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ABSTRACT 

 

DESIGN AND SYNTHESIS OF FLEXIBLE AND FUNCTIONAL 

POLYBENZOXAZINE THIN FILMS 

 

by Austin David Baranek 

 

December 2013 

 

 Polybenzoxazines offer the unique ability to incorporate a variety of properties 

and functionality into a single polymer network through simple synthetic techniques. 

However, within benzoxazine materials exist certain drawbacks of which brittleness is 

the primary issue when exploring thin film applications. This brittleness leads to poor 

mechanical stability and would reduce the lifetime of any device sought after.  It is, 

however, through the simplistic nature of the benzoxazine monomer synthesis that the 

mechanical stability could be addressed chemically, avoiding the complications of using 

rubber toughening agents or plasticizers. The monomer synthesis offers tailorability of 

both the phenol and amine to incorporate almost any functionality into a polybenzoxazine 

through either commercial or synthetic sources. 

 In this dissertation, the modification of benzoxazine monomers using various 

starting materials in an effort to improve the physical properties and incorporate unique 

functionality into benzoxazine networks is described.  In the first study, flexible 

benzoxazine networks were designed by first incorporating long aliphatic linkers between 

a diphenol to which a bisbenzoxazine monomer can be synthesized via the Mannich 

condensation reaction. The intent of this project is to incorporate flexibility directly into 

the monomer, and thus the network, creating a less brittle material without the need for 

additives. The second project focuses on simplifying the tailorability of these materials 
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by utilizing copolymers of compatible bisbenzoxazine monomers. Ultimately, 

copolymers of compatible monomers allow improved versatility for tailoring network 

properties (i.e., thermomechanical) without extensive monomer synthesis. The third and 

final project highlights the chemical versatility of polybenzoxazines by designing flexible 

networks containing quaternizable amines. Following the polymerization, modification of 

the network through simple alkylation chemistry affords a polyelectrolyte network 

capable of conducting ions. The projects mentioned above center around the versatility in 

both the monomer and polymer synthesis and show the potential for utilization in a 

variety of areas.   
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CHAPTER I 

INTRODUCTION 

Phenolic Resins 

 Traditional phenolic resins were first used in the early twentieth-century and are 

considered to be the first class of fully synthetic polymers to achieve commercial success. 

Phenolic materials have also found extensive commercial use in a variety of applications 

including adhesives, coatings, composites, dispersions, foams, foundry resins, molding 

compounds, plywood, and fiber board.
1-3

 

 While conventional phenolic resins have key advantages in the areas of thermal 

and chemical resistance, they have traditionally been associated with a number of 

shortcomings, including brittleness, volatile release upon cure, and the need for strong 

acid as a polymerization catalyst. Thus, conventional phenolic resins provide numerous 

challenges in the areas of synthesis, production, product development, and quality 

control.
2, 3

  

Polybenzoxazines 

 Benzoxazine monomers are heterocyclic compounds that are quickly growing in 

the electronics, aerospace, and other industries as an attractive alternative to traditional 

phenolic resins.  The synthesis of benzoxazines dates back nearly 70 years with Holly 

and Cope first reporting the synthesis in 1944.
4
 Throughout the 50’s, 60’s and 70’s, 

individuals such as Burke and Schreiber significantly contributed to the fundamental 

understanding and exploratory implementation of benzoxazine chemistry.
5-13

  However, it 

was not until the 1980’s when Higgenbottom first developed multifunctional benzoxazine 

monomers, that the formation of cross-linked polybenzoxazine networks was allowed.
14-

16
 In the subsequent years to the present, the majority of the research focused on 
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understanding and exploring the capabilities of benzoxazines through a variety of 

synthetic and processing techniques.  

 Initially polybenzoxazines were thought of as being potential replacements for 

traditional phenolic resins since the ring-opening approach should eliminate many of the 

shortcomings associated with the condensation chemistry approach. Today, however, 

polybenzoxazines are not only considered as suitable replacements for phenolics but are a 

class its own, as material that can outperform epoxies and bismaleimides.
17

 This is due to 

the numerous properties polybenzoxazines posses that extend far beyond traditional 

phenolic resins including: near zero shrinkage during cure, no by-product during cure, 

high char yield, fast development of mechanical properties relative to cure as well as a 

glass transition temperature (Tg) higher than the cure temperature, good electrical 

properties, and low water absorption. Additionally, with the variety of inexpensive 

starting material, polybenzoxazines offer a unique design flexibility unattainable to other 

phenolics.  

 Furthermore, Ishida and Allen
18

 have reported that the network properties of 

polybenzoxazines are largely regulated by the chemical cross-linking density as well as 

hydrogen bonding. The role of the hydrogen bonding is of great importance in the 

interpretation of a variety of structure-property relationships and is also shown in the 

work by Ishida and Sander.
19, 20

 

Monomer synthesis  

 The basic synthesis of benzoxazine monomers consists of a phenolic derivative, 

formaldehyde, and a primary amine shown in Scheme 1 where R and R’ are open to a 

variety of functionalities.  With the utilization of bis structure shown in the bottom of 

Scheme 1, both R and R’ remain tailorable. Scheme 2 shows the proposed mechanism in  



3 
 

 
Scheme 1. General benzoxazine monomer synthesis and polymerization for mono and bis 

substituted monomers. 

 

the formation of the oxazine ring, showing that the amine reacts with formaldehyde to 

rapidly generate the intermediate aminomethylol group, that can further react to form a 

1,3,5-triaza compounds. With time the triaza reacts with phenol and formaldehyde to 

form the oxazine ring. The monomer synthesis consists of a variety of methods including 

homogeneous or heterogeneous solutions or even melt or high solid methods, all of which 

have advantages and disadvantages depending on the raw materials and the reaction 

conditions (temperature-time) desired.  Specifically, for solution reactions, the solvent 

has a profound effect in the yield of forming the benzoxazine ring. The general 

observation is that solvents with lower dielectric constants provide the highest yield 

where solvents such as dioxane, chloroform, dichloromethane and xylenes are usually 

excellent solvents for benzoxazine synthesis.
21 Other factors that can also strongly 

influence the formation of the oxazine ring include the nature and position of substitutes 

on the phenol, reaction ratios, temperature, and the basicity of the amine. All of these 

must be accounted for to successfully synthesize a benzoxazine. However, other than the  
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Scheme 2. Mechanism for benzoxazine monomer synthesis. 
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benzoxazine, common by-products include bis(2-Hydroxybenzyl) amine, and free bases, 

depending on the condensation conditions and the specific reactants used. In most cases, 

these impurities require removal prior to polymerization as they may greatly affect 

material properties or even polymerization kinetics.   

The molecular design flexibility allows the opportunity to logically structure 

benzoxazine resins with unprecedented tailorability in polymer properties.  However, the 

complex reaction occurring during the synthesis of the monomers makes studying them 

difficult. Since the beginning, great strides have been made from a controlled, laboratory 

synthesis of benzoxazine in homogeneous and heterogeneous solutions at modest to low 

concentrations to more high solid or melt systems that are much more practical for large 

scale synthesis 

Molecular design of benzoxazines 

This dissertation demonstrates the versatility of the benzoxazine synthesis and 

explores a variety of chemical structures that influence material properties and broaden 

functionality. The research herein investigates a variety of diphenol and amine structures 

to broaden the functionality of benzoxazines. Current research focuses on reducing the 

temperature required for cure, increasing processability, and improving the mechanical 

properties of the thermoset resins, all of which can be achieved through molecular design. 

Efforts focused on improving the mechanical properties and have drawn the most interest 

and included rubber toughening,
22, 23

 blending with epoxies,
24, 25

 polyurethanes,
26, 27

 and 

inorganics,
28-31

 monomer design,
32-35

 and synthesis of side
36-39

 and main-chain 

benzoxazine polymer precursors.
38, 40-50

 Specifically, strategies that focus on the design of 

new monomer structures to tailor network properties take advantage of the inherent 

simplicity of the benzoxazine synthesis to achieve outstanding versatility in molecular 



6 
 

design of benzoxazine precursors.
33, 35, 48

 Regardless of the approach, these strategies 

utilize the Mannich reaction involving inexpensive and commercially available phenols, 

primary amines, and formaldehyde to achieve versatility in molecular design of 

benzoxazine precursors affording a wide range of properties. Figure 1 shows a variety of 

structural features that can and have been incorporated into bisbenzoxazine monomers 

where the only constant feature is the benzoxazine ring itself. 

 
Figure 1. Structural features that can and have been incorporated into benzoxazine 

monomers.   

  

An example by Kim and Ishida
51

 showed that smaller/less restrictive amines can 

significantly change material properties such as volumetric expansion and water 

absorption.  By changing the amines, the network properties are strongly affected due to 

interruptions in the hydrogen bonding, reducing polymer-polymer interactions. 

Therefore, it is believed that the physical interaction of polymer chains due to hydrogen 

bonding plays an important role in determining the properties of polybenzoxazines and 

can be drastically changed with the incorporation of different amines.
51

 Allen and 

Ishida
33

 have also explored molecular design opportunities by switching the 

difunctionality and making aliphatic diamine-based polybenzoxazines.  Additionally, 

variable diamine lengths were investigated to demonstrate the feasibility of increasing the 

inherent flexibility of the polybenzoxazine network structure itself without using 
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additives.  Their results show significantly more intramolecular hydrogen bonding 

compared to intermolecular bonding, which along with increased network flexibility is 

believed to be associated with the sub-100°C Tg capabilities. Further thermal 

characterization using DSC showed better curing kinetics represented by the lower onset 

of polymerization (<180°C) temperature for the lowest diamine length.  

Ring Opening Polymerization (ROP) 

 Polybenzoxazines derived from phenolic and amine precursors will undergo ring-

opening polymerization (ROP) upon heating with the addition of a curing agent (strong 

acid and alkaline) or self-polymerize with the aid of phenolic impurities acting as 

initiators. The polymerization takes place by simply using heat to increase the rate of the 

ring opening reactions.  Small impurities such as cationic or phenolic impurities 

including benzoxazine oligomers initiate polymerization.  Thus, the polymerization is 

classified as a 'thermally accelerated/activated polymerization'.
17

 Additionally, the ring 

opening polymerization is readily achieved by heating the purified monomer to 

temperatures above 150°C to open small amounts of benzoxazines thus supplying a 

phenolic moiety to initiate further ring opening processes. The ring opening process for 

benzoxazines is a form of addition polymerization in which the terminal end of the 

polymer acts as a reactive center, where further cyclic monomers join to form a long 

polymer chain. Through this process, no condensation byproducts are released in which 

no corrosion processes can take place on the processing equipment. In addition, this 

makes polybenzoxazine resins very pure. 

Generally, the functionality contained in the cyclic starting material as well as the 

ring size has a decisive effect on the polymerization behavior.
52

 In the case of 

benzoxazines, polymerization can occur at the ortho and para positions on the phenol. 
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Scheme 3. Cationic ring opening mechanism of benzoxazine monomers. 

 

It was demonstrated that the preferred reaction site is the position ortho to the hydroxyl 

functionality of the phenol.
5, 12

 It is speculated that under no catalytic influence, the ring 

opening process of benzoxazines involve a cationic ring opening process described in 

Scheme 3.
53

 It has been proposed that the reaction is initiated by the approach of the 

phenol to the benzoxazine via intermolecular hydrogen bonding. The initial step produces 

an intermediary complex, which provides the electron movement from the nitrogen atom 

to the hydroxyl group followed by nucleophilic aromatic substitution and proton 

abstraction.
11 
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The network properties and curing behavior of benzoxazines are greatly 

influenced by molecular design. To date, numerous benzoxazine monomer derivatives 

have been reported with variability in both the phenol and amine as shown in Figure 1, 

and this list is continuously growing. In doing so, the potential applications keep 

expanding, and with the versatility of the monomer synthesis, should continue to expand 

as the continued challenges of molecular design can be overcome through benzoxazines 

chemistry. 

Copolymers of benzoxazines 

 Besides molecular design, tailoring the properties of benzoxazine networks is also 

possible through copolymerizations.  Initially shown by Huang and Ishida,
54

 the viscosity 

of a difunctional benzoxazine resin was reduced by the use of monofunctional 

benzoxazine monomers as reactive diluents to further improve processability. Glassy 

state properties, such as stiffness at room temperature, were unaffected by the 

incorporation of the monofunctional benzoxazine. Also, the thermal stability of the 

monofunctional modified polybenzoxazine below 200°C was not significantly affected. 

However, properties sensitive to network structure were affected by the presence of the 

monofunctional benzoxazine. The incorporation of the monofunctional benzoxazine 

reduced crosslink density and produced a looser network structure which can be seen and 

quantified at temperatures above the glass transition temperature.  

 A recent example of copolybenzoxazines done by Zang et. al.
55

 shows a 

benzoxazole-based benzoxazine monomer copolymerized with the common bisphenol A-

aniline-based benzoxazine to decrease the dielectric constants and improve thermal 

stability. The corresponding copolybenzoxazines displayed higher thermal stability than 

the bisphenol-A-based benzoxazine, reaching char yields of 62% at 800 °C. Moreover, 
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the dielectric constants and dielectric loss of the copolybenzoxazines were low and 

changed slightly at room temperature in the frequency range of 0.1 Hz to 1 MHz. 

Additionally, the flexural modulus and flexural strength of the copolymer were increased 

by 66% and 41%, respectively, after the addition of 20% of the benzoxazole-based 

benzoxazine monomer. 

 Utilizing copolymers of benzoxazines allows versatile molecular design and 

eliminates the need for extensive synthesis to incorporate all the desired properties into a 

single benzoxazine network. Additionally, by copolymerizing benzoxazines with 

different functionality, the variety of network properties and property combinations can 

be achieved. 

Benzoxazines in membranes  

 The benzoxazine chemistry offers one of the richest design flexibility among all 

classes of polymers thus leading to advances in many fields with tailored properties. 

However, one field that polybenzoxazines have gained little attention is in membrane 

technologies. Membranes have been implemented in a variety of separation devices 

including desalination as well as in energy generation to accommodate the growing 

demand for clean water and sustainable energy. The key component in all these devices is 

a solid electrolyte membrane capable of selectively transporting ions while acting as a 

barrier to other components. The performance/efficiency of the devises are therefore tied 

closely to the properties of the solid electrolyte membrane, and because of this, much 

time and money have been devoted to the research and development of these polymer 

materials.  

 Of all the different ionic membranes anion-exchange membranes, (AEMs) are of 

the oldest and most developed for fuel cells, being first used in the Gemini and Apollo 
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missions in the 1960s. However, like most ionic membranes, there is a careful balance 

between performance and stability for AEMs. High performance usually necessitates a 

high concentration of ionic charge carriers at the expense of mechanical stability by 

increasing swelling effects. The most common and easiest approach to stabilize an ionic 

membrane is to cross-link the polymers so as to immobilize polymer chains. Multi (di-, 

tri-, or tetra)-functional groups-containing cross-linkers have been widely adopted, and 

some examples include di-amines (react with halogenoalkyl groups),
56-60

 di-thiol (with 

allyl groups),
61

 di-aldehyde (with hydroxyl-alkyl groups),
62-66

 tri/tetra-alkoxysilanes (with 

hydroxyl-alkyl or alkoxysilanyl groups),
67, 68

 and tetraepoxy (with phenol groups).
69-71

 

Additionally, a bi-cycloalkene ring-opening with simultaneous polymerization and cross-

linking was recently reported.
70, 71

 

 Due to the simple synthesis and the inherent thermal, mechanical, and chemical 

stabilities, benzoxazines have recently found use in membrane applications as a logical 

means to improve membrane stability. While there have been few reports of these, some 

recent examples that utilize benzoxazines in fuel cell applications can be found in the 

work of Kim
72-74

 and Choi.
75

 In these examples mono-, di-, or tri-functional benzoxazine 

monomers were used to cross-link polybenzimidazole (PBI) through the aromatic 

component of the PBI by grafting a thermosetting resin into a thermoplastic polymer.  

Once cross-linked with the benzoxazine, conductivities remained similar to neat PBI; 

however, the lifetime of the membrane was increased three fold.  

 Also, Ye et. al.
76

 explored sulfonated poly(ether ether ketone) membranes cross-

linked with different benzoxazine monomers with and without a sulfonic acid group. For 

the incorporation of the benzoxazine without the sulfonic acid group, the total 

concentration of sulfonic acid groups or ion-exchange capacity (IEC) decreased along 
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with the membrane conductivity.  As for incorporating a sulfonic acid functional 

benzoxazine to cross-link the SPEEK, the IEC and conductivity also decreased but to 

lesser extremes. Overall, the cross-linking techniques mentioned above require the 

introduction of a separate cross-linker molecule or specific polymer structures that 

usually take at least two reaction-steps, increasing the process complexity as well as 

lowering the IEC. In addition, problems exist when the cross-linker has a distinctive 

molecular structure that is not compatible with the polymer chain, which can lead to poor 

membrane quality or make cross-linking impossible. Although this concept of a 

copolymer system can play a pioneering role in high-temperature PEMFCs when applied 

to fuel cells and components,  in general certain drawbacks still exist: 1) since the 

benzoxazines contain no charge carrying capabilities, higher loadings would dilute the 

ionic component driving down efficiency; 2) the cross-linking mechanism requires 

aromatic functionality in the ionic polymer, limiting the versatility of polymers that can 

be used and; 3) the high temperature required for polymerization also limits the variety of 

polymers that can utilize this process   

 Ideally, a system composed of high ionic content as well as a self-cross-linking 

mechanism would provide the simplest approach to designing mechanically stable ion-

exchange membranes. Instead of simply using benzoxazines as a separate cross-linker, 

designing an ionic network directly from a benzoxazine network would both utilize the 

favorable inherent thermal, mechanical, and chemical stabilities as well as eliminate the 

complexities with secondary cross-linking steps.  However, to our knowledge, no such 

system exists, but promising results from Sawaryn  et. al.
77

 suggest that it is possible. 

Sawaryn et. al. designed a linear polyelectrolyte based on a monofunctional benzoxazine 

monomer with a pendant ionizable group (methyl imidazole).  Through their 
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experiments, high concentrations of cationic moieties were incorporated into the linear 

polybenzoxazine as there were two ionizable groups per repeat unit. Characterization of 

these materials was limited to structural and thermal techniques – no membrane 

applications or properties were reported.    

Summary 

 The molecular design along with the simple benzoxazine monomer synthesis 

allows tailorability of structural features within a polybenzoxazine network. This 

tailorability is made possible with the extensive library of commercially/synthetically 

available phenols and amines. In addition to molecular design, copolybenzoxazines can 

simplify tailoring properties within a benzoxazine network without extensive time and 

resources dedicated to designing a single monomer structure.  Lastly, with the inherent 

properties associated with benzoxazines, these materials are beginning to reach out into 

membrane technologies as a means to improve the thermal mechanical stabilities; 

however, the full potential of these materials has yet to be realized. The molecular 

diversity of benzoxazines points toward the idea of designing an ionic network directly 

from a polybenzoxazine network to both utilize the favorable inherent thermal, 

mechanical, and chemical stabilities as well as to eliminate the complexities with 

secondary cross-linking steps.  
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CHAPTER II 

OBJECTIVES 

Polybenzoxazine (pBZ)  resins are traditionally associated with having a high 

modulus and a high glass transition temperature with the major uses being related to these 

properties.  To tailor or adjust these properties plasticizers, blends, and composite 

materials are generally used. However, through synthetic design, a variety of properties 

can be adjusted or even added to a pBZ network without the complexities associated with 

foreign additives.  This work focuses on the synthetic versatility of BZ monomers in an 

effort to improve the thermal and mechanical properties for low temperature, thin film 

applications. The objectives of this dissertation include: 

1. Synthesis and characterization of a series of flexible aliphatic-bridged 

bisphenol-based polybenzoxazines to improve the thermal and mechanical 

properties 

2. Design of a solvent-free copolymerization of rigid and flexible bis-1,3 

benzoxazines to allow facile tunability of polybenzoxazine network 

properties 

3. Synthesis and characterization of quaternary ammonium functional 

polybenzoxazine networks for anion-exchange membrane capabilities 

 In the first objective (Chapter III), flexible 4, 6, 8, and 10 carbon spacers were 

incorporated as the core of a series of diphenols followed by the benzoxazine monomer 

synthesis. A variety of structure property relationships were developed as a function of 

the core length to support the efficacy of synthetic design to tailor polybenzoxazine 

properties toward thin film applications. 

 The second objective (Chapter IV) focuses on the simplistic nature of the ring- 
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opening process for benzoxazine monomers. Compatible bis-1,3 benzoxazine monomers 

were copolymerized, and the network properties were analyzed and predicted as a 

function of the weight percents of the each monomers.   

 For the third objective (Chapter V), quaternizable polybenzoxazine networks were 

synthesized using the simplistic monomer/polymer synthesis. Following a post 

polymerization quaternization reaction, networks with a high array of cationic moieties 

were created. Anion exchange capabilities (water uptake, ion-exchange capacity, ion 

conductivity) were examined as a function of core length and hydrophilicity.  
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CHAPTER III 

FLEXIBLE ALIPHATIC-BRIDGED BISPHENOL-BASED POLYBENZOXAZINES 

Introduction 

 Thermoset resins derived from heterocyclic bis-1,3-benzoxazines have been 

vigorously investigated in recent years as attractive alternatives to traditional phenolic 

resins for a variety of high performance applications.
1-4

  Bis-1,3-benzoxazines undergo 

thermally-accelerated cationic ring-opening polymerization (ROP) – in the absence of 

catalyst and without by-products – yielding a cross-linked polymer network comprised of 

a phenol and a tertiary amine bridge as the structural motif.
5, 6

  Extensive hydrogen 

bonding between the phenol and tertiary amine give rise to many salient features 

observed in polybenzoxazines (pBZs), including high Tg, high thermal stability, low 

surface energy, and low water adsorption.
4, 7, 8

  Furthermore, pBZs exhibit excellent 

dimensional stability, flame resistance, and stable dielectric constants – properties not 

found in traditional phenolic resins.
4
 Despite these advantageous properties, there 

continues to be room for improving the mechanical properties and processability of BZ 

materials – particularly those derived from monomeric precursors.  Strategies to address 

these shortcomings are being rapidly developed, including monomer design, rubber 

toughening,
9, 10

 blending with epoxies,
11

 polyurethanes,
12, 13

 and inorganics,
14-17

 and the 

synthesis of side
18-21

 and main-chain benzoxazine polymer precursors.
22-34

  Regardless of 

the approach, these strategies take advantage of the inherent simplicity of benzoxazine 

synthesis – namely a Mannich reaction involving inexpensive and commercially available 

phenols, primary amines, and formaldehyde – to achieve unprecedented versatility in 

molecular design of benzoxazine precursors.       

 Literature regarding molecular design of bis-1,3-benzoxazine monomers has 
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predominately dealt with rigid core bifunctional phenolic derivatives (i.e. bisphenol-A, 

Scheme 4) and mono-functional primary amines – a design strategy that provides 

thermosets with high Tg and high thermal stability, but also imparts brittleness that 

plagues conventional thermosets.  Alternatively, Ishida and co-workers
35-37

 have shown 

that the inherent flexibility of pBZs can be greatly improved via monomer design, where 

benzoxazines based on a series of bifunctional aliphatic amine core molecules with 

monofunctional phenol pendent groups produced materials with improved flexural 

properties.  Furthermore, these aliphatic BZ monomers could be processed into thin films 

via solvent-free processing.  While Agag et al.
38

 recently showed improved flexibility of 

bisphenol-A derived benzoxazines via incorporation of pendent aliphatic chains, 

strategies that attempt to integrate flexibility directly into the bisphenol motif have not 

been thoroughly explored. 

 
Scheme 4. Thermal ring-opening polymerization of bisfunctional benzoxazines 

containing the traditional, rigid methylethylidene linker versus the flexible, aliphatic 

linkers reported in the current work.  
 

 In this paper, the synthesis of a series of novel aliphatic-bridged, bisphenol-based, 

benzoxazine monomers comprising from four to ten methylene unit spacers is reported.  

Integrating flexibility into the bisphenol component of the monomer, rather than the 

diamine, enables a broader design space with potential to incorporate a vast array of 
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commercially available primary amine derivatives as pendent moieties to the monomer 

structure – though for simplicity and to develop structure-property relationships related to 

the aliphatic bisphenol, the identity of the primary amine in the current work was kept 

constant.  Cationic ring-opening polymerization of these monomers provides flexible 

pBZ thermosets with good film-forming characteristics and tuneable thermomechanical 

properties.  The effects of aliphatic bisphenol chain length on polymerization behavior, 

thermomechanical transitions, and mechanical properties of the pBZ thermosets are 

reported.  

Experimental 

Materials 

 All reagents and solvents were obtained at the highest purity available from 

Aldrich Chemical Company and used without further purification unless otherwise 

specified. Paraformaldehyde was purchased from Acros Organics. Anhydrous potassium 

carbonate, magnesium sulfate, and sodium hydroxide were purchased from Fisher 

Scientific. The synthesis of compounds 3 – 5 was adapted from literature.
39

 

Synthesis of aliphatic-bridged dibenzaldehyde compounds (3) 

 Into a 250mL round bottom flask fitted with a condenser, 0.0287 mol of the 

dibromo species (1,4-dibromobutane, 1,6-dibromohexane, 1,8-dibromooctane, or 1,10-

dibromodecane), 7.007 g (0.0574 mol) of 4-hydroxybenzaldehyde, and 15.8665 g  

(0.1148mol) of anhydrous potassium carbonate were added to approximately 100mL of 

dimethylformamide. The flask was set in an oil bath and refluxed at 110 °C for 48 h. The 

solution was cooled to room temperature, diluted with dichloromethane, and washed with 

water. The organic layer was dried over MgSO4 and evaporated under vacuum to an off 

white solid. 4,4'-(butane-1,4-diylbis(oxy))dibenzaldehyde (3a).(83.9% yield) 
1
H NMR 
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(CDCl3), ppm: δ=1.99 (4H, m, CH2), 4.09 (4H, t, CH2-O), 6.95 (4H, d, CH, aromatic) 

7.78 (4H, d, CH, aromatic), 9.83 (2H, s, CH=O, aldehyde); 
13

C NMR (CDCl3), ppm: 

δ=25.90 (2C, CH2), 67.86 (2C, CH2-O), 114.83 (4C, CH, aromatic) 130.06 (2C, C, 

aromatic) 132.10 (4C, CH, aromatic), 164.05 (2C, C, aromatic) 190.85 (2C, CH 

aldehyde). 4,4'-(hexane-1,6-diylbis(oxy))dibenzaldehyde (3b). (94.5% yield) 
1
H NMR 

(CDCl3), ppm: δ=1.52-1.92 (8H, m, CH2), 4.07 (4H, t, CH2-O), 6.98 (4H, d, CH, 

aromatic) 7.83 (4H, d, CH, aromatic), 9.88 (2H, s, CH=O, aldehyde); 
13

C NMR (CDCl3), 

ppm: δ=25.76, 28.97 (4C, CH2), 68.15 (2C, CH2-O), 114.71 (4C, CH, aromatic) 129.81 

(2C, C, aromatic) 131.96 (4C, CH, aromatic), 164.11 (2C, C, aromatic) 190.74 (2C, CH 

aldehyde). 4'-(octane-1,8-diylbis(oxy))dibenzaldehyde (3c). (94.9% yield) 
1
H NMR 

(CDCl3), ppm: δ=1.39-1.89 (12H, m, CH2), 4.13 (4H, t, CH2-O), 7.11 (4H, d, CH, 

aromatic) 7.87 (4H, d, CH, aromatic), 9.89 (2H, s, CH=O, Aldehyde); 
13

C NMR (CDCl3), 

ppm: δ=25.88, 29.01, 29.20 (6C, CH2), 68.31 (2C, CH2-O), 114.71 (4C, CH, aromatic) 

129.74 (2C, C, aromatic) 131.95 (4C, CH, aromatic), 164.18 (2C, C, aromatic) 190.75 

(2C, CH aldehyde). 4,4'-(decane-1,10-diylbis(oxy))dibenzaldehyde (3d). (92.4% yield) 

1
H NMR (CDCl3), ppm: δ=1.29-1.81 (16H, m, CH2), 3.98 (4H, t, CH2-O), 6.94 (4H, s, 

CH, aromatic) 7.77 (4H, d, CH, aromatic), 9.82 (2H, s, CH=O, Aldehyde); 
13

C NMR 

(CDCl3), ppm: δ=25.91, 29.00 29.27, 29.41 (8C, CH2), 68.34 (2C, CH2-O), 114.70 (4C, 

CH, aromatic) 129.68 (2C, C, aromatic) 131.91 (4C, CH, aromatic), 164.19 (2C, C, 

aromatic) 190.69 (2C, CH aldehyde). 

Synthesis of aliphatic-bridged diformate compounds (4) 

 Into a 500 mL round bottom flask, 0.022 mol of dibenzaldehyde (3) was dissolved 

in 150-200 mL of dichloromethane, and metachloroperoxybenzoic acid (MCPBA) (14.68 

g, 0.0891 mol) was added in portions to the solution.  The reaction was then capped and 
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purged with nitrogen gas for 10 min, and then set to stir at room temperature for 3-4 h.  

112 mL of a saturated sodium bicarbonate solution was added to the solution and stirred 

for another 2 h at room temperature. The solution was extracted with dichloromethane 

and washed with 10% sodium metabisulfite followed by washing with water. The organic 

layer was dried over MgSO4 and evaporated under vacuum to give a light yellow solid. 

(Butane-1,4-diylbis(oxy))bis(4,1-phenylene) diformate (4a). (97.3% yield) 
1
H NMR 

(CDCl3), ppm: δ=1.97 (4H, m, CH2), 4.02 (4H, t, CH2-O), 6.88 (4H, d, CH, aromatic) 

7.04 (4H, d, CH, aromatic), 8.28 (2H, s, O-CH=O, formate); 
13

C NMR (CDCl3), ppm: 

δ=25.93 (2C, CH2), 67.84 (2C, CH2-O), 115.22 (4C, CH, aromatic) 121.94 (4C, C, 

aromatic) 143.31 (2C, C, aromatic), 157.03 (2C, C, aromatic) 159.70 (2C, CH formate). 

(Hexane-1,6-diylbis(oxy))bis(4,1-phenylene) diformate (4b). (84.3% yield) 
1
H NMR 

(CDCl3), ppm: δ=1.49-1.88 (8H, m, CH2), 3.96 (4H, t, CH2-O), 6.89 (4H, d, CH, 

aromatic) 7.03 (4H, d, CH, aromatic), 8.28 (2H, s, O-CH=O, formate); 
13

C NMR 

(CDCl3), ppm: δ=25.79, 29.15 (4C, CH2), 68.22 (2C, CH2-O), 115.22 (4C, CH, aromatic) 

121.89 (4C, C, aromatic) 143.23 (2C, C, aromatic), 157.16 (2C, C, aromatic) 159.74 (2C, 

CH formate). (Octane-1,8-diylbis(oxy))bis(4,1-phenylene) diformate (4c). (94.4% yield) 

1
H NMR (CDCl3), ppm: δ=1.37-1.84 (12H, m, CH2), 4.13 (4H, t, CH2-O), 6.97 (4H, d, 

CH, aromatic) 7.10 (4H, d, CH, aromatic), 8.39 (2H, s, O-CH=O, formate); 
13

C NMR 

(CDCl3), ppm: δ=25.93, 29.00 29.16, 29.24 (6C, CH2), 68.35 (2C, CH2-O), 115.21 (4C, 

CH, aromatic) 121.87 (4C, C, aromatic) 143.19 (2C, C, aromatic), 157.20 (2C, C, 

aromatic) 159.73 (2C, CH formate). (Decane-1,10-diylbis(oxy))bis(4,1-phenylene) 

diformate (4d). (93.3% yield) 
1
H NMR (CDCl3), ppm: δ=1.30-1.83 (16H, m, CH2), 4.00 

(4H, t, CH2-O), 6.97 (4H, d, CH, aromatic) 7.10 (4H, d, CH, aromatic), 8.39 (2H, s, O-

CH=O, formate); 
13

C NMR (CDCl3), ppm: δ=25.99, 29.00 29.20, 29.33, 29.46 (8C, CH2), 
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68.39 (2C, CH2-O), 115.21 (4C, CH, aromatic) 121.88 (4C, C, aromatic) 143.18 (2C, C, 

aromatic), 157.21 (2C, C, aromatic) 159.79 (2C, CH formate). 

Synthesis of aliphatic-bridged diphenol compounds (5) 

 Into a 500mL round bottom flask fitted with a condenser, 0.0068mol of diformate 

(4) was added to sodium hydroxide (1.082 g, 0.0271mol) in 50 mL of ethanol and 20 mL 

of water, and the solution was then refluxed at 100°C for 24 h. The solution was cooled 

to room temperature and acidified using 3M HCl.  The product precipitated and was 

extracted using ethyl acetate. The organic layers were combined, washed with 3M HCl, 

water, and dried over MgSO4.  The solution was filtered, and solvent was removed by 

rotary evaporation to give a brown solid. 4,4'-(butane-1,4-diylbis(oxy))diphenol (5a). 

(94.9% yield)
 1

H NMR (acetone-d6), ppm: δ=1.90 (4H, m, CH2), 3.97 (4H, t, CH2-O), 

6.76 (8H, m, CH, aromatic) 7.82 (2H, s, OH);
 13

C NMR (acetone-d6), ppm: δ=26.05 (2C, 

CH2), 68.04 (2C, CH2-O), 115.82 (4C, CH, aromatic) 116.12 (4C, CH, aromatic), 151.53 

(2C, C, phenol) 151.86 (2C, C, ether). 4,4'-(hexane-1,6-diylbis(oxy))diphenol (5b). 

(89.6% yield)
 1

H NMR (acetone-d6), ppm: δ=1.48-1.82 (8H, m, CH2), 3.91 (4H, t, CH2-

O), 6.75 (8H, m, CH, aromatic) 7.81 (2H, s, OH); 
13

C NMR (acetone-d6), ppm: δ=25.81, 

29.27 (4C, CH2), 68.24 (2C, CH2-O), 115.78 (4C, CH, aromatic) 116.12 (4C, CH, 

aromatic), 151.48 (2C, C, phenol) 151.92 (2C, C, ether). 4,4'-(octane-1,8-

diylbis(oxy))diphenol (5c). (92.5% yield)
 1

H NMR (acetone-d6), ppm: δ=1.34-1.79 (12H, 

m, CH2), 3.89 (4H, t, CH2-O), 6.75 (8H, m, CH, aromatic) 7.81 (2H, s, OH);
 13

C NMR 

(acetone-d6), ppm: δ=25.87, 29.27, (6C, CH2), 68.28 (2C, CH2-O), 115.75 (4C, CH, 

aromatic) 116.10 (4C, CH, aromatic), 151.48 (2C, C, phenol) 151.93 (2C, C, ether). 4,4'-

(decane-1,10-diylbis(oxy))diphenol (5d). (91.0% yield)
 1

H NMR (acetone-d6), ppm: 

δ=1.35-1.74 (16H, m, CH2), 3.88 (4H, t, CH2-O), 6.75 (8H, m, CH, aromatic) 7.81 (2H, s, 
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OH); 
13

C NMR (acetone-d6), ppm: δ=25.92, 29.30 29.39 (8C, CH2), 68.12 (2C, CH2-O), 

115.33 (4C, CH, aromatic) 115.68 (4C, CH, aromatic), 151.13 (2C, C, phenol) 152.52 

(2C, C, ether). 

Synthesis of aliphatic-bridged bisbenzoxazine monomers (6) 

 Into a 100mL round bottom flask fitted with a condenser, 0.0033 mol of the 

diphenol (5a-d), butylamine (0.4827 g, 0.0066 mol), and paraformaldehyde (0.3964 g, 

0.0132 mol) were suspended in 7.9 mL of xylene and placed in an oil bath heated to 

120°C. Once at temperature, the reactants dissolved, and aliquots were taken at 5 minute 

intervals and observed via 
1
H-NMR to monitor the progress of the reaction.  Upon 

completion of the reaction (~15 – 20 min), the reaction was cooled to room temperature, 

and the xylenes was evaporated. The crude residue was then diluted with excess ethyl 

acetate and stirred with basic alumina for 10 min, filtered, and evaporated under vacuum 

to give an off white solid.  The crude benzoxazine was then recrystallized in cold ethyl 

acetate to afford white crystals. 1,4-bis((3-butyl-3,4-dihydro-2H-benzo[e][1,3]oxazin-6-

yl)oxy)butane (6a).(39.0% yield) 
1
H NMR (CDCl3), ppm: δ=0.85 (6H, t, CH3) 1.21-1.90 

(12H, m, CH2), 2.66 (4H, t, (CH3)-N), 3.80 (4H, t, CH2-O), 3.81 (4H, s, CH2, oxazine), 

4.74 (4H, s, CH2, oxazine), 6.44 (2H, s, CH, aromatic) 6.62 (4H, s, CH, aromatic); 
13

C 

NMR (CDCl3), ppm: δ=13.95 (2C, CH3), 20.37, 26.08, 30.25 (6C, CH2), 50.50 (2C, CH3-

N), 51.11 (2C, CH2-N, oxazine), 68.00 (2C, CH2-O), 82.29 (2C, CH2-O, oxazine), 

112.96, 114.19, 116.89, 120.80, 148.01, 152.77 (12C, aromatic). 1,6-bis((3-butyl-3,4-

dihydro-2H-benzo[e][1,3]oxazin-6-yl)oxy)hexane (6b).(31.2% yield) 
1
H NMR (CDCl3), 

ppm: δ=0.85 (6H, t, CH3) 1.21-1.77 (16H, m, CH2), 2.67 (4H, t, (CH3)-N), 3.81 (4H, t, 

CH2-O), 3.88 (4H, s, CH2, oxazine), 4.74 (4H, s, CH2, oxazine), 6.43 (2H, s, CH, 

aromatic) 6.62 (4H, s, CH, aromatic); 
13

C NMR (CDCl3), ppm: δ=13.86 (2C, CH3), 
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20.36, 25.88, 29.34, 30.27 (8C, CH2), 50.50 (2C, CH3-N), 51.05 (2C, CH2-N, oxazine), 

68.35 (2C, CH2-O), 82.29 (2C, CH2-O, oxazine), 112.93, 114.16, 116.86, 120.79, 148.02, 

152.87 (12C, aromatic). 1,8-bis((3-butyl-3,4-dihydro-2H-benzo[e][1,3]oxazin-6-

yl)oxy)octane (6c). (28.2% Yield) 
1
H NMR (CDCl3), ppm: δ=0.92 (6H, t, CH3) 1.29-1.81 

(20H, m, CH2), 2.72 (4H, t, (CH3)-N), 3.87 (4H, t, CH2-O), 3.95 (4H, s, CH2, oxazine), 

4.80 (4H, s, CH2, oxazine), 6.50 (2H, s, CH, aromatic) 6.67 (4H, s, CH, aromatic);
 13

C 

NMR (CDCl3), ppm: δ=13.96 (2C, CH3), 20.37, 26.00, 29.30, 29.36, 30.27 (10C, CH2), 

50.51 (2C, CH3-N), 51.11 (2C, CH2-N, oxazine), 68.46 (2C, CH2-O), 82.28 (2C, CH2-O, 

oxazine), 112.92, 114.16, 116.86, 120.78, 148.00, 152.90 (12C, aromatic). 1,10-bis((3-

butyl-3,4-dihydro-2H-benzo[e][1,3]oxazin-6-yl)oxy)decane (6d). (38.9% Yield) 
1
H NMR 

(CDCl3), ppm: δ=0.91 (6H, t, CH3) 1.27-1.80 (24H, m, CH2), 2.73 (4H, t, (CH3)-N), 3.87 

(4H, t, CH2-O), 3.95 (4H, s, CH2, oxazine), 4.80 (4H, s, CH2, oxazine), 6.50 (2H, s, CH, 

aromatic) 6.67 (4H, s, CH, aromatic);
 13

C NMR (CDCl3), ppm: δ=13.95 (2C, CH3), 

20.38, 26.04, 29.36, 29.38, 29.48 30.26 (12C, CH2), 50.51 (2C, CH3-N), 51.11 (2C, CH2-

N, oxazine), 68.51 (2C, CH2-O), 82.28 (2C, CH2-O, oxazine), 112.92, 114.16, 116.85, 

120.77, 147.98, 152.93 (12C, aromatic). 
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Scheme 5. Synthetic route for the alkyl-bridged bisbenzoxazine monomer series 

BZ(n)BA.  
 

Polybenzoxazine Film Preparation 

 75-125mg of BZ(n)BA was placed in the center of a RainX® coated 75 × 50 mm 

glass slide and heated gently with a heat gun until the monomer was molten and all the 

bubbles were removed.  Teflon spacers (~130µm) were inserted on the sides of a glass 

slide, and a second RainX® coated 75 × 50 mm glass slide was gently placed on the top 

making sure bubbles were excluded when ‘sandwiching’ the monomer. The glass slides 

were clamped together, and the sandwiched monomer was quickly placed in a preheated 
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oven at 100 
°
C.  The thermal step cure proceeded as follows; 100°C for 1h, 140°C for 1h, 

160°C for 2h and lastly 180°C for 8h.  After curing, the films were removed and placed 

in methanol for 1h to remove any residual RainX®. 

Characterization and Measurements 

 1
H-NMR and 

13
C-NMR measurements were performed in deuterated chloroform 

(CDCl3) and deuterated acetone ((CD3)2CO) to determine purity of the synthesized 

molecules using a Varian Mercury Plus 300 MHz NMR spectrometer, operating at a 

frequency of 300 MHz with tetramethylsilane as an internal standard. The number of 

transients for 
1
H and 

13
C are 32 and 256, respectively, and a relaxation time of 5 s was 

used for the integrated intensity determination of 
1
H NMR spectra.  

 The ROP conversion was analyzed using a Fourier transform infrared 

spectroscopy in grazing-angle attenuated total reflectance mode (gATR-FTIR) using a 

Thermo Scientific FTIR instrument (Nicolet 8700) equipped with a VariGATR™ 

accessory (grazing angle 65°, germanium (Ge) crystal; Harrick Scientific).  Spectra were 

collected with a resolution of 4 cm
-1

 by accumulating a minimum of 128 scans per 

sample. All spectra were collected while purging the VariGATR™ attachment and FTIR 

instrument with N2 gas along the infrared beam path to minimize the peaks corresponding 

to atmospheric moisture and CO2.  Spectra were analyzed and processed using Omnic 

software.  Differential scanning calorimetry was also performed to monitor conversion of 

the ROP on a TA instruments DSC Q200 differential scanning calorimeter at a heating 

rate of 5 °C/min and a nitrogen flow rate of 50 mL/min. Samples were crimped in 

hermetic aluminum pans with lids.  

 Thermogravimetric analysis (TGA) was performed using a TA Instruments Q50 

thermogravimetric analyzer with a platinum pan. Samples were heated at 20 °C/min from 
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40 °C to 800 °C under a nitrogen atmosphere. Dynamic mechanical analysis (DMA) was 

performed on a TA Instruments Q800 DMA in tension film mode with a heating rate of 2 

°C/min from 25 °C to 200 °C at 1 Hz. Samples were prepared using the sandwich method 

previously described and cut into bars. 

 Mechanical testing was performed using a Bose Electroforce 3330
®
.  Dog bone 

samples with cross-sectional dimensions 9.38 mm in length and 3 mm at the neck were 

secured in tensile clamps set to a gauge distance of 15 mm and were carefully centered in 

clamps and deformed in tensile mode.  Uniaxial tensile testing proceeded in force-control 

mode using a ramp rate of 0.1 Newtons per second. Output was recorded through force 

and displacement feedback channels at a data acquisition rate of 1024 points per second. 

Stress (MPa) was calculated as the ratio of force at each point to the facial area of the 

sample between the clamps in m
2
. Strain was determined from the change in 

displacement from the gauge length. Young’s modulus was determined from the initial 

linear elastic region of the stress-strain curve.  

Results and Discussion 

Monomer Synthesis 

 The series of bisbenzoxazine monomers comprising aliphatic linkers of various 

lengths (6a-d; n = 4, 6, 8, 10) were prepared in four steps according to Scheme 5.  The 

first step provided the dibenzaldehyde series (3a-d) in excellent yield following a 

Williamson etherification between 4-hydroxybenzaldehyde (1) and dibromoalkanes (2a-

d) in the presence of anhydrous K2CO3. Subsequently, the dibenzaldehyde series was 

oxidized to the diformate ester derivatives (4a-d) in the presence of m-

chloroperoxybenzoic acid (MCPBA), followed by hydrolysis of the formate to the 

corresponding diphenol series (5a-d) with good overall yields.  Bisbenzoxazine 
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monomers (6a-d) were synthesized by the Mannich condensation of the diphenol 

derivatives (5a-d), butyl amine, and paraformaldehyde in xylenes at 120 °C.  Among 

solvents evaluated for the benzoxazine synthesis, xylenes provided the products in 

highest yield and purity due to their high boiling point and low dielectric constant – two 

factors previously shown to improve the efficiency of the Mannich condensation and 

minimize the formation of oligomeric impurities.
40

  The bisbenzoxazines were 

recrystallized in ethyl acetate to afford white crystals with high purity as shown by the 

1
H-NMR spectrum for the representative monomer 6b in Figure 2.  

   
Figure 2. 

1
H NMR of bisbenzoxazine monomer BZ(6)BA (6b). 

 

It is important to note that the current synthesis provides the first example of 

bisbenzoxazine monomers derived from a flexible bisphenol bridge – an approach that 

extends monomer design beyond the traditional but rigid bisphenol-A bridge. 

Complimentary to the flexible bisbenzoxazines derived from aliphatic diamines reported 

by Allen and Ishida,
35

 this approach also enables the design of a broad range of flexible 

bisphenol derived benzoxazines by incorporation of any number of commercially 

available primary amine derivatives as pendent moieties to the monomer structure. 
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Hereafter, monomer abbreviations will follow as BZ(n)BA, where n equals the number of 

methylene repeat units in the structure. 

Cationic Ring-Opening Polymerization 

 Cationic ring-opening polymerization of the monomer series BZ(n)BA was 

carried out according to a stepwise heating protocol of 100 °C (1h), 140 °C (1h), 160 °C 

(2h), and 180 °C (8h).  The curing protocol was developed by considering the onset of 

thermal degradation obtained from TGA experiments (vide infra).  Highly transparent 

polybenzoxazine films free from voids were prepared by sandwiching the monomer 

between two glass slides treated with RainX
®
 to ensure facile removal of the film 

following the cure.  In Appendix A, Figure A1 shows photos of pBZ(10)BA films cured 

in an air-circulation oven by the described sandwich method and in open atmosphere (i.e. 

film formed on a single glass slide).  The pBZ(10)BA film cured in open atmosphere 

exhibit a reddish-brown color and is noticeably more brittle than the light yellow, flexible 

film cured by the sandwich method.  This behaviour is likely due to oxidative effects of 

curing in open air.  Similar sensitivity to cure environment of aliphatic diamine-linked 

benzoxazines were reported in detail by Allen and Ishida.
36

 Thus, this behaviour was not 

investigated further.  All samples for gATR-ATR, DMA, tensile tests, and TGA 

characterization were cut from films prepared and cured in the sandwich configuration in 

an air circulation oven as shown in Figure A1. The progress of the cationic ring-opening 

polymerization of monomers 6a-d was initially followed by gATR-FTIR.  Figure 3 shows 

the representative FTIR spectra for the BZ(10)BA monomer (Figure 3a) and the 

respective polymer network (Figure 3b) following cationic ring-opening polymerization 

at 180 °C.  The characteristic benzoxazine peaks observed for the monomer – one at 933 

cm
-1

 assigned to the out of plane C-H vibration of the benzene ring attached to the 
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oxazine ring, another at 1213 cm
-1

due to C-O-C asymmetric stretch of the oxazine ring, 

and two peaks at 1498 cm
-1

 and 804 cm
-1

 assigned to the vibration of the tri-substituted 

benzene ring – are no longer present following the thermal cure at 180 °C.  The 

diminished intensities of these peaks indicate high conversion is achieved for the ROP. 

Additionally, a new peak appears at 1479 cm
-1

, corresponding to the tetra-substituted 

benzene ring that results from ring-opening polymerization of the benzoxazine.  

 
Figure 3. FTIR spectra of (a) BZ(10)BA monomer and (b) pBZ(10)BA polymer 

following cationic ring-opening polymerization at 180 °C.  The results shown are 

representative for the monomer series. 
 

 The thermal curing behaviour of the BZ(n)BA monomer series was also studied 

by DSC.  The DSC thermograms for the monomer series are shown in Figure 4.  

Monomer melting points – reported as the onset of the endothermic transition – initially 

decrease from 83.9 °C for BZ(4)BA to 71.5 °C for BZ(6)BA, but then increase almost 

linearly to 76.5 °C and 79.4 °C  for BZ(8)BA and BZ(10)BA, respectively.  As shown in 

Figure 4, the polymerization exotherms from the first heating cycle are characterized by a 

unimodal transition which broadens slightly as a function of aliphatic bisphenol chain 

length.  The peak position of the polymerization exotherm is somewhat insensitive to the 
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structure of the monomer, but generally shifts to a higher temperature with increasing 

length of the aliphatic bisphenol linker. The exotherm magnitude is highest for BZ(4)BA, 

at 104.3 J/g and continuously decreases with longer aliphatic chain lengths to 48.5 J/g for 

BZ(10)BA – an expected result attributed to the dilution of the benzoxazine ring mass 

fraction with increasing bisphenol chain length.  These observations are consistent with 

those reported by Allen and Ishida
36

 for flexible benzoxazines derived from aliphatic 

diamines.  Consistent with the FTIR data previously discussed, the second heating cycle 

(Figure 4, dashed lines) for each monomer exhibits little to no residual exotherm, 

indicating the ring-opening polymerization proceeds to near quantitative conversion 

under the DSC ramp conditions (i.e. Tmax 300 °C).  A zoomed in view of the curing 

exotherm for BZ(4)BA can be found in Figure A2.  It should be noted that the peak 

temperature of the cure exotherm (ca. 250 °C) coincides with the onset of degradative 

weight loss according to TGA (vide infra). However, we see no evidence of degradation 

in the second heating cycle, suggesting that the observed polymerization behaviour 

measured by DSC is not convoluted by degradation.  This observation is likely due to the 

different cure environments between the DSC polymerizations (cured entirely under N2) 

and TGA samples (cured by the sandwich method in an air circulation oven). To this end, 

DSC was also used to determine the extent of polymerization for oven-cured pBZ(n)BA 

samples prepared according to the previously described cure schedule in the sandwich 

configuration. Figure A2 shows the first and second heating cycles for pBZ(4)BA 

following an 8 h sandwich cure profile up to 180 °C in an air circulation oven, compared 

with the first heating cycle of monomer.  The first heating run (dashed line) shows an 

exothermic transition beginning at 230 °C and peaking at 267 °C, which is attributed to 

residual cure as this is no longer observed in the second heating run (dotted line). 
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Figure 4. DSC thermograms for the BZ(n)BA monomer series.  First (solid line) and 

second (dashed line) heating cycles are shown. 
 

Thermomechanical and tensile properties 

 Thermomechanical transitions of the cured polybenzoxazine films were 

investigated using dynamic mechanical analysis in tension mode.  The ratio E”/E’ of the 

loss and storage moduli gives tan δ, a damping term, which relates the energy dissipation 

relative to the energy stored in the material upon periodic deformation.  The glass 

transition temperature was determined from the peak maximum of the tan δ curve.  

Figure 5a shows the tan δ curves for the pBZ(n)BA series.  As expected, the pBZ(n)BA 

films show a systematic decrease in Tg – from 101 °C for pBZ(4)BA to 66.5 °C for 

pBZ(10)BA – with increasing aliphatic bisphenol chain length.  Figure 5b shows the 

temperature dependence of the storage modulus for the pBZ(n)BA series.  As shown, the 

sub-Tg storage modulus is dependent on the length of the aliphatic bisphenol linker with 

the film decreasing in stiffness as the length of the linker increases from n=4 (E’30°C = 

796 MPa) to n=10 (E’30°C= 602 MPa).  Similar trends are observed through the glass 

transition and into the rubber plateau region, where the rubbery storage modulus is higher 
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for samples with shorter aliphatic bisphenol chain lengths, although E’ values for 

pBZ(6)BA and pBZ(8)BA essentially coincide in the rubbery plateau region.  For the 

purpose of comparison, the crosslink density (px) of the pBZ(n)BA samples was 

estimated from the rubbery plateau storage modulus at Tg+ 40 °C according to the theory 

of rubber elasticity
41

 (Eq. 1). 

γ)RT(Ep x 12  (1) 

In equation 1 E´ is the rubbery storage modulus at temperature T, R is the gas constant, 

and γ is Poisson’s ratio, which is assumed to be 0.5 for incompressible networks.  If the 

sample density is known, then the molecular weight between cross-links (Mc) can be 

calculated according to Eq. 2. 

ERTM c 3  (2) 

In equation 2 ρ is sample density, determined using Archimedes’ Principle in the present 

case.  It should be mentioned that the above equations typically apply only to lightly 

cross-linked networks, thus the values should be taken as qualitative comparisons.  As 

shown in Appendix A (Table A1), the calculated px values decrease from 1.16 ×10
-3 

mol 

cm
-3 

for pBZ(4)BA to 0.786 ×10
-3

mol cm
-3 

for pBZ(10)BA. The decrease in the cross-

link density as a function of increasing length of the aliphatic bisphenol linker is, as 

expected, consistent with decreasing the rigidity and increasing the distance between the 

reactive functional groups – a trend that is also illustrated by the calculated Mc values 

shown in Table 1.  The crosslink densities and trends for the pBZ(n)BA series also 

compare favourably with crosslink density values previously published for bisphenol-A 

based benzoxazines (1.1×10
-3

mol cm
-3

to 1.7×10
-3

mol cm
-3

),
35, 42

 where the rigidity and 

length of the bisphenol-A linker yields polybenzoxazine thermosets with a higher 
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modulus and crosslink density than the flexible pBZ(n)BA materials reported in the 

current work. 

 
Figure 5. Plots of a) tan δ vs. temperature and b) storage modulus vs. temperature for the 

pBZ(n)BA thermoset series. 
 

It is notable that the thermomechanical properties and crosslink densities for the 

pBZ(n)BA materials differ significantly from benzoxazine monomers of similar linker 

lengths derived from aliphatic diamines reported by Allen and Ishida.
35, 36

  Namely, 

storage moduli, Tg, and crosslink densities are lower for aliphatic bisphenol linked 
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benzoxazines than those linked with aliphatic diamines.
42

 The lower Tg and storage 

modulus in our pBZ(n)BA materials can be attributed to the presence and conformational 

flexibility of the ether linkage in the aliphatic bisphenol structure, as incorporation of 

ether linkages is a commonly used strategy to induce similar trends in a broad range of 

polymeric materials,
43

 including recently reported main chain benzoxazines.
34

 While 

differences in cure profile and environment certainly also contribute, these contrasting 

properties highlight the ability to significantly tailor polybenzoxazine properties via small 

changes in monomer molecular design. Figure 6 presents the stress-strain curves obtained 

from the tensile tests of the pBZ(n)BA films.  The data are also summarized in Table 1. 

The results reveal a small dependence of Young’s modulus on the aliphatic bisphenol 

chain length, where modulus decreases from 19.5MPa for pBZ(4)BA to 13.0MPa for 

pBZ(10)BA.  Elongation at break clearly increases as a function of increasing aliphatic 

bisphenol chain length, from 6.47% for pBZ(4)BA to 9.71% for pBZ(10)BA.  For 

comparison, Young’s modulus and elongation at break have been reported at 3.3 – 4.3 

GPa and 1.3%, respectively, for rigid bisphenol-A based benzoxazines.
44, 45

  Replacing 

the methylethylidene linker of bisphenol-A with more flexible aliphatic chains clearly 

illustrates the effect of molecular architecture and molecular weight between cross-links 

on tensile properties. 

Thermal stability of the polybenzoxazine thermoset 
 

 The onset of thermal degradation plays an important role in designing an 

appropriate cure schedule for the aliphatic bisphenol based benzoxazines.  

Thermogravimetric analysis was used to characterize the thermal stability of the 

pBZ(n)BA thermosets.  Figure 7 shows the TGA thermograms for the pBZ(n)BA series 

as a function of increasing aliphatic bisphenol chain length.  The thermal degradation 
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values are summarized in Table A1.  As illustrated by the 2% weight loss values (Td2%), 

the onset of thermal degradation depends on the length of the aliphatic chain, where the 

highest Td2%, at 206 °C, was observed for the shortest chain length system of pBZ(4)BA.  

pBZ(6)BA exhibited the lowest onset of degradation, whereas pBZ(8)BA and 

pBZ(10)BA show minimal dependence of weight loss on chain length.   

 
Figure 6. Stress-strain curves for the pBZ(n)BA series. 
 

As expected, the char yield systematically decreases, from 19.7% for pBZ(4)BA to 

14.4% for pBZ(10)BA, with increasing aliphatic chain length owing to a decrease in 

aromatic content in the thermoset network.   From the derivative weight loss curves, the 

pBZ(n)BA thermosets degrade in a three step process.  Without further analysis of the 

gaseous by-products by spectroscopic analysis, one can only speculate, based on previous 

observations of aliphatic amine derived benzoxazines,
46

 that the lowest temperature 

degradation is associated with the degradation of the Mannich bridge and the loss of the 

aliphatic amine constituents; whereas the primary degradation step involves 

fragmentation and loss of aliphatic phenol by-products.    
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Figure 7. Degradation profiles and derivatives from TGA for the pBZ(n)BA series. 
 

Conclusions 

 The successfully synthesis of a series of novel aliphatic-bridged bisphenol-based 

benzoxazine monomers comprising four to ten methylene spacer units is reported. 

Thermally-accelerated cationic ring-opening polymerization of these bisbenzoxazine 

monomers provided flexible, uniform polybenzoxazine thermoset thin films under 

solvent-free conditions.  FTIR and DSC analysis of the ring-opening polymerization 

show that the polymerizations proceed to high conversion, with minimal dependence on 

the length of the aliphatic-bridged bisphenol linker.  However, thermomechanical 

properties of the pBZ(n)BA, such as rubbery storage modulus and glass transition 

temperature, show a strong dependence on the length of the aliphatic-bridged bisphenol 

linker where both properties decreased with increasing linker length.  In particular, the 

glass transition temperature of the pBZ(n)BA series could be tailored over a 35 °C 

temperature range simply by changing the length of the aliphatic-bridged bisphenol 

linker. Tensile properties of the pBZ(n)BA series were shown to follow similar trends 

with Young’s modulus decreasing and elongation at break increasing with increasing 
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aliphatic-bridged bisphenol linker length.  It is important to note that the presence and 

conformational flexibility of the ether linkage in the aliphatic bisphenol structure plays an 

important role in lowering the Tg and improving the flexibility and mechanical properties 

of the pBZ(n)BA materials.  Regarding thermal stability, the pBZ(n)BA materials all 

show a similar three mode degradation process by TGA consistent with other bisphenol-

based polybenzoxazines, and additionally exhibit a decrease in char yield with increasing 

aliphatic chain length owing to a decrease in aromatic content in the thermoset network. 

While it is not expected that the aliphatic-bridged bisphenol-based benzoxazines will 

replace bisphenol-A derivatives in high temperature, high modulus applications, the 

flexible derivatives may find use in membrane and coatings applications where improved 

flexibility and tuneable thermomechanical properties are beneficial. 
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CHAPTER IV 

SOLVENT-FREE COPOLYMERIZATION OF RIGID AND FLEXIBLE BIS-1,3-

BENZOXAZINES: FACILE TUNABILITY OF POLYBENZOXAZINE NETWORK 

PROPERTIES 

Introduction 

Polybenzoxazines (pBZ) are a relatively new class of addition-cure, thermosetting 

phenolic resins that have recently attracted much attention as matrices for high 

performance applications, such as aerospace and marine composites. Polybenzoxazine 

thermosets are derived from heterocyclic bis-1,3-benzoxazine monomers that undergo 

cationic ring-opening polymerization (ROP) at elevated temperatures (>150°C) – in the 

absence of catalysts and without byproducts – producing a cross-linked polymer network 

comprised of a phenol and a tertiary amine bridge as the structural motif (Scheme 6). 

Intermolecular and intramolecular hydrogen bonding interactions between the phenol and 

tertiary amine give rise to many salient features observed in polybenzoxazines, including 

high glass transition temperature (Tg), high thermal stability, low surface energy, low 

water adsorption, excellent dimensional stability, flame resistance, and stable dielectric 

constants.
1-4

  Advancing the utility of pBZ materials for a broad array of applications 

continues to focus on reducing the temperature required for cure, increasing 

processability, and improving the mechanical properties of the thermoset resins. Efforts 

focused on the latter include rubber toughening,
5, 6

 blending with epoxies,
7, 8

 

polyurethanes,
9, 10

 inorganics,
11-14

 monomer design,
15-19

 and synthesis of side
20-23

 and 

main-chain benzoxazine polymer precursors.
24-36

 Strategies that focus on design of new 

monomer structures to tailor network properties take advantage of the inherent simplicity 

of benzoxazine synthesis to achieve outstanding versatility in molecular design of 
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benzoxazine precursors.
16, 18, 37

 Recently, the synthesis of a series of novel aliphatic-

bridged bisphenol-based benzoxazines that exhibited tunable thermomechanical and 

mechanical properties by varying the length of the aliphatic bridged bisphenol used in the 

monomer synthesis have been reported.
37

 Using four to ten methylene units in the 

bisphenol bridge, the Tg of the resulting thermosets could be varied over a range of 35 °C 

(from 66 °C– 101 °C); however, the approach required the synthesis of four individual 

benzoxazine monomers to span the reported range of thermomechanical properties.  

Strategies that enable broader tunability of polybenzoxazine network properties with 

fewer synthetic steps are desirable. 

Copolymerization is a valuable tool for tailoring the properties of polymeric 

materials for a broad range of applications, but surprisingly few examples of 

copolymerization of compatible benzoxazine monomers have been reported to date.
38-42

  

In one early example, Su and Chang copolymerized a series of fluorinated benzoxazine 

monomers to tailor the dielectric properties of the resulting thermosets and, in addition, 

showed that the Tg could be varied with monomer composition.
40

 The same authors also 

reported the effects of bulky substituents on the copolymerization of adamantine 

functionalized benzoxazine monomers.
43

  In 2007, Liu and coworkers reported the 

copolymerization of a siloxane-containing benzoxazine monomer and illustrated the 

effects of the flexible siloxane spacer on the thermal and thermomechanical properties of 

the networks.
39

  In each of the aforementioned examples, solvent was employed to form 

homogeneous monomer mixtures, and as a result, required a solvent removal step prior to 

copolymerization. In this section, the copolymerization of two high Tg benzoxazine 

monomers – one derived from bisphenol A and aniline (Araldite 35600) and another 

derived from 4,4’-thiophenol and aniline (Araldite 35900) – with a low Tg flexible 
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aliphatic-bridged bisphenol-based benzoxazine monomer comprising ten methylene units 

under solvent-free conditions is reported. Taking full advantage of the inherently low 

melt viscosity of these benzoxazine monomers, cationic ring-opening polymerization 

(ROP) of melt-mixed monomer mixtures provides pBZ copolymer networks with 

excellent homogeneity.   

 

Scheme 6.  Copolymerization of the flexible BZ(10)BA monomer with rigid Araldite 

monomers. 
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The copolymerization behavior as a function of comonomer feed is investigated using 

DSC.  In addition, we show that simply by varying the composition of the monomer feed, 

the Tg of the resulting pBZ networks can be tuned from 67 °C to 216 °C – a 

thermomechanical properties window of approximately 149 °C. The thermal stability of 

the pBZ networks as function of monomer feed composition is also discussed. 

Experimental 

Materials  

All reagents and solvents were obtained at the highest purity available from 

Sigma Aldrich and used without further purification unless otherwise specified. 

Paraformaldehyde was purchased from Acros Organics. Anhydrous potassium carbonate, 

magnesium sulfate, and sodium hydroxide were purchased from Fisher Scientific.  

Araldite 35600 and Araldite 35900 were generously donated from Huntsman Advanced 

Materials.  The synthesis of the aliphatic bridged benzoxazine monomer 1,10-bis((3-

butyl-3,4-dihydro-2H-benzo[e][1,3]oxazin-6-yl)oxy) decane (BZ(10)BA) was prepared 

according to a previous publication.
37

  

Synthesis of 4,4’-(Decane-1,10-diylbis(oxy))dibenzaldehyde  

Into a 250 mL round bottom flask fitted with a condenser, 8.612 g (0.0287 mol) of 

1,10-dibromodecane, 7.007 g (0.0574 mol) of 4-hydroxybenzaldehyde and 15.8665 g 

(0.1148 mol) of anhydrous potassium carbonate were added to approximately 100 mL of 

dimethylformamide. The flask was set in an oil bath and refluxed at 110°C for 48 h. The 

solution was cooled to room temperature, diluted with dichloromethane, and washed with 

water. The organic layer was dried over MgSO4 and evaporated under vacuum to an off 

white solid.  (92.4% yield) 
1
H NMR (CDCl3), ppm: δ = 1.29–1.81 (16H, m, CH2), 3.98 

(4H, t, CH2–O), 6.94 (4H, s, CH, aromatic), 7.77 (4H, d, CH, aromatic), 9.82 (2H, s, 
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CH=O, aldehyde); 
13

C NMR (CDCl3), ppm: δ = 25.91, 29.00, 29.27, 29.41 (8C, CH2), 

68.34 (2C, CH2–O), 114.70 (4C, CH, aromatic), 129.68 (2C, C, aromatic), 131.91 (4C, 

CH, aromatic), 164.19 (2C, C, aromatic), 190.69 (2C, CH aldehyde).  

Synthesis of (Decane-1,10-diylbis(oxy))bis(4,1-phenylene) diformate 

 Into a 500 mL round bottom flask, 8.415 g (0.022 mol) of 4,4’-(Decane-1,10-

diylbis(oxy))dibenzaldehyde was dissolved in 150–200 mL of dichloromethane, and 

14.68 g (0.0891 mol) of metachloroperoxybenzoic acid (MCPBA) was added in portions 

to the solution. The reaction was then capped and purged with nitrogen gas for 10 min, 

and then set to stir at room temperature for 3–4 h. 112 mL of a saturated sodium 

bicarbonate solution was added to the solution and stirred for an additional 2 h at room 

temperature. The solution was extracted with dichloromethane and washed with 10% 

sodium metabisulfite followed by washing with water. The organic layer was dried over 

MgSO4 and evaporated under vacuum to give a light yellow solid.  (93.3% yield) 
1
H 

NMR (CDCl3), ppm: δ = 1.30–1.83 (16H, m, CH2), 4.00 (4H, t, CH–O), 6.97 (4H, d, CH, 

aromatic), 7.10 (4H, d, CH, aromatic), 8.39 (2H, s, O–CH=O, formate); 
13

C NMR 

(CDCl3), ppm: δ = 25.99, 29.00, 29.20, 29.33, 29.46 (8C, CH2), 68.39 (2C, CH2–O), 

115.21 (4C, CH, aromatic), 121.88 (4C, C, aromatic), 143.18 (2C, C, aromatic), 157.21 

(2C, C, aromatic), 159.79 (2C, CH formate).  

Synthesis of 4,4’-(Decane-1,10-diylbis(oxy))diphenol 

Into a 500 mL round bottom flask fitted with a condenser, 3.002 g (0.0068 mol) of 

(Decane-1,10-diylbis(oxy))bis(4,1-phenylene) diformate was added to a solution of 1.082 

g, (0.0271 mol) sodium hydroxide in 50 mL of ethanol and 20 mL of water.  The solution 

was refluxed at 100°C for 24 h. The solution was cooled to room temperature and 

acidified with 3M HCl. The product precipitated and was extracted with ethyl acetate. 
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The organic layers were combined, washed with 3M HCl and water, and dried over 

MgSO4. The solution was filtered, and solvent was removed by rotary evaporation to give 

a brown solid.  (91.0% yield) 
1
H NMR(acetone-d6), ppm: δ = 1.35–1.74 (16H, m, CH2), 

3.88 (4H, t, CH2–O), 6.75 (8H, m, CH, aromatic), 7.81 (2H, s, OH); 
13

C NMR (acetone-

d6), ppm: δ = 25.92, 29.30, 29.39 (8C, CH2), 68.12 (2C, CH2–O), 115.33 (4C, CH, 

aromatic), 115.68 (4C, CH, aromatic), 151.13 (2C, C, phenol), 152.52 (2C, C, ether).  

Synthesis of 1,10-Bis((3-butyl-3,4-dihydro-2H-benzo[e][1,3]oxazin-6-yl)oxy) decane 

(BZ(10)BA) 

 Into a 100 mL round bottom flask fitted with a condenser, 1.183 g (0.0033 mol) of 

4,4’-(Decane-1,10-diylbis(oxy))diphenol, 0.4827 g (0.0066 mol) of butylamine and 

0.3964 g (0.0132 mol) paraformaldehyde  were suspended in 7.9 mL of xylene and 

placed in an oil bath heated to 120°C. Once at temperature, the reactants dissolved and 

aliquots were taken at 5 minute intervals and observed via 
1
H NMR to monitor the 

progress of the reaction. Upon completion of the reaction (~15 to 20 min), the reaction 

was cooled to room temperature, and the xylene was evaporated. The crude residue was 

then diluted with excess ethyl acetate and stirred with basic alumina for 10 min, filtered, 

and evaporated under vacuum to give an off white solid. The crude benzoxazine was then 

recrystallized in cold ethyl acetate to afford white crystals.  (38.9% yield) 
1
H NMR 

(CDCl3), ppm: δ = 0.91 (6H, t, CH3), 1.27–1.80 (24H, m, CH2), 2.73 (4H, t, (CH3)–N), 

3.87 (4H, t, CH2–O), 3.95 (4H, s, CH2, oxazine), 4.80 (4H, s, CH2, oxazine), 6.50 (2H, s, 

CH, aromatic), 6.67 (4H, s, CH, aromatic); 
13

C NMR (CDCl3), ppm: δ = 13.95 (2C, 

CH3), 20.38, 26.04, 29.36, 29.38, 29.48, 30.26 (12C, CH2), 50.51 (2C, CH3–N), 51.11 

(2C, CH2–N, oxazine), 68.51 (2C, CH2–O), 82.28 (2C, CH2–O, oxazine), 112.92, 114.16, 

116.85, 120.77, 147.98, 152.93 (12C, aromatic). 
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Polybenzoxazine film preparation  

Due to the low melt viscosities of benzoxazine monomers, homogeneous mixtures 

of the monomer pairs at any ratio were easily achieved by heating the solid monomers in 

a test tube above their melting points (70 – 75 °C) followed by vortex mixing for less 

than 10 seconds.  The benzoxazine monomer mixtures were then cured into films using 

previously reported methods.
37

 Briefly, 150–200 mg of the monomer mixture was placed 

in the center of a RainX® coated 75×50 mm glass slide and heated gently with a heat gun 

until the monomer was molten and all air bubbles were removed. Teflon spacers 

(thickness ~130 µm) were inserted on the sides of a glass slide, and a second RainX® 

coated 75×50mm glass slide was gently placed on the top making sure bubbles were 

excluded when ‘sandwiching’ the monomer. The glass slides were clamped together, and 

the sandwiched monomer assembly was quickly placed in a preheated oven at 100 °C. 

The thermal step cure proceeded as follows: 100 °C for 1h, 140 °C for 1h, 160 °C for 2h, 

and180 °C for 4h. After the cure procedure, the film was removed from the glass slides 

and washed with methanol to remove any residual RainX® on the cured film. 

Characterization 

Using a Varian Mercury Plus 300 MHz NMR spectrometer operating at a 

frequency of 300 MHz with tetramethylsilane as an internal standard
 1

H-NMR and 
13

C-

NMR measurements were performed in deuterated chloroform (CDCl3) and deuterated 

acetone ((CD3)2CO) to determine purity of the synthesized molecules. The number of 

transients for 
1
H and 

13
C are 32 and 256, respectively, and a relaxation time of 5 s was 

used for the integrated intensity determination of 
1
H NMR spectra.  

Differential scanning calorimetry (DSC) was performed to monitor the ring-

opening polymerization using a TA instruments DSC Q200 differential scanning 
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calorimeter at a heating rate of 5 °C min 
-1

 and a nitrogen flow rate of 50 mL min 
-1

. 

Samples were crimped in hermetic aluminum pans with lids. Dynamic mechanical 

analysis(DMA) was performed on a TA Instruments Q800 DMA in tension film mode 

with a heating rate of 2 °C min 
-1

 from 30 °C to 300 °C at 1 Hz. Samples were prepared 

using the sandwich method previously described and cut into bars.  The glass transition 

temperature, Tg, was taken as the peak of the tan δ curve. 

Thermogravimetric analysis (TGA) was performed using a TA Instruments Q50 

thermogravimetric analyzer with a platinum pan for samples containing Araldite 35600 

and a ceramic pan for samples containing Araldite 35900. Samples were heated at 20 °C 

min 
-1

 from 40°C to 800°C under a nitrogen atmosphere to determine thermal stability. 

Atomic force microscopy (AFM) images were collected with a Bruker Dimension 

Icon operating in tapping mode usingVISTAprobesT300R probes (silicon probe with 

aluminum reflective coating, spring constant: 40 N/m) to observe any phase separation 

that may occur.   

Results and discussion 

Cationic ring-opening copolymerization (ROP) 

The bis-1,3-benzoxazine monomer comprising a ten methylene unit spacer, 

BZ(10)BA, was prepared in good yield and with high purity according to our previous 

publication.
37

 According to Scheme 6, BZ(10)BA was copolymerized with two 

commercially available bisbenzoxazine monomers including Araldite 35600 and Araldite 

35900.  The monomer feed ratios were varied on a weight basis from 9:1 

BZ(10)BA:Araldite to 1:9 BZ(10)BA:Araldite.  Comonomer mixtures were prepared 

under solvent-free conditions by heating the solid monomers above the melting point 

followed by vortex mixing.  The copolymerization behavior of the benzoxazine monomer 
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mixtures was monitored by DSC under nitrogen (50 mL min 
-1

) at heating rate of 5 °C 

min 
-1

 from room temperature to 300 °C.  The DSC thermograms for the 

BZ(10)BA:Araldite 35600 and BZ(10)BA:Araldite 35900 are shown in Figures 8 and 9, 

respectively.  It is well know that 1,3-benzoxazines exhibit exothermic transitions in the 

range of 200 – 250 °C – transitions that can be attributed to the cationic ring-opening 

polymerization process. Araldite 35600, the typical bisphenol A-aniline base benzoxazine 

monomer, shows a sharp exothermic transition with an onset around 207 °C and a peak 

maximum at 220 °C (Figure 8a). With the addition of BZ(10)BA into the monomer feed, 

the onsets and the peak maxima of the copolymerization exothermic transitions gradually 

shifted to higher temperatures where, for example, the 5:5 BZ(10)BA:Araldite 35600 

feed ratio exhibited an onset of 213°C and a peak maximum at 231°C (Figure 8f).With 

further increases in the monomer feed ratio, the copolymerization cure behavior 

approaches that of pure BZ(10)BA which shows an onset of 231 °C and a peak maximum 

at 246 °C (Figure 8k). As shown in Figure 9a-k, the copolymerization behavior of 

BZ(10)BA:Araldite 35900 exhibited similar trends with exotherm peak maxima between 

that of neat Araldite 35900 (205 °C) and neat BZ(10)BA (246 °C). The exothermic 

enthalpies obtained from DSC for the homo- and copolymerizations of 

BZ(10)BA:Araldite 35600 and BZ(10)BA:Araldite 35900 are shown in Figure 10. In 

both comonomer systems, the exothermic enthalpies gradually decrease as the amount of 

BZ(10)BA in the feed is increased – from approximately 390 J/g for the neat Araldite 

monomers to 79 J/g for the neat BZ(10)BA monomer. The trends observed in the 

polymerization enthalpies and in the position of the exotherm peak maxima for both 

BZ(10)BA:Araldite 35600 and BZ(10)BA:Araldite 35900 comonomer systems can be 

explained in the context of several variables, including molecular structure and molecular 
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weight of the monomers. The increase in exotherm peak maxima and decrease in total 

exotherm at higher BZ(10)BA concentrations can be attributed to lower ring strain 

associated with the flexible, aliphatic substituted BZ(10)BA monomer.   

 

Figure 8. DSC thermograms of BZ(10)BA:Araldite 35600 comonomer feeds. 

 

Figure 9. DSC thermograms of BZ(10)BA:Araldite 35900 comonomer feeds. 
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Figure 10. Exothermic enthalpies obtained from DSC for the homo- and 

copolymerizations of BZ(10)BA:Araldite 35600 (■) and BZ(10)BA:Araldite 35900 () 

as a function of monomer feed composition. 

 

In contrast, the rigidity of the two aniline based Araldite monomers gives rise to higher 

ring strain, resulting in lower cure temperatures and higher polymerization enthalpies– an 

observation consistent with previous literature.
44

  Activation energies (Ea) for the 

polymerizations, determined from the DSC data at various heating rates using the Ozawa 

method
45

 (Figures B4-7) are also consistent with the observed trends. Namely, the Ea 

values for Araldite 35600, Araldite 35900, and BZ(10)BA were 79.7 kJ/mol, 91.4 kJ/mol, 

and 119.2 kJ/mol, respectively, while the copolymerization Ea values were intermediate 

to homopolymerizations. For example, the Ea for copolymerization of 4:6 

BZ(10)BA:Araldite 35600 monomer feed was 85.7 kJ/mol.  It should be noted that the Ea 

values for the Araldite monomers were obtained in the presence of ring-opened oligomer 

impurities that would effectively catalyze the ROP and lower the Ea. These impurities 
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were difficult to completely remove as shown in the GPC chromatograms (Figure B1). 

Additionally, the molecular weight of the benzoxazine monomers also played a role in 

the observed polymerization enthalpies, where the higher molecular weight of BZ(10)BA 

results in the dilution of the benzoxazine ring mass fraction and a decrease in the overall 

polymerization enthalpy. Monomer conversion of the ring-opening copolymerizations 

was measured using DSC by comparing the curing exotherm of the monomer in the first 

heating run with any residual exotherm observed in the oven cured polybenzoxazine 

samples. Figure 11a shows the exotherm for a 5:5 BZ(10)BA:Araldite 35600 monomer 

mixture, and the first and second DSC heating runs for a 5:5 BZ(10)BA:Araldite 35600 

sample cured in the oven according to the previously described cure schedule.  Figure 

11b shows the conversion values calculated from DSC for the full range of comonomer 

feed compositions for both BZ(10)BA:Araldite 35600 and BZ(10)BA:Araldite 35900. 

For both comonomer systems, the results show an increase in conversion with increasing 

concentrations of BZ(10)BA, where samples containing greater than 30 wt% BZ(10)BA 

reach monomer conversions of approximately 98%. The lower conversion values for 

comonomer feeds rich in Araldite 35600 or 35900 can likely be attributed to an increased 

rigidity of the polymer network, resulting in vitrification and hindrance of the ring-

opening polymerization under the current cure temperatures.  Indeed, as discussed in the 

following DMA data, samples with high Araldite 35600 or 35900 content exhibit glass 

transition temperatures in the same range as the upper temperature employed in the cure 

schedule (i.e. 180 °C).   

 



60 

 

 

Figure 11. (a) DSC thermograms of 5:5 BZ(10)BA:Araldite 35600 monomer mixture and 

1
st
and 2

nd
 heating cycles for 5:5 BZ(10)BA:Araldite 35600 following oven cure.  (b) 

Monomer conversion values as a function of monomer feed composition for 

BZ(10)BA:Araldite 35600 (■) and BZ(10)BA:Araldite 35900 (). 

 

Thermomechanical Properties 

 The thermomechanical properties of the cured polybenzoxazine films were 

investigated using dynamic mechanical analysis in tension mode. The ratio E’’/E‘ of the 

loss and storage moduli gives tan δ, a damping term, which relates the energy dissipation 
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relative to the energy stored in the material upon periodic deformation. The glass 

transition temperature was determined from the peak maximum of the tan δ curve.  

Figure 12a and Figure 12b show the tan δ curves for the BZ(10)BA:Araldite 35600 and 

 

Figure 12. Tan δ vs. temperature plots for various monomer feed compositions for 

(a)BZ(10)BA:Araldite 35600 and (b) BZ(10)BA:Araldite 35900. 

 

BZ(10)BA:Araldite 35900 copolymer series, respectively.  Samples prepared from pure 

Araldite 35600 and 35900 showed Tg values of 181 °C and 216 °C, respectively. 

As expected, the Tg decreases rapidly for samples containing higher ratios of BZ(10)BA 

as indicated by a shift of the tan δ peak maxima to lower temperatures, with Tg values 

approaching that of pure BZ(10)BA measured at 67 °C.  Interestingly, samples prepared 

from all comonomer feed compositions exhibited a single symmetric tan δ transition 

providing insight into the miscibility of comonomers during copolymerization and into 

the homogeneity of the cured copolymer networks.  Likewise, AFM analysis of the 

homopolymer and copolymer networks showed minimal evidence of phase separation 
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(Figures B2 and B3). In fact, if the cured copolymer benzoxazine networks are treated in 

the same manner as a statistical copolymer, then the trends observed in Tg versus 

comonomer composition are well described by the Fox equation.
46, 47
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In the Fox Equation Tg, Tg,1and Tg,2 correspond to the glass transition of the statistical 

copolymer, component 1 and component 2, respectively, and w1 and w2 are the weight 

fractions of each component.  While the Fox equation has traditionally been applied to 

miscible polymer blends and statistical copolymers, the copolymerization of two 

benzoxazine monomers with similar reactivities may result in statistically random 

copolymer network, and as such, can be treated similarly if the presence of cross-links are 

ignored. In this treatment, it is speculated that the length scale associated with the local 

composition that dictates Tg is small (on the order of a few Kuhn lengths), or on the same 

order as the length between cross-links. Additionally, we assume there are no specific 

interactions between units.  The idea of the local composition affecting Tg is well-

established in the miscible blend literature.
48, 49

   Figure 13 shows the Tg data obtained 

from the previously described DMA experiments fit to the Fox equation for both 

BZ(10)BA:Araldite 35600 and BZ(10)BA:Araldite 35900 copolymer networks. As 

shown, there is excellent agreement between the experimental Tg data and that predicted 

by the Fox equation across the full range of comonomer feed compositions.  Similar 

agreement between experimental Tg data and the Fox equation was recently reported by 

Savin and coworkers for ternary thiol-ene polymer networks
50

 and by others for various 

types of polymer networks.
51

 The obvious utility in the observed agreement between the 

experimental Tg data and the Fox equation is that it enables a straightforward empirical  



63 

 

 

Figure 13. Glass transition temperature obtained from DMA for BZ(10)BA:Araldite 

35600 (■) and BZ(10)BA:Araldite 35900 versus monomer feed composition.  Lines 

represent predicted behavior based on the Fox equation. 

 

tool to tune the Tg of polybenzoxazine networks with a high degree of predictability, 

simply by varying the composition of comonomer feed. For additional comparison of the 

thermomechanical properties of the benzoxazine copolymer networks, the crosslink 

density (ρx) of the BZ(10)BA:Araldite networks was estimated from the rubbery plateau 

storage modulus at Tg + 40 °C according to the theory of rubber elasticity,
52

 where E´ is 

the rubbery storage modulus at temperature T, R is the 

γ)RT(Epx 12  

gas constant, and γ is Poisson’s ratio which is assumed to be 0.5 for incompressible 

networks. It should be mentioned that the above equation typically applies only to lightly 

cross-linked networks, thus the values should be taken as qualitative comparisons.  The 

calculated ρx values for the BZ(10)BA:Araldite networks show the expected trend of 
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increasing ρx with increasing Araldite content.  For example, the calculated ρx values 

increase from 0.77×10
-3

mol cm
-3

 for pBZ(10)BA
37

 to 1.64×10
-3

mol cm
-3

 for Araldite 

35900, whereas the 5:5 BZ(10)BA:Araldite 35900 network exhibits an intermediate ρx 

value of 1.29×10
-3 

mol cm
-3

.  Similar trends were observed in the BZ(10)BA:Araldite 

35600 networks. The increase in the cross-link density as a function of increasing 

Araldite, as expected, is consistent with increasing the rigidity and decreasing the 

distance between the reactive functional groups as the longer BZ(10)BA is replaced with 

Araldite. The crosslink densities and trends for the BZ(10)BA:Araldite networks also 

compare favorably with the crosslink density values previously published for bisphenol-

A based benzoxazines (1.1×10
-3

mol cm
-3

 to 1.7×10
-3

mol cm
-3

).
8, 15

 

Thermal Stability 

 The thermal stability of the benzoxazine copolymer networks was investigated 

using thermal gravimetric analysis (TGA). Figures 14a and 14b show the weight loss and 

derivative weight loss thermograms, respectively, for the BZ(10)BA:Araldite 35600 

copolymer networks. As illustrated by the 10% weight loss values (Td10%), the onset of 

thermal degradation depends on the ratio of the two monomers. BZ(10)BA:Araldite 

35600 networks show an increase in the Td10% temperature as the amount of Araldite 

35600 in the copolymer network is increased.  Such a trend is expected as the neat 

Araldite 35600 network shows higher thermal stability than the neat aliphatic bridged 

BZ(10)BA network.  Similar trends in thermal degradation as a function of monomer 

composition are observed for BZ(10)BA:Araldite 35900 networks, as shown in Figure 

15a.  The thermal degradation data are summarized in Table 1. In both monomer systems, 

the char yield (CY) increases as the Araldite content increases – a trend that can be 

attributed to an increase in the aromatic content in the thermoset. For example, the  
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Table 1 

 

Summary of polymerization and thermal degradation parameters for the 

BZ(10)BA:Araldite copolymer networks. 

 

BZ(10)BA:Araldite 35600 

Td10 

(°C) 
CY 

(%) 

Tonset 

(°C) 
Tpeak 

(°C) 
Exotherm  

(J/g) 

10:0 252 14.4 232 244 79 

9:1 258 17.1 229 242 106 

8:2 258 19.6 225 239 111 

7:3 260 21 222 235 122 

6:4 263 22.8 218 233 158 

5:5 264 23.6 213 231 174 

4:6 275 24.1 208 226 231 

3:7 285 24.6 204 222 257 

2:8 298 25.1 202 221 304 

1:9 311 25.9 202 220 332 

0:10 328 26.5 201 220 384 

BZ(10)BA:Araldite 35900           

10:0 252 14.4 232 244 79 

9:1 263 20.3 223 240 123 

8:2 263 25.2 217 234 153 

7:3 273 30.9 213 229 171 

6:4 282 33 206 224 198 

5:5 304 36.6 202 220 214 

4:6 310 39.6 198 214 239 

3:7 321 42.8 195 210 282 

2:8 328 46.9 193 206 296 

1:9 333 49.8 193 205 337 

0:10 342 55.2 195 207 391 

 

highest CY of 26.6% and 55.2% were observed for the neat Araldite 35600 and 35900 

networks, respectively, while the CY decreased to 14.4% for the neat pBZ(10)BA 

network.  Notably, networks comprising Araldite 35900 show the highest CY as a result 

of the sulfur core acting as a char promoter when compared to the aliphatic isopropyl 

core of the Araldite 35600.
53, 54

 From the derivative weight loss curves, both the 

pBZ(10)BA and Araldite materials degrade in a three step process.  
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Figure 14. (a) Degradation profiles and (b) derivatives from TGA for the 

BZ(10)BA:Araldite 35600 series. 
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Figure 15. (a) Degradation profiles and (b) derivatives from TGA for the 

BZ(10)BA:Araldite 35900 series. 
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Without further analysis of the gaseous by-products by spectroscopic analysis, it is 

speculated that, based on previous observations of aliphatic amine derived 

benzoxazines,
55

 that the lowest temperature degradation is associated with the 

degradation of the Mannich bridge and loss of the aliphatic amine constituents; whereas 

the higher temperature degradation step involves fragmentation and loss of aliphatic 

phenol byproducts. 

Conclusions 

The successfully synthesized a series of polybenzoxazine copolymer networks 

comprised of high Tg, commercially available benzoxazine monomers, Araldite 35600 

and 35900) and BZ(10)BA, a low Tg, flexible aliphatic-bridged bisphenol-based 

benzoxazine monomer containing ten methylene units in the bridge are reported. 

Thermally accelerated cationic ring-opening polymerization provided homogeneous 

copolybenzoxazine thermosets under solvent-free conditions. DSC analysis of the ring-

opening copolymerizations showed that the copolymerization behavior – in terms of 

polymerization onset temperature and total exothermic transition – depend greatly on the 

composition of the monomer feed.  Samples containing larger concentrations of 

BZ(10)BA exhibited higher onset temperatures with lower polymerization enthalpies – a 

consequence of differences in molecular structure and molecular weight.  Likewise, the 

addition of the flexible BZ(10)BA gave higher monomer conversions likely resulting 

from the added mobility of the less rigid monomer. The thermomechanical properties of 

the copolybenzoxazine networks, as assessed by DMA, show a strong dependence on the 

monomer feed ratio.  Simply, the higher Araldite content resulted in a higher Tg of the 

network.  The most salient feature of benzoxazine copolymerization was revealed in the 

tailorability in thermomechanical properties.  For example, the Tg could be varied over a 
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114°C span for the BZ(10)BA:Araldite 35600 networks and over a 149 °C span for the 

BZ(10)BA:Araldite 35900, simply by changing the monomer ratio.  Additionally, we 

found excellent agreement between the experimental Tg data and that predicted by the 

Fox equation across the full range of comonomer feed compositions for both comonomer 

systems.  The obvious utility in the observed agreement between the experimental Tg data 

and the Fox equation is that it enables a straightforward empirical tool to tune the Tg of 

polybenzoxazine networks with a high degree of predictability, simply by varying the 

composition of comonomer feed. 
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CHAPTER V 

QUATERNARY AMMONIUM FUNCTIONAL POLYBENZOXAZINES FOR AEM 

APPLICATIONS  

Introduction 

 Anion exchange membranes (AEM) have gained a lot of interest over the past 

decade because of their versatility in a variety of applications requiring transport and/or 

removal of ions (Figure 16).  Some common backbones used in AEMs include: radiation 

grafted fluorinated ethylene propylene (FEP) and ethylene tetrafluoroethylene (ETFE);
1-3

 

poly(sulfone);
4-6

 poly(etherimide);
7
 poly(phenylene);

8
 PVA;

9
 and chitosan.

10
  However, 

there is much less diversity in the types of cations studied.   Quaternary ammonium 

derivatives
11

 (---N
(+)

Ri3) are the most common with most of the variation being in the 

aliphatic or aromatic groups (Ri) attached to the central N atom.  Amongst these R 

groups, trimethyl amine-based AEMs remain among the most stable ammonium-based 

derivatives for AEM applications.
11

 Phosphonium, proazaphosphatranium, and 

phosphatranium cations have only recently been reported.
12, 13 

Phosphazenium based 

anion conductive polymers have also been recently reported in patent literature.
14

  

 One major drawback for AEMs compared to other ion-exchange membrane types 

is the low mobility of anions.  This necessitates a high concentration of tethered cationic 

charge carriers or a high ion-exchange capacity (IEC) to achieve reasonable ionic 

conductivity.
4
  Additionally, the incorporation of a high concentration of ionic groups has 

a detrimental effect on the mechanical stability.  Strategies such as blending,
15-17

 

(semi)interpenetrating networks
18, 19 

and addition of inorganic additives
20-23

 have been 

used to counteract this.  A more attractive approach to improve dimensional stability and 

solvent resistance includes cross-linking.  Multi (di-, tri-, or tetra)-functional groups, 
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containing cross-linkers have been widely adopted, and some examples include di-amines 

(react with halogenoalkyl groups),
5, 24-27

 di-thiol (with allyl groups),
28

 di-aldehyde (with 

hydroxyl-alkyl groups),
9, 29-32

 tri/tetra-alkoxysilanes (with hydroxyl-alkyl or alkoxysilanyl 

groups),
33, 34

 and tetraepoxy (with phenol groups).
35-37

 Additionally, a bi-cycloalkene 

ring-opening with simultaneous polymerization-cross-linking technique was recently 

reported to prepare high-performance AEMs.
36, 37

  However, the cross-linking techniques 

mentioned above require the introduction of a separate cross-linker molecule or specific 

polymer structures which usually takes at least two reaction-steps, increasing the process 

complexity as well as lowering the IEC. In addition, problems exist when the cross-linker 

has a distinctive molecular structure that is not compatible with the polymer chain, which 

can lead to poor membrane quality or make cross-linking impossible. 

 
Figure 16. AEM devises used in energy generation including alkaline fuel cell (left); 

reverse electrodialysis (right). 

 

 One way to allow for a highly cross-linked network with no additional chemistry 

is through the use of polybenzoxazines (pBZ).  Polybenzoxazines are a class of thermoset 

resins that show a variety of high performance properties suitable for AEM materials, 

including high thermal and chemical resistance.  Benzoxazine monomers are synthesized 

via the Mannich reaction from phenolic and primary amine derivatives and formaldehyde 
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(Scheme 1).  The simplistic nature of benzoxazine synthesis and the broad availability of 

starting materials offer unprecedented flexibility in the molecular design of monomers.  

To date, numerous BZ monomer derivatives (allyl, acetylene, propargyl ether, nitrile, 

maleimide, and methacrylate) have been reported.  Benzoxazines undergo thermally 

activated cationic ring-opening polymerization (ROP) and yield a polymer backbone, 

consisting of a phenol and a tertiary amine bridge as the repeating motif, and it is through 

the versatile monomer synthesis and ease of polymerization/cross-linking that 

polybenzoxazines are being explored as an AEM material. The closest example of this 

type of work was done by Sawaryn et. al. who designed linear polyelectrolytes based on a 

monofunctional benzoxazine monomer with a pendant ionizable group (methyl 

imidazole).
38

  Through their experiments, high concentrations of cationic moieties were 

incorporated into the linear polybenzoxazine as there were two ionizable groups per 

repeat unit; however, characterization of these materials was limited to structural and 

thermal techniques with no membrane applications or properties were reported. 

 The overarching goal of this research is the rationale design of a series of 

inexpensive, flexible, cross-linked anion-conducting materials based on polybenzoxazine 

thin films. The defining characteristic of these systems is the ability to bestow 

polybenzoxazine thin films with a high ion exchange capacity (IEC) – wherein the entire 

film is comprised of a continuous, cross-linked ionic network – while achieving optimal 

chemical stability, water uptake, flexural strength and modulus, and thermomechanical 

properties for membrane applications.  In this study flexible 4, 6, 8, and 10 carbon as well 

as a short chain polyethylene glycol core bisbenzoxazines are synthesized with pendent 

quaternizable amines which are converted following polymerization to cationic moieties 

through simple alkylation chemistry.   
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Experimental 

 

Materials  
 

 All reagents and solvents were obtained at the highest purity available from 

Aldrich Chemical Company and used without further purification unless otherwise 

specified. Paraformaldehyde was purchased from Acros Organics. Anhydrous potassium 

carbonate, magnesium sulfate, and sodium hydroxide were purchased from Fisher 

Scientific. The synthesis of compounds 3–5 starting with 1,4-dibromobutane, 1,6-

dibromohexane, 1,8-dibromooctane, 1,10-dibromodecane, and 1,2-bis(2-chloroethoxy 

ethane) were adapted from literature.
39, 40

 

Synthesis of aliphatic-bridged dibenzaldehyde compounds (3) 

 Into a 250mL round bottom flask fitted with a condenser, 0.0287 mol of the 

dihalogenated species (1,4-dibromobutane, 1,6-dibromohexane, 1,8-dibromooctane, 1,10-

dibromodecane or 1,2-bis(2-chloroethoxy)ethane), 7.007 g (0.0574 mol) of 4-

hydroxybenzaldehyde and 15.8665 g  (0.1148mol) of anhydrous potassium carbonate 

were added to approximately 100 mL of dimethylformamide. The flask was set in an oil 

bath and refluxed at 110 °C for 48 h. The solution was cooled to room temperature, 

diluted with dichloromethane, and washed with water. The organic layer was dried over 

MgSO4 and evaporated under vacuum to an off white solid. 4,4'-(butane-1,4-

diylbis(oxy))dibenzaldehyde (3a). (83.9% yield) 
1
H NMR (CDCl3), ppm: δ=1.99 (4H, m, 

CH2), 4.09 (4H, t, CH2-O), 6.95 (4H, d, CH, aromatic) 7.78 (4H, d, CH, aromatic), 9.83 

(2H, s, CH=O, aldehyde); 
13

C NMR (CDCl3), ppm: δ=25.90 (2C, CH2), 67.86 (2C, CH2-

O), 114.83 (4C, CH, aromatic) 130.06 (2C, C, aromatic) 132.10 (4C, CH, aromatic), 

164.05 (2C, C, aromatic) 190.85 (2C, CH aldehyde). 4,4'-(hexane-1,6-

diylbis(oxy))dibenzaldehyde (3b). (94.5% yield) 
1
H NMR (CDCl3), ppm: δ=1.52-1.92 
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(8H, m, CH2), 4.07 (4H, t, CH2-O), 6.98 (4H, d, CH, aromatic) 7.83 (4H, d, CH, 

aromatic), 9.88 (2H, s, CH=O, aldehyde); 
13

C NMR (CDCl3), ppm: δ=25.76, 28.97 (4C, 

CH2), 68.15 (2C, CH2-O), 114.71 (4C, CH, aromatic) 129.81 (2C, C, aromatic) 131.96 

(4C, CH, aromatic), 164.11 (2C, C, aromatic) 190.74 (2C, CH aldehyde). 4'-(octane-1,8-

diylbis(oxy))dibenzaldehyde (3c). (94.9% yield) 
1
H NMR (CDCl3), ppm: δ=1.39-1.89 

(12H, m, CH2), 4.13 (4H, t, CH2-O), 7.11 (4H, d, CH, aromatic) 7.87 (4H, d, CH, 

aromatic), 9.89 (2H, s, CH=O, Aldehyde); 
13

C NMR (CDCl3), ppm: δ=25.88, 29.01, 

29.20 (6C, CH2), 68.31 (2C, CH2-O), 114.71 (4C, CH, aromatic) 129.74 (2C, C, 

aromatic) 131.95 (4C, CH, aromatic), 164.18 (2C, C, aromatic) 190.75 (2C, CH 

aldehyde). 4,4'-(decane-1,10-diylbis(oxy))dibenzaldehyde (3d). (92.4% yield) 
1
H NMR 

(CDCl3), ppm: δ=1.29-1.81 (16H, m, CH2), 3.98 (4H, t, CH2-O), 6.94 (4H, s, CH, 

aromatic) 7.77 (4H, d, CH, aromatic), 9.82 (2H, s, CH=O, Aldehyde); 
13

C NMR (CDCl3), 

ppm: δ=25.91, 29.00 29.27, 29.41 (8C, CH2), 68.34 (2C, CH2-O), 114.70 (4C, CH, 

aromatic) 129.68 (2C, C, aromatic) 131.91 (4C, CH, aromatic), 164.19 (2C, C, aromatic) 

190.69 (2C, CH aldehyde). 4,4'-(((ethane-1,2-diylbis(oxy))bis(ethane-2,1-

diyl))bis(oxy))dibenzaldehyde (3e). (78.4% yield) 
1
H NMR (CDCl3), ppm: δ= 3.75 (4H, 

s, CH2-O),  3.88 (4H, t, CH2-O), 4.19 (4H, t, CH2-O), 7.00 (4H, d, CH, aromatic), 7.80 

(4H, d, CH, aromatic), 9.85 (2H, s, CH, Aldehyde); 
13

C NMR (CDCl3), ppm: δ=67.68, 

69.48, 70.87 (6C, CH2-O), 114.81 (4C, CH, aromatic) 129.96 (2C, C, aromatic) 131.91 

(4C, CH, aromatic), 163.75 (2C, C, aromatic) 190.78 (2C, CH aldehyde). 

Synthesis of aliphatic-bridged diformate compounds (4) 

 Into a 500 mL round bottom flask, 0.022 mol of dibenzaldehyde (3) was dissolved 

in 150-200 mL of dichloromethane, and metachloroperoxybenzoic acid (MCPBA) (14.68 

g, 0.0891 mol) was added in portions to the solution.  The reaction was then capped and 
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purged with nitrogen gas for 10 min, and then set to stir at room temperature for 3-4 h.  

112 mL of a saturated sodium bicarbonate solution was added to the solution and stirred 

for another 2 h at room temperature. The solution was extracted with dichloromethane 

and washed with 10% sodium metabisulfite followed by washing with water. The organic 

layer was dried over MgSO4 and evaporated under vacuum to give a light yellow solid. 

(Butane-1,4-diylbis(oxy))bis(4,1-phenylene) diformate (4a). (97.3% yield) 
1
H NMR 

(CDCl3), ppm: δ=1.97 (4H, m, CH2), 4.02 (4H, t, CH2-O), 6.88 (4H, d, CH, aromatic) 

7.04 (4H, d, CH, aromatic), 8.28 (2H, s, O-CH=O, formate); 
13

C NMR (CDCl3), ppm: 

δ=25.93 (2C, CH2), 67.84 (2C, CH2-O), 115.22 (4C, CH, aromatic) 121.94 (4C, C, 

aromatic) 143.31 (2C, C, aromatic), 157.03 (2C, C, aromatic) 159.70 (2C, CH formate). 

(Hexane-1,6-diylbis(oxy))bis(4,1-phenylene) diformate (4b). (84.3% yield) 
1
H NMR 

(CDCl3), ppm: δ=1.49-1.88 (8H, m, CH2), 3.96 (4H, t, CH2-O), 6.89 (4H, d, CH, 

aromatic) 7.03 (4H, d, CH, aromatic), 8.28 (2H, s, O-CH=O, formate); 
13

C NMR 

(CDCl3), ppm: δ=25.79, 29.15 (4C, CH2), 68.22 (2C, CH2-O), 115.22 (4C, CH, aromatic) 

121.89 (4C, C, aromatic) 143.23 (2C, C, aromatic), 157.16 (2C, C, aromatic) 159.74 (2C, 

CH formate). (Octane-1,8-diylbis(oxy))bis(4,1-phenylene) diformate (4c). (94.4% yield) 

1
H NMR (CDCl3), ppm: δ=1.37-1.84 (12H, m, CH2), 4.13 (4H, t, CH2-O), 6.97 (4H, d, 

CH, aromatic) 7.10 (4H, d, CH, aromatic), 8.39 (2H, s, O-CH=O, formate); 
13

C NMR 

(CDCl3), ppm: δ=25.93, 29.00 29.16, 29.24 (6C, CH2), 68.35 (2C, CH2-O), 115.21 (4C, 

CH, aromatic) 121.87 (4C, C, aromatic) 143.19 (2C, C, aromatic), 157.20 (2C, C, 

aromatic) 159.73 (2C, CH formate). (Decane-1,10-diylbis(oxy))bis(4,1-phenylene) 

diformate (4d). (93.3% yield) 
1
H NMR (CDCl3), ppm: δ=1.30-1.83 (16H, m, CH2), 4.00 

(4H, t, CH2-O), 6.97 (4H, d, CH, aromatic) 7.10 (4H, d, CH, aromatic), 8.39 (2H, s, O-

CH=O, formate); 
13

C NMR (CDCl3), ppm: δ=25.99, 29.00 29.20, 29.33, 29.46 (8C, CH2), 
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68.39 (2C, CH2-O), 115.21 (4C, CH, aromatic) 121.88 (4C, C, aromatic) 143.18 (2C, C, 

aromatic), 157.21 (2C, C, aromatic) 159.79 (2C, CH formate). (((ethane-1,2-

diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy))bis(4,1-phenylene)diformate: (4e). (84.5% 

yield) 
1
H NMR (CDCl3), ppm: δ= 3.74 (4H, s, CH2-O),  3.85 (4H, t, CH2-O), 4.09 (4H, t, 

CH2-O), 6.90 (4H, d, CH, aromatic), 7.01 (4H, d, CH, aromatic), 8.26 (2H, s, CH, 

Formate); 
13

C NMR (CDCl3), ppm: δ=67.79, 69.69, 70.82 (6C, CH2-O), 115.37 (4C, CH, 

aromatic) 121.37 (2C, CH, aromatic), 143.43 (4C, C, aromatic), 156.80 (2C, C, aromatic) 

159.81 (2C, CH formate). 

Synthesis of aliphatic-bridged diphenol compounds (5). 

 Into a 500mL round bottom flask fitted with a condenser, 0.0068mol of diformate 

(4) was added to sodium hydroxide (1.082 g, 0.0271mol) in 50 mL of ethanol and 20 mL 

of water, and the solution was then refluxed at 100°C for 24 h. The solution was cooled 

to room temperature and acidified using 3M HCl.  The product precipitated and was 

extracted using ethyl acetate. The organic layers were combined, washed with 3M HCl, 

water, and dried over MgSO4.  The solution was filtered, and the solvent was removed by 

rotary evaporation to give a brown solid.  4,4'-(butane-1,4-diylbis(oxy))diphenol (5a). 

(94.9% yield)
 1

H NMR (acetone-d6), ppm: δ=1.90 (4H, m, CH2), 3.97 (4H, t, CH2-O), 

6.76 (8H, m, CH, aromatic) 7.82 (2H, s, OH);
 13

C NMR (acetone-d6), ppm: δ=26.05 (2C, 

CH2), 68.04 (2C, CH2-O), 115.82 (4C, CH, aromatic) 116.12 (4C, CH, aromatic), 151.53 

(2C, C, phenol) 151.86 (2C, C, ether). 4,4'-(hexane-1,6-diylbis(oxy))diphenol (5b). 

(89.6% yield)
 1

H NMR (acetone-d6), ppm: δ=1.48-1.82 (8H, m, CH2), 3.91 (4H, t, CH2-

O), 6.75 (8H, m, CH, aromatic) 7.81 (2H, s, OH); 
13

C NMR (acetone-d6), ppm: δ=25.81, 

29.27 (4C, CH2), 68.24 (2C, CH2-O), 115.78 (4C, CH, aromatic) 116.12 (4C, CH, 

aromatic), 151.48 (2C, C, phenol) 151.92 (2C, C, ether). 4,4'-(octane-1,8-
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diylbis(oxy))diphenol (5c). (92.5% yield)
 1

H NMR (acetone-d6), ppm: δ=1.34-1.79 (12H, 

m, CH2), 3.89 (4H, t, CH2-O), 6.75 (8H, m, CH, aromatic) 7.81 (2H, s, OH);
 13

C NMR 

(acetone-d6), ppm: δ=25.87, 29.27, (6C, CH2), 68.28 (2C, CH2-O), 115.75 (4C, CH, 

aromatic) 116.10 (4C, CH, aromatic), 151.48 (2C, C, phenol) 151.93 (2C, C, ether). 4,4'-

(decane-1,10-diylbis(oxy))diphenol (5d). (91.0% yield)
 1

H NMR (acetone-d6), ppm: 

δ=1.35-1.74 (16H, m, CH2), 3.88 (4H, t, CH2-O), 6.75 (8H, m, CH, aromatic) 7.81 (2H, s, 

OH); 
13

C NMR (acetone-d6), ppm: δ=25.92, 29.30 29.39 (8C, CH2), 68.12 (2C, CH2-O), 

115.33 (4C, CH, aromatic) 115.68 (4C, CH, aromatic), 151.13 (2C, C, phenol) 152.52 

(2C, C, ether). 4,4'-(((ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy))diphenol (5e). 

(88.6% yield) 
1
H NMR (acetone-d6), ppm: δ= 3.66 (4H, s, CH2-O),  3.76 (4H, t, CH2-O), 

4.02 (4H, t, CH2-O), 6.77 (8H, m, CH, aromatic), 7.90 (2H, s, phenol); 
13

C NMR 

(acetone-d6), ppm: δ=67.91, 69.61, 70.49 (6C, CH2-O), 115.47 (4C, CH, aromatic) 

115.73 (2C, CH, aromatic), 151.26 (4C, C, phenol), 152.26 (2C, C, aromatic). 

Synthesis of aliphatic-bridged bisbenzoxazine monomers (6). 

 Into a 100mL round bottom flask fitted with a condenser, 0.0033 mol of the 

phenol (5a-e), dimethylethylene diamine (0.5818 g, 0.0066 mol) and paraformaldehyde 

(0.3964 g, 0.0132 mol) were suspended in 7.9 mL of xylene and placed in an oil bath 

heated to 120°C. Once at temperature, the reactants dissolved, and aliquots were taken at 

5 minute intervals and observed via 
1
H-NMR to monitor the progress of the reaction.  

Upon completion of the reaction (~15 – 20min), the reaction was cooled to room 

temperature, and the xylene was evaporated. The crude residue was then diluted with 

excess ethyl acetate and stirred with basic alumina for 10 min, filtered, and evaporated 

under vacuum to give an off white solid.  The crude benzoxazine was then recrystallized 

in cold ethyl acetate to afford white crystals. 2,2'-(6,6'-(butane-1,4-diylbis(oxy))bis(2H-
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benzo[e][1,3]oxazine-6,3(4H)-diyl))bis(N,N-dimethylethanamine) [BZ(4)DMEDA] (6a). 

(54.3% yield) 
1
H NMR (CDCl3), ppm: δ=1.25-1.47 (12H, m, CH2), 1.72 (4H, m, CH2), 

2.24 (12H, s, N-CH3), 2.45 (4H, t, CH2-amine), 2.85 (4H, t, CH2-oxazine), 3.84 (4H, t, 

CH2-O), 3.98 (4H, s, oxazine), 4.82 (4H, s, oxazine), 6.48 (2H, s, aromatic) 6.67 (4H, s, 

aromatic); 
13

C NMR (CDCl3), ppm: δ=26.04, 29.37, 29.49,  (8C, CH2), 45.70 (4C, CH3-

N), 49.03 (4C, N-CH3), 50.57 (2C, oxazine), 57.75 (2C, CH2-N), 68.46 (2C, CH2-O), 

82.61 (2C, oxazine), 112.87, 114.24, 116.90 (6C, CH, aromatic), 147.87 (2C, C, 

aromatic),152.92 (2C, C, aromatic). 2,2'-(6,6'-(hexane-1,6-diylbis(oxy))bis(2H-

benzo[e][1,3]oxazine-6,3(4H)-diyl))bis(N,N-dimethylethanamine) [BZ(6)DMEDA (6b).   

(66.3% yield) 
1
H NMR (CDCl3), ppm: δ=2.23 (12H, s, N-CH3), 2.44 (4H, t, CH2-amine), 

2.83 (4H, t, CH2-oxazine), 3.71 (4H, s, CH2-O), 3.80 (4H, t, CH2-O), 3.96 (4H, s, 

oxazine), 4.02 (4H, t, CH2-O), 4.80 (4H, s, oxazine), 6.50 (2H, s, aromatic), 6.67 (4H, s, 

aromatic); 
13

C NMR (CDCl3), ppm: δ=26.04, 29.37, 29.49,  (8C, CH2), 45.70 (4C, CH3-

N), 49.03 (4C, N-CH3), 50.57 (2C, oxazine), 57.75 (2C, CH2-N), 68.46 (2C, CH2-O), 

82.61 (2C, oxazine), 112.87, 114.24, 116.90 (6C, CH, aromatic), 147.87 (2C, C, 

aromatic),152.92 (2C, C, aromatic). 2,2'-(6,6'-(octane-1,8-diylbis(oxy))bis(2H-

benzo[e][1,3]oxazine-6,3(4H)-diyl))bis(N,N-dimethylethanamine) [BZ(8)DMEDA] (6c).   

(64.2% yield) 
1
H NMR (CDCl3), ppm: δ=1.25-1.47 (12H, m, CH2), 1.72 (4H, m, CH2), 

2.24 (12H, s, N-CH3), 2.45 (4H, t, CH2-amine), 2.85 (4H, t, CH2-oxazine), 3.84 (4H, t, 

CH2-O), 3.98 (4H, s, oxazine), 4.82 (4H, s, oxazine), 6.48 (2H, s, aromatic) 6.67 (4H, s, 

aromatic); 
13

C NMR (CDCl3), ppm: δ=26.04, 29.37, 29.49,  (8C, CH2), 45.70 (4C, CH3-

N), 49.03 (4C, N-CH3), 50.57 (2C, oxazine), 57.75 (2C, CH2-N), 68.46 (2C, CH2-O), 

82.61 (2C, oxazine), 112.87, 114.24, 116.90 (6C, CH, aromatic), 147.87 (2C, C, 

aromatic),152.92 (2C, C, aromatic). 2,2'-(6,6'-(decane-1,10-diylbis(oxy))bis(2H-
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benzo[e][1,3]oxazine-6,3(4H)-diyl))bis(N,N-dimethylethanamine) [BZ(10)DMEDA] 

(6d).   (72.4% yield) 
1
H NMR (CDCl3), ppm: δ=1.25-1.47 (12H, m, CH2), 1.72 (4H, m, 

CH2), 2.24 (12H, s, N-CH3), 2.45 (4H, t, CH2-amine), 2.85 (4H, t, CH2-oxazine), 3.84 

(4H, t, CH2-O), 3.98 (4H, s, oxazine), 4.82 (4H, s, oxazine), 6.48 (2H, s, aromatic) 6.67 

(4H, s, aromatic); 
13

C NMR (CDCl3), ppm: δ=26.04, 29.37, 29.49,  (8C, CH2), 45.70 (4C, 

CH3-N), 49.03 (4C, N-CH3), 50.57 (2C, oxazine), 57.75 (2C, CH2-N), 68.46 (2C, CH2-

O), 82.61 (2C, oxazine), 112.87, 114.24, 116.90 (6C, CH, aromatic), 147.87 (2C, C, 

aromatic), 152.92 (2C, C, aromatic). 2,2'-(6,6'-(((ethane-1,2-diylbis(oxy))bis(ethane-2,1-

diyl))bis(oxy))bis(2H-benzo[e][1,3]oxazine-6,3(4H)-diyl))bis(N,N-dimethylethanamine) 

[BZ(EO)3DMEDA] (6e). (59.8% yield) 
1
H NMR (CDCl3), ppm: δ=1.25-1.47 (12H, m, 

CH2), 1.72 (4H, m, CH2), 2.24 (12H, s, N-CH3), 2.45 (4H, t, CH2-amine), 2.85 (4H, t, 

CH2-oxazine), 3.84 (4H, t, CH2-O), 3.98 (4H, s, oxazine), 4.82 (4H, s, oxazine), 6.48 

(2H, s, aromatic) 6.67 (4H, s, aromatic); 
13

C NMR (CDCl3), ppm: δ=45.66 (4C, N-CH3), 

49.00 (4C, CH2-N), 50.53 (2C, oxazine), 57.70 (2C, CH2-N), 67.95, 69.85, 70.79 (6C, 

CH2-O), 82.61 (2C, oxazine), 113.17, 114.43, 116.91, 120.58 (6C, CH, aromatic), 148.15 

(2C, C, aromatic),152.53 (2C, C, aromatic). 
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Scheme 9. Synthetic route for the alkyl-bridged bisbenzoxazine monomer series 

BZ(R)DMEDA and the core structures. 

 
Polybenzoxazine Film Preparation 

 The benzoxazines were cured into films using previously reported methods.
40

 

Briefly, ~100 mg of the monomer was placed in the center of a RainX® coated 75×50 

mm glass slide and heated gently with a heat gun until all air bubbles were removed. 

Teflon spacers (thickness ~55 µm) were inserted on the sides of a glass slide and a 

second RainX® coated 75×50mm glass slide was gently placed on the top making sure 

bubbles were excluded when ‘sandwiching’ the monomer. The glass slides were clamped 
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together, and the sandwiched monomer assembly was quickly placed in a preheated oven 

at 100°C. The thermal step cure proceeded as follows: 100°C for 1 h, 140°C for 1 h, 

160°C for 2 h, and 180°C for 4 h. After the cure, the film was removed from the glass 

slides and washed with methanol to remove any residual RainX® on the cured film.  

Quaternization & Ion-Exchange 

 Quaternization of the pendent tertiary amines and Mannich Bridge was 

accomplished through an alkylation process using methyl iodide (CH3I).  Films were 

submerged in neat methyl iodide for 24h at room temperature under mild agitation. A 

rinse with methanol followed to remove any excess methyl iodide.  The quaternized films 

were then ion exchanged in appropriate aqueous potassium salt solutions to obtain 

various counter-ions (0.1 M KX; X = Cl
-
, Br

-
, OH

-
), followed by rinsing with excess 

deionized (DI) water to remove the excess ions.  

Characterization and Measurements  

 1
H-NMR and 

13
C-NMR were performed in deuterated chloroform (CDCl3) and 

deuterated acetone ((CD3)2CO) to determine the purity of the synthesized molecules, 

using a Varian Mercury Plus 300 MHz NMR spectrometer operating at a frequency of 

300 MHz with tetramethylsilane as an internal standard. The number of transients for 
1
H 

and 
13

C are 32 and 256, respectively, and a relaxation time of 5 s was used for the 

Scheme 10. Quaternization and ion exchange of pBZ(R)DMEDA. 
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integrated intensity determination of 
1
H NMR spectra. The ROP conversion and 

quaternization process were analyzed using Fourier transform infrared spectroscopy in a 

grazing-angle attenuated total reflectance mode (gATR-FTIR), using a ThermoScientific 

FTIR instrument (Nicolet 8700) equipped with a VariGATR
TM

 accessory (grazing angle 

65°, germanium crystal; Harrick Scientific). Spectra were collected with a resolution of 4 

cm
-1

 by accumulating a minimum of 128 scans per sample. All spectra were collected 

while purging the VariGATR
TM

 attachment and FTIR instrument with N2 gas along the 

infrared beam path to minimize the peaks corresponding to atmospheric moisture and 

CO2. Spectra were analyzed and processed using Omnic software. Differential scanning 

calorimetry was also performed to monitor conversion of the ROP on a TA instruments 

DSC Q200 differential scanning calorimeter at a heating rate of 5°C min
-1

 and a nitrogen 

flow rate of 50 mL min
-1

. Samples were crimped in hermetic aluminum pans with lids.  

 Equilibrium water uptake was measured using a TA Q5000SA Moisture Analyzer 

Water Uptake.  The films were subject to 80°C and 90% RH for 4h to equilibrate 

followed by a desorption to 0% RH at 80°C for 4h.  Water uptake was measured using 

the equation below. 

 

 Ion Exchange Capacity (IEC) was determined by using standard back titration 

methods.  The quaternized films were washed in a 0.1M KOH solution 4 times for 30 

minutes each to exchange all of the anions for OH
-
, followed by rinsing with water and 

then immersing in 10 mL of a standardized 0.05M HCl(aq) solution overnight with mild 

agitation.  The HCl(aq) solution was then back titrated to its equivalence point with 

standardized 0.05M NaOH(aq).  The sample was then washed with HCl 4 times for 30 
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minutes each to all counter-ions are all Cl
-
, washed with water and dried under vacuum 

for at least 12 hours to obtain the mass of the dried film in which Cl
-
 is the counter-ion.  

The IEC was then measured based on (equation 1)  

 

 In plane conductivities were measured at 80°C in DI water using a BekkTech 4 

point-probe sample analyzer. The samples were allowed to equilibrate for 20 min in 80°C 

in DI water prior to taking a conductivity reading using a Keithley 2400 Source Meter. 

Conductivity through the basal plane was determined in triplicate and reported as an 

average.  The average conductivity of the DI water alone was also measured and 

subtracted from the reported values. 

Results and Discussion 

Monomer Synthesis:  

 The diphenol synthesis was adopted from previous work
40

 (Scheme 9). The 

bisbenzoxazines were synthesized similar to previous publications by the Mannich 

condensation of the diphenols, DMEDA, and paraformaldehyde in xylenes at 120°C.
40

 

Additional purification via recrystallization afforded white crystals with high purity as 

shown by the representative 
1
H NMR of BZ(10)DMEDA in Figure 17. 

Ring Opening Polymerization (ROP) 

 

 Cationic ring-opening polymerization was carried out according to a stepwise 

heating protocol of 100°C (1 h), 140°C (1 h), 160°C (2 h), and 180°C (4 h). The curing 

protocol was developed by considering the onset of thermal degradation obtained from 

previous TGA experiments.
40

 The polymerization process of the BZ(R)DMEDA 

monomers was followed by gATR-FTIR.  For example, the characteristic benzoxazine  
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Figure 17. 
1
H NMR of bisbenzoxazine monomer BZ(10)DMEDA (6d).  

 

peaks observed for BZ(10)DMEDA appear at 928 cm
-1

 assigned to the out of plane C–H 

vibration of the benzene ring attached to the oxazine ring and another at 1222 cm
-1

 due to 

C–O–C asymmetric stretch of the oxazine ring, and two peaks at 1498 cm
-1

 and 803 cm
-1

 

assigned to the vibration of the tri-substituted benzene ring. These peaks are no longer 

present following the thermal cure at 180°C. The diminished intensities of these peaks 

indicate high conversion is achieved for the ROP. Additionally, a new peak appears at 

1480 cm
-1

, corresponding to the tetra-substituted benzene ring that results from ring-

opening polymerization of the benzoxazine.  Similar results are observed for all 

monomers and polymers alike shown in Table C1of Appendix C.  

Following gATR-FTIR experiments, DSC was used to further probe the thermal 

curing behavior of the benzoxazine monomers.  The DSC thermograms for the monomer 
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series are shown in Figure 19. Monomer melting points – reported as the peak of the 

endothermic transition – range between 70.0-78.5°C but with no observable trend. The 

PEG based BZ monomer, however, shows no melting point as a result of the additional 

ether groups which makes crystallization more difficult in this case. Polymerization 

exotherms also seem independent to the monomer core showing peak temperatures 

ranging from 183-192°C with no obvious trend. The exotherm magnitude is highest for 

BZ(4)DMEDA, at 137.4 Jg
-1

, and continuously decreases with longer aliphatic chain 

lengths to 84.3 Jg
-1

 for BZ(10)DMEDA – an expected result attributed to dilution of the 

benzoxazine ring mass fraction which is consistent with previous reports for other 

flexible benzoxazines.
40-42

 

 
Figure 18. FTIR spectra of (top) BZ(10)DMEDA monomer and (bottom) 

pBZ(10)DMEDA polymer following cationic ring-opening polymerization at 180 °C.  

The results shown are representative for the monomer series. 
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Consistent with our FTIR data previously discussed, the second heating cycle (Figure 19, 

dashed lines) for each monomer exhibits little residual exotherm, indicating the ring-

opening polymerization proceeds to near quantitative conversion under the DSC ramp 

conditions (i.e. Tmax 300°C). A summary of the DSC data can be found in Table C2. As a 

side note, one sees a significant reduction of the peak exotherm temperature with the 

incorporation of the pendant tertiary amine.  Comparing previous experiments of n-butyl 

pendent benzoxazines
40

 with the current materials, one sees comparable melting points 

differing by an average of 4°C; however, the peak exotherm temperature significantly 

decreases by an average of 66.5°C. A representative DSC is shown in Figure C1.  

Additionally, isothermal (180°C) rheological experiments show a sharp increase in 

viscosity after an hour for the n-butyl pendent benzoxazine compared to only about 2 

minutes for the tertiary amine pendent benzoxazine (Figure C2). 

  

Figure 19. DSC thermograms for the BZ(R)DMEDA monomer series.  First (solid line) 

and second (dashed line) heating cycles are shown.  
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It has been previously reported that once polymerization begins, the tertiary amine 

formed (Mannich bridge) will catalyze further ring opening processes to occur.
43

 The 

results shown seem to confirm this hypothesis.  

Quaternization: 

 Submersing the polybenzoxazine films in methyl iodide allows swelling of the 

network followed by quaternization of the tertiary amines, affording a simple post-

polymerization alkylation process of the amines in the material.  Using gATR-FTIR, a 

broad absorbance peak at 3430 cm
-1

 for both the quaternized monomer and polymer was 

observed indicating the present of quaternary amines (Figure 20).  This peak was 

confirmed to be associated with a quaternary amine by comparing the quaternized and 

unquaternized monomers with 
1
H NMR experiments (Figures C3-C4).  Note: pre-

quaternized monomers were polymerized; however, during the curing process, the films 

foamed creating numerous voids making an unusable membrane material. Moreover, the 

degree of quaternization, or ion-exchange capacity (IEC), was investigated using standard 

back titration methods.  The theoretical and measured IEC values are shown in Figure 21.  

The IEC as expected increases as the molecular weight of the monomers decreases; 

however, deviations from the theoretical values are inconsistent.  The more flexible 

pBZ(10)DMEDA only reached 49% of its theoretical IEC compared to 86% for 

pBZ(4)DMEDA. The Hofmann elimination appears to be the most obvious explanation 

for the decrease in IEC as β-hydrogens present in the membrane will degrade the pendant 

quaternary amine into an olefin and release a tertiary amine that reduces the measured 

IEC. The longer cores are more susceptible to this degradation process possibly due to 

the added flexibility which increases the availability of the β-hydrogens to free hydroxide 

ions.  Additionally, as shown in Figure 21, the longer the films stayed in the KOH 
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solution the lower the IEC dropped, further pointing toward the possibility that the 

membranes are unstable under alkaline conditions. Additional analysis is required; 

however, it is clear that using the hydroxide counter-ion will be problematic.    

 
 

 
Figure 20. IR spectra of the BZ(10)DMEDA monomer pre and post quaternization with 

methyl iodide (top); and IR spectra of the cured pBZ(10)DMEDA film pre and post 

quaternization with methyl iodide (bottom). 

Monomer 

Polymer 
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Figure 21. IEC results for the BZ(R)DMEDA monomer series at 2h and 24h KOH 

washes. 

 

Conductivity measurements 

 The efficiency of AEM materials is most commonly related to the ionic 

conductivity and can be done using a variety of methods and under different conditions. 

For this work conductivity was measured in DI water at 80°C and analyzed against a 

variety of parameters including the counter-ion and core length.       

Counter-ion  

 Different counter ions were analyzed by soaking the films in a 0.1 M solution of 

KX (X = Cl
-
, Br

-
, OH

-
) four times for 30 minutes, each to exchange the I

-
 for other 

anions. This process was followed by a 30 minutes wash with DI water. As shown in 

Figure 22 the counter-ion has a significant effect on the ion conductivity.   The results 
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from the ion conductivity of the halogens (I
-
, Cl

-
, Br

-
) can possibly be explained in terms 

of their size, where the smaller ions have higher mobility through the highly cross-linked 

network that resulted in an increased conductivity.  However, the same cannot be 

explained for the OH
-
.  The films appeared to degrade, as discussed in the previous 

section, and turned an irreversible dark brown, but the most convincing sign that it was 

degrading was the strong amine odor that the films gave off.  If the Hofmann elimination 

were taking place, the tertiary amine given off would be trimethyl amine which is a 

colorless gas with a fishy or ammoniacal aroma.   

 

Figure 22. Dependence of the counter-ion (I
-
, Br

-
, Cl

-
, OH) vs. conductivity for a single 

membrane material (quaternized pBZ(10)DMEDA). 

 

To probe this further, films exchanged with I
-
, Br

-
, Cl

-
, and OH

- 
and were left in DI water 

for an additional 24 hours prior to testing the conductivity. The OH
- 
containing counter-

ion dropped to 3.2 mS/cm, whereas all the halogen counter-ions showed stable 

conductivities over the 24 hours. The results support the idea that the materials are 
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unstable under alkaline (basic) conditions, and because of this, the remainder of the 

conductivity measurements utilizes Cl
-
 as the counter-ion due to its high conductivity and 

high stability.  

Core length:   

 By changing the core length of the network, a variety of concerted AEM 

properties change. IEC, being one of them, decreases with increasing core length as 

discussed earlier.  One would expect a higher IEC to produce the highest conductivity as 

a larger concentration of cationic charge carriers could facilitate better mobility of the 

anions; however, as shown in Figure 22, this is not occurring for the benzoxazine based 

AEMs. The highest IEC correlates to the lowest conductivity (pBZ(4)DMEDA) which 

contradicts the preconceived notion that IEC and conductivity are directly related.  One 

notable aspect for these materials is that they all contain very high IEC values (up to 5.12 

mmol/g).  These results are associated with the design of the monomers which contain 

two pendant amines along with two additional amines that become available post 

polymerization via the Mannich bridge. The IEC values reported in this project are of the 

highest reported, and it is speculated that the limiting factor for these materials is not the 

concentration of charge carriers (Table 2).       

 Water uptake, also being an important property in AEMs, was analyzed and 

showed an increase with increasing core length - most notably going from 

pBZ(4)DMEDA (~6%) to pBZ(6)DMEA (~21%) followed by a leveling off for longer 

cores. The rational for this sudden increase requires further investigation; however, a 

possible explanation could be found in the thermal properties of the networks. The short 

cored pBZ(4)DMEDA shows the highest Tg (Figure C5) of all the samples which 

suggests that the material could have been glassy under the testing conditions (80°C) 
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limiting chain mobility, reducing swelling, and reducing water uptake. This increased 

water uptake for the longer core also correlates to an increase in ion conductivity (Table 

2). This seems logical when comparing to other AEM materials as conductivity is 

maximized at higher water uptake (>50%). 

Table 2 

Summary of membrane properties (IEC, water uptake, and conductivity). 

Sample 

Measured IEC 

(mmol/g) 

Water Uptake 

(%) 

Conductivity 

(mS/cm) 

pBZ(4)DMEDA 5.12 ± 0.07 6.3 ± 0.315 4.3 ± 0.344 

pBZ(6)DMEDA 4.42 ± 0.09 20.2 ± 1.01 49.25 ± 3.94 

pBZ(8)DMEDA 3.17 ± 0.08 20.8 ± 1.04 51.3 ± 4.104 

pBZ(10)DMEDA 2.6. ± 0.04 20.3 ± 1.06 52.45 ± 4.196 

    

 
Figure 23. Dependence of the IEC vs. conductivity for the benzoxazine series 

pBZ(R)DMEDA. 

 

 To further expand the relationship between water uptake and conductivity, a 

hydrophilic monomer containing an ethylene glycol based core [BZ(PEG)3DMEDA] was 
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synthesized.  After polymerization and quaternization, moisture analysis results show a 

twofold increase in water uptake for the more hydrophilic network; however, the increase 

in water uptake diminished the mechanical stability beyond a testable material. On the 

other hand, by combining an aliphatic monomer [BZ(10)DMEDA] and the hydrophilic 

monomer [BZ(PEG)3DMEDA], copolymer networks can be made to both increase water 

uptake from the hydrophilic monomer while retaining substantial mechanical stability 

from the aliphatic monomer. Compared to BZ(10)DMEDA, a copolymerization 

containing 75:25 BZ(10)DMEDA:BZ(PEG)3DMEDA (w/w), showed an increase in 

water uptake to 25.7% and revealed a significant increase in conductivity to 67.4 mS/cm. 

This observation reinforces the idea that water uptake plays a significant role in the 

efficiency of highly cross-linked benzoxazine networks as an AEM material.   

 
Figure 24. Dependence of water uptake vs. conductivity for benzoxazine series 

pBZ(R)DMEDA. 
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Conclusions 

 

 The successful synthesis of a series of flexible benzoxazine monomers containing 

pendant tertiary amines with ease and to high purity has been reported. Thermally 

accelerated cationic ring-opening polymerization of these bisbenzoxazine monomers 

provided flexible, uniform polybenzoxazine thermoset thin films under solvent-free 

conditions. FTIR and DSC analysis of the ring-opening polymerization show that the 

polymerizations proceed to high conversion, with minimal dependence on the length of 

the aliphatic-bridged bisphenol linker. Additionally, the tertiary amines appeared to have 

a catalytic effect on the polymerization as the peak curing exotherms decreased to sub-

200°C temperatures; however, further investigation is required. Post polymerization 

functionalization using methyl iodide showed to be a facile approach to quaternize the 

tertiary amines, creating a high concentration of cationic charge carriers within the 

material.  To observe this gATR-FTIR was used showing a broad absorbance peak at 

3430 cm
-1

 for both the quaternized monomer and polymer, indicating the present of 

quaternary amines. To determine the concentration of quaternary amines (IEC), back 

titrations were used; however, instabilities of the amines under alkaline conditions were 

observed. β-hydrogens present in the material can be abstracted by a hydroxide anion and 

degrade the pendant quaternary amine into an olefin, releasing a tertiary amine and 

reducing the measured IEC.  Additionally, when comparing conductivities the 

instabilities of the hydroxide counter-ion are also seen as the highest conductivity reaches 

only 10.8 mS/cm and consistently drops at longer exposure times. As a result of the 

instabilities of the hydroxide the counter-ion, Cl
-
 was utilized as the counter-ion for 

further analysis due to its high conductivity and high stability. When comparing the 

conductivities of the different cores, the IEC appeared to have a minimal effect on the 
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overall conductivity as the design of the monomers incorporates a possible four 

quaternary amines per repeat unit, affording extremely high IEC values.  Additionally, 

the hydroxide counter-ion showed instabilities in both the IEC and conductivity 

measurements in which Cl
-
 was the primary counter-ion utilized.   

 Water uptake, however, proved to be a more accurate representation of how the 

core affects conductivity.  The short cored [pBZ(4)DMEDA] network only showed a 

~6% water uptake which correlates to a 4.3 mS/cm (Cl
-
) conductivity, whereas the long 

cored [pBZ(6, 8, and10)DMEDA] networks show water uptake around 21% and a 

conductivity ranging between 49-53 mS/cm. The rationale for this could be found in the 

thermal properties of the networks as the Tg of pBZ(4)DMEDA may exceed the 

measurement conditions of 80°C. Further investigation revealed that a copolymer 

containing 25% of a hydrophilic PEG cored monomer and  75% of pBZ(10)DMEDA 

showed both a higher water uptake and conductivity than any of the aliphatic cored 

networks. Under solvent free conditions, the monomers were melted, mixed, and cured to 

form homogeneous networks with a modest increase in water uptake of 5%, which 

correlated to an increase in conductivity of 16 mS/cm further defining these materials as 

being water uptake dependent.   
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORK 

 

 With the array of tangible properties available to polybenzoxazines, an almost 

limitless potential of applications are available.  This dissertation highlights the versatile 

monomer and polymer synthesis in an effort to expand the knowledge and understanding 

of what polybenzoxazines are capable of achieving. Through this work, both flexible and 

functional polybenzoxazine networks directed toward thin film applications have been 

achieved.   

 In the first study, a series of novel aliphatic-bridged bisphenol-based benzoxazine 

monomers comprising four to ten methylene spacer units (pBZ(n)BA) was synthesized. 

The four step synthesis of each monomer proceeded in high-to-moderate yields and was 

attainable in high purity. Thermally-accelerated cationic ring-opening polymerization of 

these bisbenzoxazine monomers provided flexible, uniform polybenzoxazine thermoset 

thin films under solvent-free conditions. The curing process proceeded to high conversion 

(>95%) as the flexible cores allowed higher mobility of the benzoxazines groups, and 

suppressed vitrification of the network at the curing profile was used. The 

thermomechanical properties of the pBZ(n)BA, such as rubbery storage modulus and 

glass transition temperature, show a strong dependence on the length of the aliphatic-

bridged bisphenol linker where both properties decreased with increasing linker length. In 

particular, changing the length of the aliphatic-bridged bisphenol linker enables tailoring 

the Tg of the pBZ(n)BA series from 67°C to 101°C. Tensile properties of the pBZ(n)BA 

series were shown to follow similar trends with Young’s modulus decreasing and 

elongation at break increasing, with increasing aliphatic-bridged bisphenol linker length. 

Regarding thermal stability, the pBZ(n)BA materials all show a similar three mode 
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degradation process consistent with other bisphenol-based polybenzoxazines and exhibit 

a decrease in char yield with increasing aliphatic chain length, which is owed to a 

decrease in aromatic content in the thermoset network. 

 In the second project, the copolymerization of a flexible aliphatic-bridged 

bisphenol-based benzoxazine monomer comprising ten methylene units (BZ(10)BA) with 

two rigid benzoxazine monomers (commercially available Araldite 35600 and 35900) via 

a solvent free cationic ring opening polymerization process was reported. The effects of 

monomer feed composition on polymerization behavior, thermomechanical transitions, 

and thermal degradation properties were reported. The ring-opening copolymerizations 

showed that – in terms of polymerization onset temperature and total exothermic 

transition – they depend greatly on the composition of the monomer feed.  Samples 

containing larger concentrations of BZ(10)BA exhibited higher onset temperatures with 

lower polymerization enthalpies. The thermomechanical properties of the 

copolybenzoxazine networks showed a strong dependence on the monomer feed ratio, 

where higher Araldite content resulted in a both a higher storage modulus and Tg of the 

network.  The most salient feature of benzoxazine copolymerization was revealed in the 

tailorability in thermomechanical properties, which were varied by 149 °C simply by 

changing the monomer feed ratio to which the Tg was observed to be accurately predicted 

using the Fox equation.    

 In the third and final project the synthesis of tertiary amine functional 

benzoxazine monomers that represent the vast tailorability of polybenzoxazines was 

reported. The tertiary amines appeared to have a catalytic affect on the polymerization as 

the peak curing exotherms showed sub-200°C temperatures. Post polymerization 

functionalization using methyl iodide showed to be a facile approach to quaternize the 
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tertiary amines, creating a high concentration of cationic charge carriers within the 

material. However, β-hydrogens in the material proved to be susceptible to the hydroxide 

counter-ion as they can be abstracted and consequently, degrade the pendant quaternary 

amine into an olefin that release a tertiary amine and reduces the measured IEC.  As a 

result of the instabilities of the hydroxide counter-ion, Cl
-
 was utilized as the counter-ion 

for further analysis due to its high conductivity and high stability. When comparing the 

conductivities of the different cores the IEC appeared to have a minimal effect on the 

overall conductivity; however, water uptake proved to be a more accurate representation 

of how the core affects the conductivity.  The shortest core [pBZ(4)DMEDA] showed the 

lowest water uptake and conductivity, and the longer (6, 8 and 10) cores showed the 

higher water uptake around 21% and a higher conductivity ranging between 49-53 

mS/cm. The rationale for this could be found in the thermal properties of the networks as 

the Tg of pBZ(4)DMEDA may exceed the measurement conditions of 80°C. Additionally, 

the water uptake can be increased by combining a hydrophilic PEG cored monomer with 

an aliphatic monomer. Under solvent free conditions, the monomers were melted, mixed, 

and cured to form homogeneous networks with both the hydrophilic monomer and an 

aliphatic monomer. The copolymer showed an increase in both the water uptake and 

conductivity when compared to the neat aliphatic cored network, providing further 

evidence that the ion conductivity is limited by water uptake.  
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APPENDIX A 

FLEXIBLE ALIPHATIC-BRIDGED BISPHENOL-BASED POLYBENZOXAZINES 

 

 
Figure A1. Photos of pBZ(10)BA thermally cured at 180 °C in (a) sandwich 

configuration and (b) open configuration.  Using the sandwich method, highly uniform 

films with dimensions up to 15 cm × 15 cm were easily prepared with thickness 

controlled by a PTFE spacer.  
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Figure A2.DSC thermograms of pBZ(4)BA oven cured according to the cure schedule of 

100 °C (1h), 140 °C (1h), 160 °C (2h), and 180 °C (8h).  First and second heating cycles 

for pBZ(4)BA are shown compared with the monomer polymerization.  
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Table A1 

 

Thermomechanical, tensile and thermal degradation properties for the pBZ(n)BA series. 

 

  pBZ(4)BA pBZ(6)BA pBZ(8)BA pBZ(10)BA 

MW Monomer (g/mol) 468.63 496.68 524.73 552.79 

Tg (°C) 100.9 81.9 76.1 66.5 

E´  30 °C (MPa) 796 722 728 602 

E´  Tg+40 °C (MPa) 12.7 9.03 8.55 7.35 

ρ (g/cm
3
) 1.1 1.12 1.1 1.11 

px(×10
-3

mol cm
-3

) 
1.23 0.915 0.88 0.771 

Mc (g/mol) 949 1259 1231 1418 

Young’s Modulus (MPa) 19.5 16.6 14.1 13 

Elongation at Break (%) 6.47 6.94 8.43 9.71 

Td2% (°C) 206 186 193 195 

Td5% (°C) 236 228 231 231 

Td10% (°C) 255 249 252 252 

Char Yield (%) 19.7 17.4 15.3 14.4 

a
px is crosslink density; Mc is molecular weight between cross-links 

Td is the degradation temperature at the indicated weight loss 
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APPENDIX B 

SOLVENT-FREE COPOLYMERIZATION OF RIGID AND FLEXIBLE BIS-1,3-

BENZOXAZINES: FACILE TUNABILITY OF POLYBENZOXAZINE NETWORK 

PROPERTIES 

 

 
 

Figure B1. GPC traces for Araldite 35600 and Araldite 35900 monomers. 
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Figure B2. Atomic force microscopy images for a polybenzoxazine network derived from 

Araldite 35600; (top) height image, (bottom) phase image. 
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Figure B3. Atomic force microscopy images for a polybenzoxazine network derived from 

5:5 Araldite 35600:BZ(10)BA; (top) height image, (bottom) phase image. 
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Figure B4. Plot of the heating rate Vs the peak exotherm temperature for BZ(10)BA to 

determine activation energy from the slope of the best fit line.  

 

 

Figure B5. Plot of the heating rate Vs the peak exotherm temperature for Araldite 35600 

to determine activation energy from the slope of the best fit line.  
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Figure B6. Plot of the heating rate Vs the peak exotherm temperature for Araldite 35900 

to determine activation energy from the slope of the best fit line.  

 

 

Figure B7. Plot of the heating rate Vs the peak exotherm temperature for a 4:6 copolymer 

of BZ(10)BA and Araldite 35600 to determine activation energy from the slope of the 

best fit line.  
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APPENDIX C 

QUATERNARY AMMONIUM FUNCTIONAL POLYBENZOXAZINES FOR AEM 

APPLICATIONS  

Table C1  

 

gATR-FTIR peak placements for the characteristic monomer and polymer functional 

groups. 

 

Sample 

C-H 

Benzoxazine 

Vib. (cm
-1

)  

C–O–C 

oxazine 

stretch (cm
-1

)  

tri-sub. 

Benzene ring 

(cm
-1

) 

tetra-sub. 

Benzene ring 

(cm
-1

)  

BZ(4)DMEDA 928 1220 1498, 806 1480 

BZ(6)DMEDA 923 1222 1498, 804 1480 

BZ(8)DMEDA 912 1222 1497, 820 1480 

BZ(10)DMEDA 928 1222 1498, 803 1480 

BZ(PEG)3DMEDA 936 1225 1495, 814 1478 

 

 

 

 

Table C2   

 

Ring opening exotherms for the neat monomer and oven cured polymer and the 

subsequent conversion.   

 

Sample 

Monomer exotherm 

(J/g) 

Post cure exotherm 

(J/g) 

Conversion 

(%) 

BZ(4)DMEDA 137.4 2.2 98.4 

BZ(6)DMEDA 114.5 4.6 96 

BZ(8)DMEDA 103.9 3.6 96.5 

BZ(10)DMEDA 84.3 4.1 95.1 

BZ(PEG)3DMEDA 102 2.9 97.2 
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Figure C1. DSC Thermograms of BZ(10)BA and BZ(10)DMEDA at 5C/min.  
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 Figure C2. Viscosity Vs Time for monomers BZ(10)BA (black) and BZ(10)DMEDA 

(red) at an isothermal curing temperature of 180°C. 
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Figure C3. 
1
H NMR of BZ(10)DMEDA. 
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Figure C4. 
1
H NMR of quaternized BZ(10)DMEDA. 
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Figure C5. Representative DMA traces for BZ(R)DMEDA. 
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