraries and
showing a standard deviation of 1 or more regarding the log(10) transformation of the average normalized data. For more details, see text.

doi:10.1371/journal.pone.0131292.g005
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Table 3. Time-invariant expressed transcripts.

CDS
Name

Comments Transformed Unfed
FPKM

Transformed 12–48
h FPKM

Transformed 72–144
h FPKM

Transformed 11 d
FPKM

SD

Aam-
33201

Eukaryotic translation initiation
factor 3

1.024 0.985 0.997 0.994 0.016

Aam-
1649

Uncharacterized conserved protein 0.985 0.979 1.010 1.026 0.022

Aam-
39788

FKBP-type peptidyl-prolyl cis-trans
isomerase

1.056 0.979 0.977 0.988 0.038

Aam-
40644

ubiquinol-cytochrome C reductase
complex

0.973 1.026 0.955 1.045 0.043

Aam-
33476

Golgi antiapoptotic protein 1.073 0.952 0.995 0.980 0.051

Aam-
42030

Alcohol dehydrogenase class III 0.978 0.943 1.063 1.016 0.052

Aam-
1685

Unknown product 1.037 1.046 0.995 0.922 0.056

Aam-
4480

20-hydroxysteroid dehydrogenase 1.028 1.072 0.973 0.928 0.063

Aam-
11842

XTP3-transactivated protein A
protein

0.941 0.962 1.085 1.012 0.064

Aam-
33491

glutamate transporter
EAAC1-interacting protein

1.080 0.918 0.997 1.006 0.066

Aam-
40639

Seryl-tRNA synthetase 1.031 1.024 0.895 1.049 0.071

Aam-
10857

Alpha-tubulin suppressor 1.094 0.923 0.997 0.985 0.071

Aam-
34154

6-pyruvoyl tetrahydrobiopterin
synthase

0.927 0.960 1.087 1.026 0.071

Aam-
13359

Phenylalanyl-tRNA synthetase beta
subunit

0.954 1.028 0.930 1.088 0.072

Aam-
20641

histone H2B 1.054 0.940 0.931 1.075 0.075

Aam-
40212

transcription factor IIH (TFIIH) 1.074 0.991 1.039 0.896 0.077

Aam-
35707

Translation machinery-associated
protein

0.951 0.950 1.113 0.986 0.077

Aam-
27753

Unknown product 1.091 0.928 0.937 1.045 0.081

Aam-
34324

Histone H4 1.104 0.903 0.984 1.010 0.083

Aam-
8796

Predicted thioesterase 0.942 1.072 1.074 0.912 0.085

Aam-
39279

Unknown product 0.997 0.972 1.118 0.913 0.086

Aam-
40478

28S ribosomal protein S24 0.904 1.036 0.958 1.102 0.087

Aam-
36097

39S ribosomal protein L50
mitochondrial

0.945 0.986 0.940 1.129 0.088

Aam-
18940

Glyoxylate/hydroxypyruvate
reductase

0.999 0.883 1.018 1.100 0.089

Aam-
29306

Unknown product—Membrane
anchor detected

0.977 0.978 1.127 0.917 0.090

Aam-
29839

ubiquitin 1.019 1.119 0.933 0.929 0.090

(Continued)
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fed artificially where no feeding stressors should change with the meal, compared to transcrip-
tomes of “in vivo” feeding controls. Gene expression patterns displayed by ticks in experiments
with naïve and successively infested hosts could also help to elucidate this matter. These sia-
lome variations thus bring challenges to applied research related to tick vaccine antigen selec-
tion, as well as to basic research related to the underlining mechanism of sialome switching in
ticks.

Supporting Information
S1 File. Hyperlinked Excel spreadsheet containing the analyzed coding sequences.
(XLSX)
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