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Diffraction data play an important role in the structural characterizations of solids. While reverse Monte
Carlo (RMC) and similar methods provide an elegant approach to (re)construct a three-dimensional model
of noncrystalline solids, a satisfactory solution to the RMC problem is still not available. Following our
earlier efforts, we present here an accurate structural solution of the inverse problem by developing an
information-driven inverse approach (INDIA). The efficacy of the approach is illustrated by choosing amorphous
silicon as an example, which is particularly difficult to model using total-energy-based relaxation methods. We
demonstrate that, by introducing a subspace optimization technique that sequentially optimizes two objective
functions (involving experimental diffraction data, a total-energy functional, and a few geometric constraints),
it is possible to produce models of amorphous silicon with very little or no coordination defects and a pristine
gap around the Fermi level in the electronic spectrum. The structural, electronic, and vibrational properties of
the resulting INDIA models are shown to be fully compliant with experimental data from x-ray diffraction,
Raman spectroscopy, differential scanning calorimetry, and inelastic neutron scattering measurements. A direct
comparison of the models with those obtained from the Wooten-Winer-Weaire approach and from recent
high-quality molecular-dynamics simulations is also presented.

DOI: 10.1103/PhysRevMaterials.2.115602

I. INTRODUCTION

The reconstruction of three-dimensional models of com-
plex noncrystalline solids from experimental data constitutes
an archetypal example of inverse problems in materials mod-
eling. Inverse approaches provide a distinct route to design
complex disordered materials by directly incorporating a set
of experimental observables in simulation methodologies.
The resulting atomistic models thus exhibit a high degree of
compliance with a set of experimental data, and the method,
by construction, eliminates the need for accurate total-energy
functionals, which are necessary for conventional simulations.
A classic example is the reverse Monte Carlo (RMC) method
[1–5], which attempts to construct a three-dimensional model
of disordered solids by inverting experimental diffraction data
in conjunction with a few structural constraints. However,
the difficulty associated with inverting one-dimensional pair-
correlation diffraction data in the presence of competing
structural constraints, which leads to a difficult nonconvex
optimization problem, has been a major obstacle in producing
realistic structural solutions from RMC simulations. Although
the method has been employed for a variety of disordered
solids [3], the problem is particularly acute for highly coordi-
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nated systems, such as amorphous silicon (a-Si) and tetrahe-
dral amorphous carbon (ta-C). To our knowledge, none of the
RMC-derived models of a-Si reported in the literature [1–5]
to date show a pristine gap in the electronic density of states
around the Fermi level and a low defect density as observed
in electron spin resonance (ESR) experiments [6].

Inverse problems are often characterized by their ill-
conditioned nature and they are notoriously difficult to solve
satisfactorily [7]. In the context of materials modeling, the
difficulty primarily arises from the volume of structural (and
additional) information to be incorporated in the problem
by constructing suitable penalty/constraint functions and the
subsequent optimization of an objective function (involv-
ing experimental data and constraint functions) in a high-
dimensional solution space. The presence of hierarchy among
higher-order correlation functions [8,9] suggests that a min-
imal number of constraints and experimental data sets need
to be included in the problem in order to produce struc-
turally unique models. However, the inclusion of too much
information can make very difficult the resulting nonconvex
optimization problem and its accurate solution that satisfies
the requirements of a physical model.

An approximate solution of the constrained RMC problem
for a-Si was proposed by some of us more than a decade
ago [1]. While this approach produced correctly the two-
and three-body atomic correlation functions, as well as a
reasonably good electronic density of states (EDOS) with
a hint of a spectral gap in the vicinity of the Fermi level,
the presence of a significant number of coordination defects
(e.g., threefold- and fivefold-coordinated atoms) limits the
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applicability of the method and the resulting models for high-
quality predictive studies of amorphous silicon. Although a
number of hybrid or related methods [10–16], i.e., methods
that involve a total-energy functional in RMC simulations in
addition to scattering data, have been developed in the last
decade to produce improved structural models of a-Si, none of
the methods lead to atomistic models that can match the high
quality of the bond-switching Wooten-Winer-Weaire (WWW)
models [17–19]. The purpose of this paper is to present an
information-driven inverse approach (INDIA), combining ex-
perimental data and constraint information with a total-energy
functional to yield high-quality atomistic models of amor-
phous silicon. We demonstrate that the resulting structural
models produce a clean gap in the electronic spectrum around
the Fermi level with a few coordination defects. The atomistic
models from this approach represent the very best of its class
and they are comparable to those obtained from the WWW
method.

In recent years, information-based approaches have
played a crucial role in designing complex materials [10–
13,16,20–22]. Molecular dynamics (MD) simulations, using
knowledge-based interactions obtained via machine-learning
algorithms, have been employed to produce high-quality
MD models of a-Si [23]. Likewise, experimental data from
nuclear magnetic resonance and infrared spectroscopy have
been employed profitably to understand the microstructure of
hydrogen in a-Si:H and the distribution of extended inhomo-
geneities (e.g., voids) in a-Si [24–27]. Electronic information
too, from electronic densities of states, has been used in an
effort to control and engineer the band gap of a-Si using
constrained molecular-dynamics simulations [28]. Thus, the
incorporation of relevant structural [1], electronic [28], NMR
[26], and IR [29] information played a decisive role in simu-
lations, not only to develop better structural models but also
to understand physical properties of the amorphous state that
were not accessible from using conventional atomistic simula-
tions. This observation also applies to the WWW method. An
examination of the latter suggests that the so-called WWW
bond switches essentially introduce five-member and seven-
member rings in crystalline or disordered silicon networks
while maintaining fourfold coordination for each atom, cou-
pled with the minimization of the Keating potential energy
to obtain local minima on the potential-energy surface (PES).
Thus, the application of bond switches in the WWW method
can be viewed as an inclusion of topological information
(i.e., five- and seven-member rings) in simulations that greatly
facilitates the system to explore the relevant region of the
PES consistent with the induced ring topology and fourfold
coordination and to determine amorphous configurations of
silicon in the resulting procedure.

The remainder of the paper is as follows. In Sec. II,
we present an information-driven inverse approach (INDIA)
that entails optimization of an augmented objective function,
incorporating experimental diffraction data, a few structural
constraints, and a total-energy functional. We show that the
difficulty associated with the optimization of the augmented
objective function can be considerably reduced by introduc-
ing a subspace optimization technique, which sequentially
optimizes total-energy and experimental diffraction data (in-
cluding a few geometrical constraints) in a self-consistent

manner to determine optimal structural solutions, satisfying
experiments and a total-energy functional simultaneously.
Section III discusses the results from the simulations by
examining structural, electronic, and vibrational properties of
the resultant a-Si models. A comparison of the results with
experimental data and those from the WWW and high-quality
molecular-dynamics models [23,30] of identical size from the
literature are also presented here. The conclusions of this work
are presented in Sec. IV.

II. COMPUTATIONAL METHOD

In conventional RMC simulations, one attempts to invert
a set of experimental diffraction data Fex(k) by writing an
objective function [3–5]

χ2(R) =
∑

i

[
Fex(ki ) − Fc(ki ; R)

σ (ki )

]2

+
∑

l

λl Cl (R), (1)

where Fc(k; R) correspond to simulated diffraction data ob-
tained from a three-dimensional distribution of atoms R, σ (ki )
is the error associated with Fex(ki ), and Cl are a number
of structural constraints, providing additional information on
the atomistic properties of the solid. The coefficients λl are
weights associated with Cl , which determine the relative
strength of the constraints in simulations. While Eq. (1)
appears to present a well-posed inverse problem [31,32] for
structural determination of a solid, a direct determination
of an accurate optimal physical solution of the resulting
nonconvex optimization problem has proven to be too difficult
to obtain, owing to the high dimensionality of the search
space and the presence of competing constraints in Eq. (1).
The information-driven strategy adopted here relies on the
following two observations: (a) an optimal structural solution
should originate from the region of the solution space that
simultaneously satisfies a set of experimental data and a total-
energy functional; (b) the solution must represent a good local
minimum on the potential-energy surface and that it ought to
be consistent with the structural constraints included in Eq. (1)
(see Fig. 1). Toward this end, we form an augmented objective
function P (E, R), which is the direct product of a total-energy
functional E(R) and the function χ2 in Eq. (1),

P ≡ E(R) ⊗ χ2(R)

≡ E(R) ⊗
[∑

i

(
Fex(ki ) − Fc(ki ; R)

σ (ki )

)2

+
∑

l

λlCl (R)

]

≡
[
E(R) ⊗

∑
i

(
Fex(ki ) − Fc(ki ; R)

σ (ki )

)2
]

⊕
[
E(R) ⊗

∑
l

λlCl (R)

]

≡ χ2
M ⊕ χ2

K. (2)

In Eq. (2), χM is the objective function in subspace
M, spanned by the total-energy functional and experimental
diffraction data. A similar definition applies to χK in subspace
K, where experimental diffraction data are replaced by a set
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FIG. 1. A schematic illustration of the augmented space P , con-
sisting of the objective-function spaces spanned by the experimental
data (red), constraint information (blue), and a total-energy func-
tional (green). An optimal structural solution R∗ corresponds to the
region of intersection of the three circles.

of structural constraints [33]. The symbols ⊗ and ⊕ stand
for the operation of direct product and direct sum between
the subspaces that form the augmented objective function
space P . A schematic illustration of these regions and their
relationship to P is shown in Fig. 1. All optimal structural
solutions correspond to the region of intersection between
the subspaces via the mapping f : R → P . We emphasize
that, while several optimal solutions might exist that can
differ from each other microscopically, it is necessary that
they are macroscopically similar in order to be considered as
correct physical solutions of the problem. In the following,
we provide an ansatz to obtain optimal structural solutions
R∗ that simultaneously satisfy the objective functions χM and
χK in subspaces M and K, respectively. The procedure for
determining an optimal solution in R, by jointly optimizing
χM and χK , consists of the following steps.

(1) Start with a random distribution of atoms and opti-
mize the objective function χM to fit experimental diffraction
data and a total-energy functional in M. This is achieved
by conducting a reverse Monte Carlo simulation to fit the
diffraction data and minimizing the total potential energy via
the conjugate-gradient (CG) or an appropriate method in a
self-consistent manner. We refer to this step as the M loop
(see Fig. 2). The convergence of this self-consistent loop is
obtained by specifying a maximum value of M and tolerance
values for RMC fitting and total-energy relaxations;

(2) The structural solution R∗
M , obtained on successful

completion of step 1, is subjected to further treatment so
that the objective function χK , involving a coordination con-
straint [34] Cl (R), and a total-energy functional E(R), is now
optimized. The optimization is performed as before for fitting
a coordinate-constraint function using a second RMC simu-
lation and total-energy optimization via CG relaxations or a
suitable scheme. The step is indicated as the K loop in Fig. 2
and the convergence is handled in a similar manner by specify-
ing tolerance values for atomic coordination and total energy.

(3) To ensure that the final solution satisfies both the
objective functions χM and χK , a coupling is established

Start

Random Config.

M -loop K-loop

Pure
RMC

Diff. data

Total Energy
Optimization

RMC Converged?
or m > M

Coordination
Optimization

Total Energy
Optimization

Coordination
Converged?

k < K
.

Global
convergence

test

Stop

Stop

No Yes No

Yes

No

Yes

Restart

Continue

Abnormal Exit

FIG. 2. A flowchart showing information flow during simula-
tions. The subspace coupling between the M loop and K loop
reduces the computational complexity of the optimization problem
and leads to the generation of nearly defect-free configurations of
amorphous silicon.

between M and K so that the resulting output R∗
K , from step

2, can be fed back to the M loop to achieve self-consistency
between R∗

M and R∗
K , using suitable convergence criteria. The

latter involves specification of a coordination-defect density,
a root-mean-square deviation of the bond-angle distribution,
and a goodness-of-fit of the diffraction data in RMC simula-
tions within the feedback loop (via a green diamond), which
determine the final converged solution R∗. In the event that
a converged solution cannot be obtained for a given number
of iterations, the program can either continue by generating a
new random configuration or exit the loop prematurely with
the current solution.

A flowchart of the optimization program is shown in Fig. 2.
The subspace optimizations of χM and χK are indicated in the
flowchart as shaded regions in light red and light blue colors,
respectively. The two regions are connected by a feedback
loop through a green diamond in Fig. 2 in order to achieve
a self-consistent solution in subspaces χM and χK .

For total-energy optimizations, one can choose an appro-
priate classical, semiclassical, or quantum-mechanical force
field, depending upon the complexity of the problem to be
addressed. Here, we have employed the modified Stillinger-
Weber (SW) potential [35,36]

E(R) = 1

2

N∑
i=1

N∑
j=1

(j �=i)

v2(rij ) +
N∑

i=1

N∑
j=1

(j �=i)

N∑
k=1

(k �=i)
(k>j )

v3(r ij , r ik ), (3)

where v2 and v3 are the two-body and three-body contribu-
tions to the total potential energy, respectively, and they are
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TABLE I. Modified Stillinger-Weber potential parameters [35].

ε (eV) λ σ (Å) γ A B a p

1.648 33 31.5 2.0951 1.20 7.049 556 277 0.602 224 558 4 1.80 4

given by

v2 =
{

εA
[
B

( rij

σ

)−p − 1
]
e

( σ
rij −aσ

)
, if rij < aσ

0, otherwise

and

v3 =
{

ελ
(

cos θjik + 1
3

)2
e

( σγ

rij −aσ
+ σγ

rik−aσ
)
, if rij , rik < aσ

0, otherwise.

In Eq. (3), rij is the distance between two atoms at sites
i and j , and θjik is the angle subtended at site i by the
vectors rij and rik . We employed the modified SW poten-
tial parameters from Ref. [35], which are listed in Table I.
Throughout the work, we have used the experimental density
of a-Si of 2.25 g/cm3 and a maximum value of M = 200
and K = 1000 for achieving self-consistency within the M

loop and K loop, respectively. To compute the electronic
and vibrational properties of the optimal structural configura-
tion, we have used the first-principles density-functional code
SIESTA [37,38] to thoroughly relax the final INDIA structures
using fully self-consistent calculations. SIESTA employs local
basis functions, based on numerical pseudoatomic orbitals,
and norm-conserving Troullier-Martins pseudopotentials [39]
to solve the Kohn-Sham equations self-consistently within
the framework of density functional theory. In this work, we
employed double-zeta basis functions and the electronic cor-
relations were handled using the generalized gradient approx-
imation (GGA), via the Perdew-Burke-Ernzerhof (PBE) [40]
formulation.

III. RESULTS AND DISCUSSIONS

Since the structural quality of a-Si networks is largely
determined by the two- and three-body correlation functions,
along with the concentration of dangling and floating bonds
(i.e., threefold- and fivefold-coordinated atoms, respectively),
we begin by examining the radial and angular correlations
between atoms in the models. Noting that the method, by con-
struction, incorporates structural information at the two-body
level in real/reciprocal space, we shall focus our attention
on network properties that involve higher-order correlation
functions, such as the bond-angle distribution (BAD) and
dihedral-angle distribution (DAD), statistics of the ring-size
distribution, and the local coordinations of atoms in the net-
works. These will be followed by an analysis of electronic
and vibrational properties of the models. Below, we discuss
the results from four INDIA models of sizes 216, 300, 512,
and 1024 atoms, each averaged over three independent con-
figurations, and provide comparisons with the corresponding
WWW and MD models, as well as experimental data from
as-deposited a-Si samples. For comparison, we generated a
set of MD models, using the modified SW potential, fol-
lowing the methodology described in Ref. [30] and refer

2 4 6 8 10
r (Å)

0

5

10

15

20

G
(r

)

INDIA 512
WWW 512

(a)

4 8 12 16 20
k (Å-1)

0

0.5

1

1.5

2

2.5

S(
k)

INDIA 512
WWW 512
Expt. data

2 40

1

2 (b)

FIG. 3. (a) The reduced pair-correlation functions G(r ) of a-Si
from INDIA (red) and WWW (blue) models of size 512 atoms. (b)
The corresponding static structure factors S(k) from the INDIA (red)
and WWW (blue) models. Experimental data for as-deposited a-Si
samples (green) are included from Ref. [41]. An enlarged view of the
first two peaks of the structure factors is shown in the inset for a close
comparison of the results.

to those as SW-MD models. Likewise, the WWW models
were constructed using the modified bond-switching WWW
algorithm of Barkema and Mousseau [18]. In addition, we
have also compared our results with a 512-atom model by
Deringer et al. [23], from using machine-learning-driven MD
simulations (ML-MD), 216- and 512-, and 1024-atom models
by Pandey et al. [13] and Igram et al. [16], respectively, from
using the force enhanced atomic relaxation (FEAR) approach.

A. Structural properties

Figure 3 shows the reduced pair-correlation function (PCF)
G(r ) and the corresponding structure factor (SF) S(k) for
the 512-atom INDIA and WWW models. Experimental data
from as-deposited samples [41] of a-Si are also shown in the
plot for comparison. Although the results, in particular the
simulated structure-factor data, are expected to match with
experiments accurately, it is important to examine the PCF
and structure factor closely due to the complementary nature
of these (primal and dual) quantities in expressing atomic pair
correlations. While a PCF expresses local (two-body) corre-
lations explicitly, its Fourier counterpart provides an overall
match (of two-body correlations) incorporating information
from all length scales. This is reflected in the first sharp
diffraction peaks (FSDP) in Fig. 3(b): the presence of small
deviations in G(r ) beyond 5.0 Å appears to be translated into
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80 100 120 140 160
Angle (θ)

0

0.5

1

1.5

2

2.5
B

(θ
)

INDIA 512
WWW 512

FIG. 4. The bond-angle distributions B(θ ) of a-Si from 512-
atom INDIA (red) and WWW (blue) models. The average bond
angles and the corresponding root-mean-square deviations are given
by 109.1◦ ± 11.5◦ (INDIA) and 109.1◦ ± 10.7◦ (WWW).

a small but visible difference in the height of the FSDPs [see
inset in Fig. 3(b)].

The hierarchy among atomic-correlation functions implies
that the one-dimensional PCF/SF alone cannot fully charac-
terize a three-dimensional model of a-Si, unless the PCF/SF
is also consistent with, at the very least, the bond-angle
distribution (BAD) B(θ ), and its width. Additionally, the
latter must be sufficiently narrow so that the network is
subjected to minimal structural distortions with a fluctuation
in the BAD consistent with the value estimated from Raman
spectroscopy [42].These considerations lead to the conclusion
that the root-mean-square (RMS) deviation or fluctuation of
the bond-angle distribution of a high-quality a-Si network
should not exceed 9◦–11◦. Figure 4 shows the bond-angle
distributions for 512-atom INDIA and WWW models. The
BADs from the INDIA and WWW models closely match
each other, with an average bond angle of 109.1◦ ± 10.6◦ (IN-
DIA) and 109.1◦ ± 10.5◦ (WWW), obtained from a Gaussian
approximation [43] to the shape of the respective BADs. A
comparison of structural properties of the models in Table II,
obtained from a range of simulation techniques, establishes
that the INDIA methodology has the ability to yield a-Si
models par excellence. Thus, it would not be inappropriate
to conclude that the INDIA models presented here are sig-
nificantly better than earlier RMC models [1,4] and their
hybrid counterparts [12,13,16,44] and that they are on a
par with the models obtained from the WWW method and
recent high-quality molecular-dynamics simulations [23,30]
of amorphous silicon.

Table II summarizes some key structural properties of a-
Si models obtained from MD simulations and total-energy-
based relaxation methods that are particularly useful for direct
comparison. Recognizing that the structural quality of a-Si
models is chiefly determined by the PCF, the BAD and its
width, and the concentration of coordination defects in the
networks and that the FEAR and INDIA methods essentially
belong to the same universality class (in the sense that they
both rely on the information paradigm), it is evident from
Table II that the latter consistently produces a-Si models with
a smaller bond-angle width and fewer coordination defects
than the FEAR. This observation is indicative of the electronic

TABLE II. Structural properties of ab initio relaxed INDIA,
MD, and WWW models. 〈θ〉, �θ (�θG), and Cn represent the
average bond angles, RMS deviations, and the percentage of n-fold-
coordinated atoms, respectively. �E is the relative energy difference
(in eV) per atom from a 1000-atom crystalline silicon configuration
and it is related to heat of crystallization.

Model N 〈θ〉 �θ (�θG)a C4 C3 + C5 �E

INDIA 216 109.10 11.8 (11.3) 99.08 0.46 + 0.46 0.232
SW-MD 109.32 8.8 (8.4) 100.0 0.0 + 0.0 0.116
FEARb 108.80 14.6 99.08 0.46 + 0.46
WWW 109.16 11.1 (10.9) 100.0 0.0 + 0.0 0.185

INDIA 300 109.10 11.4 (10.4) 99.33 0.33 + 0.33 0.219
SW-MD 109.22 9.3 (8.5) 99.33 0.33 + 0.33 0.140
WWW 109.18 10.5 (10.1) 100.0 0.0 + 0.0 0.185

INDIA 512 109.09 11.5 (10.6) 99.60 0.20 + 0.20 0.216
SW-MD 109.27 9.1 (8.6) 99.22 0.39 + 0.39 0.125
ML-MDc 109.19 9.7 (9.4) 98.44 0.78 + 0.78 0.138
FEARd 95.90 1.17 + 2.73
WWW 109.11 10.7 (10.5) 100.0 0.0 + 0.0 0.192

INDIA 1024 109.01 11.9 (10.8) 98.34 1.07 + 0.49 0.236
SW-MD 109.27 8.9 (8.4) 99.22 0.59 + 0.19 0.132
FEARd 94.53 2.34 + 3.13
WWW 109.14 10.6 (10.3) 100.0 0.0 + 0.0 0.189

aValues within parentheses are from a Gaussian approximation.
bFrom Ref. [13].
cFrom Ref. [23].
dFrom Ref. [16].

quality of the models too. We shall see later that, unlike the
FEAR models (see Refs. [12,16]), the INDIA models produce
a pristine electronic gap around the Fermi level. Further, we
shall demonstrate that the size of the electronic gaps obtained
from the INDIA models is comparable with those from the
WWW models, as far as the models with 216, 300, and 512
atoms are concerned.

In Table II, we have listed the value of �E = E(N ) − Ec,
where E(N ) and Ec correspond to the energy per atom for
ab initio relaxed configurations of a-Si containing N atoms
and a crystalline network of silicon comprising 1000 atoms,
respectively. The value of Ec has been found to be practically
independent of N for N � 512. Here, �E is associated with
the heat of crystallization of a-Si and has been obtained
from differential scanning calorimetry by Roorda et al. [45]
and Rutherford backscattering and channeling, coupled with
differential scanning calorimetry, by Donovan et al. [46]. For
annealed (at 500 ◦C) and as-implanted samples of a-Si, the
values of �E have been determined by Roorda et al. to be
13.7 ± 0.7 kJ/mol and 18.8 ± 1.0 kJ/mol, respectively. These
values correspond to the range of 0.135–0.205 eV/atom.
Likewise, Donovan et al. have reported a value of the heat
of crystallization to be 11.9 ± 0.7 kJ/mol or 0.116–0.131
eV/atom. Thus, the experimental value of the heat of crystal-
lization matches quite closely with the computed values from
the INDIA and SW-MD models.

Probing higher-order correlations between atoms proves
to be rather difficult due to the high-dimensional nature of
information involving four or more atoms. The distribution of
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0 30 60 90 120 150 180
Dihedral Angle (φ)

0.4

0.6

0.8
P(

φ)
INDIA 512
WWW 512

FIG. 5. Dihedral-angle distributions P (φ) from 512-atom IN-
DIA (red) and WWW (blue) models. The characteristic dihedral peak
at 60◦ and a dip at 120◦are distinctly visible in the distributions.

angles between two dihedral planes provides limited informa-
tion about four-body correlations but it is useful to examine
this correlation as an independent check for added credibility.
Figure 5 shows the distribution of dihedral angles for two 512-
atom INDIA and WWW models. The presence of a character-
istic maximum at 60◦ and a minimum at 120◦ suggests that
the two models are similar as far as the correlations between
dihedral angles are concerned. A ball-and-stick representation
of a 512-atom INDIA model is shown in Fig. 6.

The connectivity of atoms in amorphous networks can be
analyzed by computing the statistics of irreducible rings of
varying sizes. Rings are an important feature of topological
networks, which are defined as closed irreversible paths or
loops that start and end at the same atomic site. Here, ir-
reducibility implies that the ring cannot be further divided
into rings of smaller/equal size by topologically deforming
the original ring in the space of the embedding dimension.
By treating an amorphous network as a simple connected

FIG. 6. A ball-and-stick representation of a 512-atom INDIA
model with a pair of coordination defects, consisting of a floating
(green) bond and a dangling (red) bond. The remaining fourfold-
coordinated Si atoms are shown in yellow color.

TABLE III. Ring statistics for INDIA, WWW, and two MD
models comprising N = 216, 300, 512, 1024 atoms. Columns 3 to 8
list the number of rings per atom from ring sizes 4 to 9, respectively.

Model N 4 5 6 7 8 9

INDIA 216 0.005 0.389 0.889 0.611 0.139 0.032
SW-MD 0 0.278 1.125 0.676 0.060 0.009
WWW 0.028 0.444 0.745 0.528 0.171 0.040

INDIA 300 0.017 0.403 0.860 0.537 0.173 0.023
SW-MD 0.007 0.353 0.990 0.597 0.107 0.017
WWW 0.003 0.420 0.857 0.537 0.133 0.020

INDIA 512 0.018 0.404 0.789 0.613 0.152 0.014
SW-MD 0.008 0.359 0.939 0.619 0.133 0.023
ML-MDa 0.014 0.389 0.856 0.643 0.104 0.018
WWW 0.039 0.467 0.717 0.465 0.191 0.033

INDIA 1024 0.020 0.422 0.785 0.535 0.157 0.035
SW-MD 0.003 0.320 1.044 0.609 0.094 0.021
WWW 0.026 0.443 0.754 0.505 0.153 0.027

aFrom Ref. [23].

graph G = (V,E), where V (G) is a vertex set consisting of
atomic centers and E(G) is an edge set consisting of bonds
between two nearest-neighbor atoms, one can obtain the ir-
reducible ring-size distribution by computing the adjacency
matrix of V (G). Table III lists the irreducible-ring statistics
for a number of INDIA, WWW, and two MD models, obtained
using periodic boundary conditions. The results for these four
512-atom models are presented in Fig. 7. It is apparent that
the ring-size distributions in the INDIA and WWW models
are essentially similar, whereas the SW-MD model shows
a comparatively high number of six-member rings in the
network. Table III confirms that this observation also applies
to the rest of the SW-MD models. A comparison with the
results obtained from 216-, 300-, and 1024-atom INDIA and
WWW models leads us to believe that this excess topological
crystal-like feature of SW-MD models could be attributed
to the modified SW potential, which exhibits a tendency to
form diamond crystals during MD simulations. It is also
plausible that MD simulations can sample the solution space
more accurately than a total-energy-based relaxation method
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FIG. 7. Ring statistics for four different models of a-Si of size
512 atoms. The SW-MD model shows a relatively strong presence of
six-member rings compared to its WWW and INDIA counterparts.
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FIG. 8. The densities of electronic states of a-Si from INDIA
(red) and WWW (blue) models with the Fermi level at 0.0 eV. A
pristine electronic gap of size approximately 1 eV is clearly visible.

in determining a low-energy structure, which is topologically
closer to the crystalline diamond network. The values of �E

for the MD models, listed in Table II, appear to support this
conjecture. In the future, we expect to address this issue by
taking into account the presence of a few coordination defects
that may affect the ring-size distribution.

B. Electronic and vibrational properties

While the results in the preceding section establish the
structural quality of the INDIA models, a strong coupling
between local environments of atoms and the vibrational and
electronic degrees of freedom in a-Si warrants further exam-
ination to validate the vibrational and electronic properties
of the models. A good atomistic model of a-Si must exhibit
a clean electronic band gap around the Fermi level and the
size of the gap should determine the electronic quality of the
model, by jointly taking into account the structural quality and
the density of coordination defects in the network. Although
theoretical considerations [47] lead to the existence of such a
spectral gap in tetrahedral amorphous networks, it has been
noted that the size of the gap and the density of states in its
vicinity are particularly susceptible to coordination defects.
Until the recent developments of high-quality MD models
[23,30], only WWW models were capable of producing a
clean gap in the electronic spectrum around the Fermi level.
It is therefore imperative to validate the accuracy of new
atomistic models by computing the EDOS and the size of
the gap therefrom. Likewise, the energy required to excite
vibrational degrees of freedom in a-Si, typically a few tens
of meV, suggests that the latter can be very sensitive to
local atomic arrangements, which may not be apparent in the
electronic spectrum. Thus, a final analysis should also include
a statement on the vibrational density of states of the models.

Figure 8 depicts the EDOS for 512-atom INDIA and
WWW models, with the Fermi levels at 0 eV. The INDIA
model produces a clean gap, which accurately matches the
same from the WWW model. This observation also applies
to the 216- and 300-atom INDIA models. Table IV lists the
values of the band gaps obtained from four INDIA models,
along with the corresponding values from the WWW and
SW-MD models. The results can be summarized by making

TABLE IV. Comparison of band-gap values (in eV) for a-Si
models obtained from the INDIA, WWW, and SW-MD simulations.

Model size 216 300 512 1024

INDIA 0.753 0.884 1.007 0.38
WWW 1.007 1.008 1.013 1.012
SW-MD 1.003 0.881 1.006 1.009
Experimentsa 1.6–1.75

aQuoted values are for device-grade a-Si:H from Ref. [49].

the following observations: (1) The EDOS and the size of
the gap from the 512-atom INDIA model match accurately
with the corresponding results from the WWW and SW-MD
models (cf. Table IV). (2) A small but noticeable difference
in the shape of the valence-band tails for the 512-atom INDIA
and WWW models in Fig. 8 can be attributed to a combination
of the lack of statistics and the different degree of disorder
associated with bond angles and bond lengths, and �E of the
networks (0.22 eV for INDIA vs 0.19 eV for WWW). (3) A
small value of the band gap (0.38 eV) noted for the 1024-atom
INDIA model points to the presence of 1.6% coordination
defects and, possibly, the presence of a few strained bonds, as
indicated by a slightly higher value of �E = 0.24 eV. Overall,
the electronic properties of the INDIA models are on a par
with the WWW models.

Finally, Fig. 9 shows the vibrational densities of states of
512-atom INDIA and WWW models, obtained by diagonal-
izing dynamical matrices that were constructed in the har-
monic approximation, along with the experimental data from
inelastic neutron-scattering measurements by Kamitakahara
et al. [48]. The computed VDOS from the INDIA model
agrees well with experiments. In particular, the VDOS from
the INDIA model in the region from 300 cm−1 to 600 cm−1

has been found to fit more accurately with experimental data
than its WWW counterpart.

IV. CONCLUSIONS

In this work, we have presented an information-driven
inverse approach, or INDIA, to invert experimental diffraction
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FIG. 9. The vibrational densities of states (VDOS) of a-Si from
512-atom INDIA (red) and WWW (blue) models. Experimental data
from inelastic neutron-scattering measurements, from Ref. [48], are
also shown for comparison.
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data in conjunction with a few structural constraints and
a total-energy functional. Since one-dimensional scattering
data alone cannot describe a three-dimensional distribution
of atoms uniquely, and the presence of too many structural
constraints can make the inversion problem somewhat ill
posed, we have followed a hybrid strategy to augment the
dimension of the search space in an effort to determine an
accurate structural solution of the inversion problem, aided by
a total-energy functional. It has been shown that the original
inversion problem can be posed as a nonconvex optimiza-
tion problem in an extended or augmented search space that
involves information from a set of experimental diffraction
data, a few structural constraints, and an approximate total-
energy functional of the system. We then demonstrate that
the complexity associated with solving the resulting optimiza-
tion program can be considerably reduced by decomposing
the extended objective function into two subspace objective
functions and optimizing these two functions sequentially in
a self-consistent way.

An examination of the optimal structural models,
consisting of up to 1024 atoms, shows that the vibrational,
electronic, and structural properties of the models match
accurately with the corresponding experimental data from
as-deposited samples of amorphous silicon. In particular,
the first sharp diffraction peak of a 512-atom INDIA model
has been found to match somewhat more accurately with
experimental structure-factor data than its corresponding
WWW counterpart. Likewise, a comparison of the vibrational
density of states (VDOS) with inelastic neutron-scattering
data reveals that the 512-atom INDIA model reproduces the
density of high-frequency vibrations more accurately than
the corresponding WWW model. Further analyses of various
structural properties, involving the pair-correlation function,
the bond- and dihedral-angle distributions, and the statistics
of n-member irreducible rings (n = 4 to 9) in the networks,
show that the INDIA models are on a par with the high-quality

WWW models and those obtained from recent high-quality
MD simulations using the modified Stillinger-Weber and
machine-learning-driven potentials. The electronic densities
of states, specifically the ones from 300- and 512-atom
models, obtained from a local-basis density-functional code
SIESTA using the generalized gradient approximation, show
the presence of a pristine gap in the electronic spectrum in the
vicinity of the Fermi level, with only a pair of coordination de-
fects. The size of the electronic gaps from the INDIA models
is found to be comparable with those from the corresponding
WWW models. Furthermore, the estimated values of the heat
of crystallization of the models closely compare with those
obtained by Roorda et al. [45] and Donovan et al. [46] from
differential scanning calorimetry measurements. In conclu-
sion, the information-driven approach and its implementation
presented here can successfully invert a set of diffraction data
and structural constraints in conjunction with a total-energy
functional by producing atomistic models of a-Si, which
are significantly better than existing hybrid RMC models of
a-Si and are on a par with the WWW models, as far as the
structural, electronic, and vibrational properties of a-Si are
concerned.
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