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Synthesis, characterization, and cyclopolymerization of a 

functional non-symmetric divinyl monomer 

Bekir Dizman, Lon J. Mathias 

Department of Polymer Science, The University of Southern Mississippi, Hattiesburg, Mississippi 
39406-0076, USA 

 

 

Abstract 

A non-symmetric divinyl monomer with a terminal carboxylic acid functionality was readily 

synthesized from the reaction of ethyl α-hydroxymethylacrylate (EHMA) with maleic anhydride.  The 

new monomer (EHMA-MA) was homopolymerized in both bulk and ethyl acetate using AIBN as an 

initiator to give cyclopolymers.  The synthesis of the monomer and cyclopolymers were followed by 13C 

NMR, 1H NMR, and FTIR.  1H NMR was also utilized to obtain the degree of cyclization of the 

polymers, which were found to be 95% or higher in all cases.  The molecular weights of the 

cyclopolymers were around 40-60,000 g/mol as estimated by SEC.  The cyclopolymers were thermally 

stable up to 150 oC.  Although the cyclopolymers obtained were not water-soluble; they were soluble in 

aqueous 1M NaOH solution.  In addition to the carboxylic acid functionality present, the cyclopolymers 

also had an ethyl ester and a lactone moiety.  These functional groups were reacted with hexylamine to 

obtain a polymer with imide and amide moieties.   
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1. Introduction 

Cyclopolymerizations of divinyl monomers have been extensively studied since the pioneering work 

of Butler involving diallyldimethylammonium bromide [1].  It has been shown that polymerization of 1, 

6-dienes proceed through sequential intramolecular-intermolecular propagation to give soluble polymers 

containing cyclic structures in the main chain [2,3].  In contrast to typical vinyl polymers, more than two 

unique carbon atoms are included in the backbone of the cyclopolymers, allowing more variation in 

chemical and physical properties of polymers obtained [4].  For example, incorporation of  heteroatoms 

and various functional moieties into the ring structure (and therefore into the backbone of the polymer) 

is possible through the design and synthetic manipulation of the monomer before polymerization [4,5].  

Cyclopolymers offer several general advantages over the typical vinyl polymers including increased 

polymer backbone rigidity and glass transition temperature as well as lower shrinkage [6,7].  

Cyclopolymers have been used in a number of applications such as water treatment and purification, 

personal care formulations, and medical products [8].   

A generally accepted assumption in this field is that equal reactivity of the two vinyl groups in the 

monomer is important to achieve efficient cyclization, and our group has mostly focused on the design 

and synthesis of symmetric monomers containing identical vinyl groups [9,10].  For instance, syntheses 

of various cyclopolymers from ether, malonitrile, and amine-linked acrylate dimers have been 

described.  However, we have also cyclopolymerized non-symmetric monomers such as the cinnamate 

ester derivatives of α-hydroxymethylacrylates [11], ethyl α-allyloxymethylacrylate [4], and 

nonsymmetric monomers containing N-vinylformamide groups in the position β to the methacrylate 

double bond [12]. 

In the present work, we report the synthesis and characterization of a new non-symmetric functional 

monomer (EHMA-MA) and its cyclopolymers.  The cyclopolymers contain multiple functional sites 

which could be used to control solubility through pH and for further derivatization chemistry.  The 

cyclopolymers contained carboxylic acid plus linear and cyclic ester functionalities, which were reacted 
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with hexylamine to obtain imide and amide linkages.   The different functional groups available in the 

cyclopolymer present opportunities for further chemistry, i. e. cleavage of functional groups under acidic 

or basic conditions to obtain more hydrophilic cyclopolymers with combinations of acid and hydroxyl 

functionalities.   

2. Experimental section 

2.1.  Materials   

Ethyl α-hydroxymethylacrylate (EHMA) was purchased from Nippon Shokubai Inc.  Maleic 

anhydride (MA) and 4-N,N-dimethylaminopyridine (DMAP) were purchased from Aldrich Chemical 

Company.  All solvents were purchased from Acros Chemical Company, Fisher Scientific, or Aldrich 

Chemical Company.  2, 2’-Azobisisobutyronitrile (AIBN) was purchased from Aldrich and 

recrystalized from methanol twice before use.  All other chemicals were used as received. 

2.2.  Measurements   

13C and 1H NMR spectra were collected on a Varian 300 MHz NMR with CDCl3 and DMSO-d6 

solvents containing tetramethylsilane (TMS) as internal reference.  FTIR spectra were recorded on a 

Mattson Galaxy Series FTIR 5000 spectrometer using either pressed KBr pellets or NaCl plates.  

Thermal analyses were performed on a TA Instruments analyzer equipped with differential scanning 

calorimeter (2920 MDSC) and thermal gravimetric analyzer (2960 SDT) cells using heating rates of 10 

oC/min under nitrogen purge.  Absolute molecular weights and molecular weight distributions were 

obtained by the Viscotek SEC with low angle light scattering using N,N-dimethylformamide (DMF) as 

eluent. 

2.3.  Synthesis of the functional divinyl monomer (EHMA-MA)   

Ethyl α-hydroxymethylacrylate (6.5 g, 50 mmole) and DMAP (0.3 g, 2.5 mmole) were mixed in 50 

mL CHCl3 in a 100 mL three-neck round-bottom flask.  An addition funnel containing maleic anhydride 
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(5.2 g, 50 mmole) dissolved in 25 mL CHCl3 and a condenser were attached to the flask.  The flask was 

closed with rubber septa, purged with N2, and kept in an ice bath to adjust the temperature to 0 oC.  

Maleic anhydride was added to the flask dropwise over 1 h with continuous stirring.  The final mixture 

was then allowed to react for 1 h at 0 oC, 2 h at ambient temperature, and 20 h at 60 oC, respectively.  

After completion of the reaction, the mixture was extracted with water (100 mL) and the organic layer 

was separated and extracted two more times with water to remove unreacted maleic anhydride.  The 

organic layer was collected and treated with 1 M KHCO3 to obtain the carboxylic acid salt of the 

monomer.  The mixture was extracted with CHCl3 three times.  The aqueous layer containing the 

monomer salt was treated with 1 M HCl which formed an organic layer that was separated from the 

aqueous layer.  The organic layer was extracted with CHCl3 which was then evaporated using a rotary 

evaporator.  The final product was dried in a vacuum oven at 40 oC for 24 h to give a yellow liquid 

monomer (8.5 g) in 75% yield. 

2.4.  Synthesis of cyclopolymers   

The monomer EHMA-MA was polymerized either in bulk using 1 mol-% AIBN or in ethyl acetate 

using 5.0 and 0.5 mol-% AIBN.  A typical bulk polymerization was carried out as follows.  The EHMA-

MA monomer (0.46 g, 2 mmole) and AIBN (3.3 mg, 0.02 mmole) were mixed in a glass test tube.  The 

tube was closed with a rubber septum and purged with N2 using two needles for gas inlet and outlet  The 

tube was then placed in an oil bath adjusted to 75 oC and the mixture was stirred for 16 h.  At the end of 

the polymerization, the mixture had become very viscous.  Upon cooling to ambient temperature, the 

mixture solidified.  CHCl3 was added to the tube and an insoluble white solid product was obtained.  

The white solid was dissolved in methanol and precipitated into CHCl3.  The precipitation process was 

repeated two more times.  Finally, the product was filtered and dried in a vacuum oven at 60 oC for 24 h 

to give the white powdery cyclopolymer (0.24 g) in 52% yield.   
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Essentially the same procedure was used for the solution polymerization of the monomer.  The 

EHMA-MA monomer (0.46 g, 2 mmole ), AIBN (1.6 mg, 0.01 mmole, 0.5 mol-% or 16 mg, 0.1 mmole, 

5 mol-%), and ethyl acetate (1.2 mL) were mixed and polymerized under N2 atmosphere at 75 oC to give 

white powdery cyclopolymers  as precipitates (0.16 g, 35 % yield or 0.3 g, 65 % yield, respectively). 

2.5.  Reaction of cyclopolymer with hexylamine 

The cyclopolymer (0.9 g) was mixed with excess hexylamine (5 mL) at 130 oC in a 10 mL round-

bottom flask and the mixture was stirred at this temperature for 24 h.  At the end of the reaction time, 

the excess hexylamine was distilled off and the final yellow solid was washed with water and aqueous 

HCl (1 M) extensively to remove residual hexylamine.  The solid product was then dissolved in diethyl 

ether and precipitated into hexane twice.  Finally, the white solid was filtered and dried in a vacuum 

oven at ambient temperature overnight to give a white polymer (1.2 g) in 70% yield. 

3. Results and discussion 

The general route for the synthesis of the EHMA-MA monomer and its cyclopolymer is shown in 

Scheme 1 below.  Possible structures for the repeat units in the polymer are given in Scheme 2. 

(Scheme 1 to appear here) 

(Scheme 2 to appear here) 

In Fig. 1 are shown the 13C NMR spectra of  maleic anhydride, EHMA, and EHMA-MA monomer.  

The carbonyl and vinylic peaks (a’ and b’, respectively) of the maleic anhydride (MA) are both split into 

two peaks upon reaction with EHMA in the EHMA-MA monomer spectrum (j, g and h, i, respectively).  

The peaks e and f of the EHMA starting material are shifted downfield upon reaction with MA while an 

upfield shift was observed for peak d.  The peaks a, b, and c of reacted EHMA appear at the same 

chemical shifts as in the spectrum of EHMA itself.   

(Figure 1 to appear here) 
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In Fig. 2, 13C NMR spectra of the EHMA-MA monomer and its cyclopolymer (CP1) are shown.  

The vinylic peaks (d, e, h, i) of the monomer disappeared upon cyclopolymerization.  The appearance of 

the lactone -CH2 peak (f) at 70.0 ppm and backbone peaks (d, e, h, i) in the 13C NMR spectrum of the 

polymer, and the fact that the polymer was soluble (not crosslinked) confirmed that the polymer 

obtained was a cyclopolymer rather than a homopolymer of either one of the vinyl units.  The carbonyl 

peaks (g, j) of the monomer shifted downfield in the polymer spectrum consistent with loss of 

conjugation.  The other peaks (a, b, and c) of the monomer are also observed in the polymer spectrum.  

The intensity of the peaks b and c decreased compared to peak a upon polymerization due to the fact 

that they are closer to the polymer backbone and relaxation rates are different in comparison to that of 

peak a.  The other polymer peaks were also less intense compared to peak a for the same reason.  The 

same observations were made with the other two cyclopolymers (CP2 and CP3).  Although there are 

two possible repeat unit structures (5-membered and/or 6-membered) for the polymers, only 5-

membered repeat unit structure will be shown throughout the paper.   

(Figure 2 to appear here) 

In Fig. 3, 1H NMR spectra of the EHMA-MA monomer and its cyclopolymer (CP1) are shown.  

Upon polymerization, the vinylic peaks of the monomer (c, d, f, and g) disappeared and the backbone 

peaks of the cyclopolymer (cd, f, and g) appeared at around 1.8-3.3 ppm.  The ester methylene peaks (b 

and e) shifted upfield in the cyclopolymer; whereas the carboxylic acid peak (h) shifted downfield.  All 

three peaks (b, e, h) of the cyclopolymer were broader than the same peaks of the monomer.  The 

methylene peak e is broadened in the cyclopolymer due to tacticity effects along the polymer backbone.  

The residual double bonds in the 1H NMR spectrum of the cyclopolymer were integrated against peak e 

and e + b separately to calculate the degree of cyclization (DC) of the cyclopolymer.  The DC values of 

all cyclopolymers were found to be higher than 95 % in all cases and are provided in Table I.   

(Figure 3 to appear here) 
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Fourier transform infrared spectroscopy (FTIR) was also used to follow the polymerizations (Fig. 4).  

The peak assignments for the EHMA-MA monomer were made as follows: 1, 2- C-H out-of-plane 

bending in –CR=CH2 (815 and 970 cm-1), 3- C-O stretching of O-CH2 (1025 cm-1), 4- C-O-C 

antisymmetric stretching of O=C-O-C (1175 cm-1, 1300 cm-1), and C-O stretching of O-C=O (1265 cm-

1), 5- CH2, CH3 bending and stretching (1370 cm-1, 1450 cm-1), 6- C=C stretching (1640 cm-1), 7- C=O 

stretching (1740 cm-1), 8- H-bonded COOH (2300-2850 cm-1), 9- aliphatic CH, CH2, CH3 symmetric 

and asymmetric stretching (2850-3100 cm-1), 10- H2O and COOH (3100-3600 cm-1).  The C-H out-of-

plane bending in –CR=CH2 (peaks 1 and 2) and C=C stretching peak  (6) of the monomer disappeared 

upon polymerization.  The COOH peak (8) decreased in apparent intensity in the polymer spectrum due 

to extended hydrogen bonding and the peak around 3100-3600 cm-1 also became broader.  

(Figure 4 to appear here) 

In Table 1, the molecular weights, molecular weight distributions, and degrees of cyclization of the 

cyclopolymers are provided.  The molecular weights of the cyclopolymers were in the range of 40-

60,000 g/mole.  A decrease of the initiator concentration in the solution polymerization resulted in an 

increase in the molecular weight of the cyclopolymer obtained. The degrees of cyclization (DCs) 

calculated from the 1H NMR results were found to be 95 % or higher in all cases.  

(Table 1 to appear here) 

TGA and DSC were used for thermal analysis of the cyclopolymers.  In Fig. 5, the TGA 

thermograms of the cyclopolymers are shown.  The initial weight loss temperatures for all 

cyclopolymers were around 150 oC consistent with anhydride formation between two carboxyl groups 

present in the repeat unit of the polymer.  The anhydride formation results in a loss of ethanol from each 

repeat unit.  When the weight percentage of ethanol released from each repeat unit is calculated, it 

corresponds to the initial weight losses observed in the TGA thermograms (theoretically approximately 

23%).  The initial weight loss values observed in TGA for the three polymers are around 20-25%.   
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The DSC thermograms (not shown) did not show any glass transition temperatures in the 

temperature range of 25-120 oC either because the transition is inherently broad or changes during 

analysis due to anhydride (crosslinking) reaction that occurs on heating. 

(Figure 5 to appear here) 

The cyclopolymers were not soluble in water although they were soluble in 1 M aqueous NaOH 

solutions.  The cyclopolymers carry a pendent carboxylic acid which can undergo acid-base reaction.  In 

addition, the ethyl ester and lactone moiety in each repeating unit are also available for further reaction.  

As an example of possible derivatization chemistry, the cyclopolymer (CP1) was thermally reacted with 

hexylamine to obtain a polymer with pendant imide and  amide moieties.  This reaction was followed by 

NMR and FTIR spectroscopy.  The solid state 13C CP-MAS, and solution 13C and 1H NMR spectra of 

the final polymer are shown in Fig.6 (main polymer repeat unit structure is also shown in Fig.6).  The 

spectral data indicate that the functional groups of the cyclopolymer reacted with hexylamine to give a 

final polymer with imide and amide groups.  The 13C solution and solid state NMR spectra are very 

similar to each other although it is much easier to see all the peaks of the final polymer in the CP-MAS 

spectrum due to higher concentration of the polymer in the rotor. 

The following observations were made from the NMR data.  The methylene and methyl peaks (b, f, 

and a, respectively) of the linear and cyclic ester groups of the cyclopolymer disappeared after reaction 

with hexylamine.  All the methylene and methyl peaks of the hexyl group are observed around 15-45 

ppm, and specifically the methylene peak α to the imide and amide groups showed up at 40-45 ppm in 

the 13C solution and CP-MAS NMR spectra of the final polymer.  The backbone peaks were observed at 

45-55 ppm in both spectra although they are more clearly observed in the CP-MAS spectrum.  The 

methylene peak α to the alcohol ester group at 60-70 ppm and the C=O peak of the amide group at 162 

ppm are both weak in intensity, probably due to the small amount of amide groups present in the final 

polymer compared to the imide groups formed.  The C=O peaks of the imide groups appear at 172-180 

ppm and are much more intense than the amide group peak.  The 1H NMR spectrum (insert in Fig.6) 
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confirms reaction of the cyclopolymer with hexylamine to give both imide and amide groups.  The 

methyl and methylene peaks (a, b, e) and carboxylic acid peak (h) of the cyclopolymer disappeared 

upon reaction, and the methylene and methyl peaks of the hexyl group were observed around 0.8-1.8 

ppm in the 1H NMR spectrum of the final polymer.  The backbone peaks and methylene peak α to the 

imide and amide groups were observed around 2.9-3.5 ppm while a small peak for the linear amide 

group was observed at 8.1 ppm.  

(Figure 6 to appear here) 

The FTIR spectrum of the polymer with pendant imide and amide groups is shown in Fig. 7.  The 

spectrum indicates that the aliphatic and aromatic ester peaks of the cyclopolymer disappeared almost 

completely upon reaction with hexylamine.  The ester peaks at 1710-1780 , 1175-1300, and 1025 cm-1 

decreased dramatically.  The appearance of the amide N-H stretching peak at 3200-3400 cm-1, the imide 

C=O peaks at 1780 and 1700 cm-1, amide I and amide II peaks at 1660 and 1550 cm-1, respectively, and 

the increase in the intensity of the CH2 and CH3 stretching peaks at around 2800-3000 cm-1 and 1350-

1500 cm-1 also confirm the reaction of the cylopolymer with hexylamine to form the final polymer with 

imide and amide groups.   

(Figure 7 to appear here) 

The final polymer containing pendant imide and amide groups was stable up to 190 oC.  The TGA 

thermogram of the polymer was similar in shape to those of the starting cyclopolymers and two weight 

losses were observed at 190 and 300 oC, respectively (TGA data not shown).   

The functional moieties present on the cyclopolymer could also be utilized in other reactions.  For 

example, the ester groups could be hydrolyzed under acidic or basic conditions to give a polymer with 

three carboxylic acid groups and a hydroxyl group.  The functional groups could also be selectively 

reacted to obtain polymers with various pendant moieties.   

4. Conclusions 
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A non-symmetric divinyl monomer with a free carboxylic acid functionality plus an ester and 

lactone group in each repeat unit was readily synthesized and homopolymerized in both bulk and ethyl 

acetate to give cyclopolymers with molecular weights around 40-60,000 g/mole.  The cyclopolymers 

obtained were not soluble in water although they were soluble in DMF and in 1M aqueous NaOH 

solution due to the carboxylic acid group present.  The presence of the carboxylic acid functionality, 

along with the ethyl ester and lactone moieties, allows selective and sequential reaction to give a variety 

of derivatives.  One example shown here involves the reaction with hexylamine to give a polymer with 

pendant imde and amide moieties.  Other possibilities include hydrolysis to the diacid plus alcohol 

polymer, esterification,and/or transesterification to give other ester polymers and selective reaction of 

just the free acid group using traditional activation through acid chloride formation. These new 

cyclopolymers and their various derivatives offer many applications that could be industrially important 

due to the low cost and ready availability of the starting materials. 

Acknowledgements   

This material is based upon work supported by the National Science Foundation under MRSEC 

(Grant No. DMR 0213883).  We also thank the NSF-MRI program (Grant No. DMR-0079450) for 

funding to upgrade and expand the NMR capability at USM. 

 

References  

                                                 
[1]  Butler, G. B.; Angelo, R. J. J. Am. Chem. Soc. 1957, 79, 3128. 

[2]  Butler, G. B. “Cyclopolymerization and Cyclocopolymerization” Marcel Decker, New York, 

1992. 

[3]   Mathias, L. J.; Kusefoglu, S. H. Macromolecules 1987, 20, 2039. 

[4]  Thompson, R. D.; Jarrett, W. L.; Mathias, L. J. Macromolecules 1992, 25, 6455. 

[5]   Kodaira, T. Prog. Polym. Sci. 2000, 25, 627. 



 

11 

                                                                                                                                                                         
[6]   Mathias, L. J.; Kusefoglu, S. H. Macromolecules 1988, 21, 545. 

[7]   Lee, H.; Kodaira, T.; Urushisaki, M.; Hashimoto, T. Polymer 2004, 45, 7505. 

[8]   Butler, G. B. J. Polym. Sci. Part A : Polym. Chem. 2000, 38, 3451. 

[9]   Tsuda, T. ; Mathias, L. J. Macromolecules 1993, 26, 6359. 

[10] Avci, D.; Haynes, C.; Mathias, L. J. J. Polym. Sci. Part A : Polym. Chem. 1997, 35, 2111. 

[11] Avci, D.; Mathias, L. J. Polym. Bull. 1993, 35, 671. 

[12] Michalovic, M.; Avci, D.; Mathias, L. J. Des. Monomers Polym. 1999, 2, 199. 


	Synthesis, Characterization, and Cyclopolymerization of a Functional Non-Symmetric Divinyl Monomer
	Recommended Citation

	tmp.1547572124.pdf.JczUl

