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Reviewers' comments: 
 
Reviewer #4: I want to thank the authors for their response to the comments the reviewers and I made. 
I think that they have done a good job with the revision. I have several issues that I would like to be 
addressed. 
 

Author response: Thank you. We are encouraged by your above comments. We believe we have 

addressed your remaining concerns through this round of revision. Please see the revised 

manuscript and our itemized responses to your comments below.  

 
 
1. In the third paragraph of Section 3, the paper mentions that intra-construct item correlations are 
greater than the inter-construct item correlation. The paper also mentions in this same paragraph that 
the item-to-own-construct correlations are greater than item-to-other-construct correlations. I would 
like to ask the authors to provide statistical test support for these clams. Are these differences 
statistically significant?  
 

Author response: We performed statistical tests for the above comparison. As an example, we 

examined the item correlations within the operational performance (OP) construct and between 

this construct and the construct trust with suppliers (TRUST). 

 

First, we compared the intra-construct item correlations within OP (six correlations) and the inter-

construct item correlations between OP and TRUST (12 correlations).  We found that the intra-

construct item correlations are clearly larger than the inter-construct item correlations.  We also 

compared the average of the above mentioned six intra-construct item correlations and the 

average of the 12 inter-construct item correlations. We found that the average of the intra-

construct item correlations is significant larger than the average of the inter-construct item 

correlations (p<0.01). 

 

Second, we computed OP’s item-to-own-construct correlations (four correlations) and its item-to-

other-construct correlations (here the other construct is Trust, there are four correlations).  Next, 

we compared the average of the item-to-own-construct correlations and the average of the item-

to-other-construct correlations. We found the difference statistically significant (p<0.01). 

 

We revisited the original study (Klein and Rai, 2009) that proposes this method of examining 

discriminant validity of formative constructs.  The study simply compares the magnitude of item-

to-own-construct correlations and item-to-other-construct correlations.  But the study does not 

perform a formal statistical test of the above comparison. Our conjecture is that the authors only 

visually checked the magnitude of those correlations.  Thus, we revised our paper and point out 

that this method of examining formative construct discriminant validity is quite new and there is 

no detailed guidance on applying this method. For this reason, we decide to deemphasize this 

method in our guideline (Section 2) and example (Sections 3). 

 

 

 
2. In the fifth paragraph in Section 3, you claim that the results are consistent. But you don't clarify what 
they are consistent in regards to. Please expand on this. 
 

Author response: We now state “the magnitude and significance of structural paths are 

significant”. 



 
 
 
3. At the start of Section 4, please expand on the first sentence by providing a one-two sentence 
summary of why you are reviewing the literature. The first sentence in this section reads: "This section 
reviews PLS use in the recent OM articles." Why are you reviewing the literature? In order to provide 
what in particular?  
 

Author response:  We expanded the sentence as follows: 

 

“This section reviews PLS use in recent OM literature. This review allows us to identity which 

aspects of PLS researchers should pay attention to and also serves as the starting point for 

creating our guideline for evaluating and using PLS.”  

 
4. In the fifth paragraph in Section 2.3.2, the paper states that "while the "10-times" heuristic for 
determining the sample size adequacy in using PLS has been widely adopted, it has been criticized for 
not taking into account the effect size, reliability, number of indicators, or other factors which in one 
way or another may affect statistical power of a hypothesis test (Goodhue et al., 2006; Marcoulides and 
Sanders, 2006)." I am sorry but this sentence makes no sense the heuristic you referred to here tries to 
address the issues you claim is being criticized for. I think you should expand on this and write this 
sentence more thoroughly 
 

Author response: We agree the above sentence is not very clear. We have modified and 

expanded the sentence as follows: 

 

“The effect size, reliability, the number of indicators, or other factors may affect the statistical 

power of a hypothesis test. Simply applying the “10 times” rule of thumb may lead researchers to 

underestimate the sample size requirement in certain situations, such as small effect sizes and low 

reliability of measurement items. In other words,  applying the “10 times” rule of thumb without 

performing a formal power analysis may lead to hypothesis tests with low power.”  

 
5. The paper is fairly well written. However, I think it would be in the best interest of the authors to have 
it copy edited by a professional. I found a number of problem areas. Please see below: 
 

Author response: We used a professional to copy edit our paper. The authors of the paper also 

carefully edited the paper.  We hope our efforts have improved the paper to your satisfaction.  
 
 
In the third paragraph of Secion 1: "Empirical OM researchers face some unique challenges such as the 
relatively less developed empirical knowledge (Wacker, 1998), the lack of standardized measurement 
scales (Roth et al., 2007), and the difficulty to obtain large samples since OM researchers typically 
examine phenomenon at the firm level or the supply chain level." 
  
THIS SENTENCE SHOULD READ  
 
"Empirical OM researchers face some unique challenges such as the relatively less developed empirical 
knowledge (Wacker, 1998), the lack of standardized measurement scales (Roth et al., 2007), and the 
difficulty to obtain large samples since OM researchers typically examine phenomena at the firm level or 
the supply chain level."  



 
Author response: changed as suggested.  

 
In the second paragraph of Section 2.2.1: "If a researcher wants to evaluate if the research model still 
holds today, from a theoretical standpoint, the study should be confirmatory in nature since the theory 
underlying the research model to be tested is well established." 
  
THIS SENTENCE SHOULD READ. 
 
"To evaluate if the research model still holds today from a theoretical standpoint, a study should be 
confirmatory in nature since the theory underlying the research model to be tested is well established." 
 

Author response: changed as suggested.  
 
 
In the third paragraph of Secion 2.2.4: "As part of the efforts to establish the content validity of 
formative constructs, researchers are recommended to conduct a thorough literature review related to 
the construct domain." 
  
THIS SENTENCE SHOULD READ. 
 
"As part of the efforts to establish the content validity of formative constructs, we recommend that 
researchers conduct a thorough literature review related to the construct domain." 
 

Author response: changed as suggested.  
 
 
In the last two paragraphs of Section 2.2: 
 
"For instance, conceptually, an item measuring flexibility does not have to highly correlate with an item 
measuring manufacturing costs." 
  
THIS SENTENCE SHOULD READ. 
 
"For instance, conceptually, an item measuring flexibility does not have to correlate with an item 
measuring manufacturing costs."  

 

Author response: changed as suggested.  
 
"Fourth, with respect to nomological network, one cannot expect that different operational 
performance items are impacted by the same set of antecedents and lead to the same set of 
consequences." 
  
THIS SENTENCE SHOULD READ. 
 
"Fourth, with respect to nomological networks, one cannot expect that different operational 
performance items will be impacted by the same set of antecedents and lead to the same set of 
consequences."  



 
Author response: changed as suggested.  

 
"Since a formative construct by itself is under-identified, researcher should consider including two or 
more reflective indicators for each formative construct in their survey." 
   
THIS SENTENCE SHOULD READ. 
 
"Since a formative construct by itself is under-identified, researchers should consider including two or 
more reflective indicators for each formative construct in their measurements."   
 

Author response: changed as suggested.  
 
 
"These reflect indicators usually are not a part of the research model to be tested but rather are used as 
an external criterion to assess the formative construct validity (Diamantopoulos and Winklhofer, 2001)." 
  
THIS SENTENCE SHOULD READ. 
 
"These reflective indicators are not usually a part of the research model to be tested but rather are used 
as an external criterion to assess the formative construct validity (Diamantopoulos and Winklhofer, 
2001)."  
 

Author response: changed as suggested.  
 
Sixth paragraph in Section 2.3.1.: "Third, researchers should check external validity of formative 
constructs." 
 
  
THIS SENTENCE SHOULD READ. 
 
"Third, researchers should check the external validity of formative constructs."   
 

Author response: changed as suggested.  
 
Sixth paragraph in Section 2.3.2: "Fourth, the post-hoc power analysis should be conducted to check if 
the power of the research study is acceptable (>0.80)." 
  
THIS SENTENCE SHOULD READ. 
 
"Fourth, post-hoc power analyses should be conducted to check if the power of the research study is 
acceptable (>0.80)."  
 

Author response: changed as suggested.  
 
Seventh paragraph in Section 2.3.2: "Fifth, although PLS does not provide overall fit statistics, recently 
researchers have begun to compute Goodness of Fit (GoF) in PLS (Tenenhaus et al., 2005), which 



considers the quality of the complete measurement model in terms of average communality (i.e., AVE) 
and the quality of the complete structural model in terms of average R^2." 
   
THIS SENTENCE SHOULD READ. 
 
"Fifth, although PLS does not provide overall fit statistics, researchers have recently begun to compute 
Goodness of Fit (GoF) in PLS (Tenenhaus et al., 2005), which considers the quality of the complete 
measurement model in terms of average communality (i.e., AVE) and the quality of the complete 
structural model in terms of average R^2. "  
 

Author response: changed as suggested.  
 
Third paragraph in Section 3: "For each formative item, we examine the item's item weight (rather than 
item loadings), sign, and magnitude." 
  
THIS SENTENCE SHOULD READ. 
 
"For each formative item, we examine its weight (rather than item loadings), sign, and magnitude."  
 

Author response: changed as suggested.  
 
Fifth paragraph in Section 3: "We run the structural model using the bootstrap procedure with 200, 500, 
and 1,000 times of resampling." 
   
THIS SENTENCE SHOULD READ. 
 
"We ran the structural model using the bootstrap procedure with 200, 500, and 1,000 times of 
resampling." 
 

Author response: changed as suggested.  We appreciate your meticulous review.  
 

Author response: Please note that we have edited the paper according to your above suggestions. 

However, through the copy editing by a professional and multiple rounds of copy editing by the 

authors after accepting your suggested changes, in some instances the final version of the paper 

may be slightly different from the change you suggested.  
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Using Partial Least Squares in Operations Management Research: A 

Practical Guideline and Summary of Past Research 

 
 

ABSTRACT 

The partial least squares (PLS) approach to structural equation modeling (SEM) has been 

widely adopted in business research fields such as information systems, consumer behavior, and 

marketing. The use of PLS in the field of operations management is also growing. However, 

questions still exist among some operations management researchers regarding whether and how 

PLS should be used. To address these questions, our study provides a practical guideline for 

using PLS and uses examples from the operations management literature to demonstrate how the 

specific points in this guideline can be applied. In addition, our study reviews and summarizes 

the use of PLS in the recent operations management literature according to our guideline. The 

main contribution of this study is to present a practical guideline for evaluating and using PLS 

that is tailored to the operations management field. 

 

Keywords: Partial least squares (PLS); Structural equation modeling (SEM); Empirical research 

methods; Operations management 
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Using Partial Least Squares in Operations Management Research: A 

Practical Guideline and Summary of Past Research 
 

1. INTRODUCTION 

Structural equation modeling (SEM) has been widely adopted in social and psychological 

research. Operations management (OM) researchers have also used SEM to a great extent (Shah 

and Goldstein, 2006). To date, OM researchers have mainly adopted covariance-based SEM 

(CBSEM) methods, as exemplified by software such as LISREL, AMOS, and EQS. A less 

widespread technique known as partial least squares (PLS) has started to receive attention from 

OM researchers, as evidenced by the steady growth of PLS use in the OM field. 

As an SEM method, PLS has been subjected to much debate with respect to its pros and 

cons and under what circumstances it should be adopted, if at all. Advocates of PLS claim that it 

has the ability to estimate research models using small samples with no strict distribution 

assumptions and can model both reflective and formative constructs within the same research 

model. PLS also supposedly avoids the inadmissible solutions and factor indeterminacy of 

CBSEM (Chin, 1998b). Researchers who oppose using PLS cite reasons such as bias in 

parameter estimates, its inability to model measurement errors, and its piecemeal approach to 

estimating the overall research model.  

Despite the controversies and debate surrounding PLS, interest in PLS among OM 

researchers seems to be growing. Although a number of articles and book chapters have 

summarized PLS algorithms, reviewed the use of PLS in a research field, or discussed specific 

aspects of PLS applications such as sample size requirements and specifying formative 

constructs, we are not aware of any guideline for evaluating and using PLS that is tailored to the 
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OM audience. Empirical OM researchers face some unique challenges such as relatively less 

developed empirical knowledge (Wacker, 1998), a lack of standardized measurement scales 

(Roth et al., 2007), and the difficulty of obtaining large samples because OM researchers 

typically examine phenomena at the firm or the supply chain level. These challenges may limit 

the applicability of CBSEM. Consequently, OM researchers should evaluate different analysis 

techniques, particularly PLS if SEM is preferred. To help OM researchers evaluate and use PLS, 

this study provides a practical guideline that outlines some of the important issues in using PLS. 

We make this guideline specific to the OM field by using illustrative examples from the OM 

literature. 

We also summarize studies that use PLS to examine OM topics in the fields of operations 

management, strategic management, and organization theory from 2000 to 2011. We review 

these articles with respect to their rationales for using PLS, sample sizes, the use and assessment 

of formative constructs, bootstrapping procedures, and the presentation of results. Our review 

provides a mixed picture of PLS use in the OM field, with some studies exhibiting deficiencies 

or lack of familiarity with certain aspects of PLS and others demonstrating a reasonably good 

understanding of the PLS method.  

To the best of our knowledge, this study is the first to provide a practical guideline for 

using PLS that includes illustrative examples from the OM literature. This guideline can serve as 

a useful checklist for OM researchers in their evaluations regarding whether PLS can meet their 

data analysis needs given their research objectives, research model characteristics, sample sizes, 

and sample distribution. In addition, our study performs a thorough review of the use of PLS in 
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the OM literature. This review highlights the common problems of using PLS and thus can help 

OM researchers avoid similar mistakes in future studies.   

2. A GUIDELINE FOR EVALUATING AND USING PLS 

2.1. PLS Overview 

PLS, originally introduced by Wold in the 1960s (Wold, 1966), was recently revitalized 

by Chin in the information systems (IS) field (Chin, 1998a, b; Chin et al., 2003). In addition to 

OM, PLS has been used in management (e.g., Cording et al., 2008), marketing (e.g., Hennig-

Thurau et al., 2006; White et al., 2003), strategic management (Hulland, 1999), and other 

business research fields. Representative PLS software tools include PLS-Graph and SmartPLS, 

among others. Appendix 1 provides a non-technical introduction to the PLS algorithm used by 

the most popular PLS software: PLS-Graph. In-depth coverage of this PLS algorithm can be 

found in Chin and Newsted (1999).  

One major difference between CBSEM and PLS is that the former focuses on common 

factor variances and the latter considers both common and unique variances (i.e., overall 

variances). The difference between CBSEM and PLS is similar to that between common factor 

analysis and principle component analysis (Chin, 1995). CBSEM specifies the residual structure 

of latent variables, whereas in PLS, the latent variables are weighted composite scores of the 

indicator variables and lead directly to explicit factor scores.   

 PLS is also less well grounded in statistical theory than CBSEM to the extent that it is 

considered statistically inferior (Chin, 1995). PLS estimators do not have the precision of 

maximum likelihood (ML) estimation (as used in CBSEM, such as LISREL) in achieving 

optimal predictions. When the multivariate normality assumption is met, CBSEM estimates are 
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efficient in large samples and support analytical estimates of asymptotic standard errors. In 

contrast, because the construct scores of the latent variables in PLS are created by aggregating 

indicator items that involve measurement errors, PLS estimates of construct scores are biased 

and are only consistent under the conditions of “consistency at large”, which refer to a large 

number of items per construct, high communality, and large sample sizes (Wold, 1982, p.25). 

Because PLS lacks a classical parametric inferential framework, parameters are estimated using 

resampling procedures such as bootstrap and jackknife.   

We suggest that OM researchers use CBSEM if its assumptions are met. However, when 

the conditions for using CBSEM are not met, researchers should evaluate the pros and cons of 

CBSEM and PLS and should only use PLS if doing so proves more appropriate overall. We 

summarize our guideline for evaluating and using PLS in Table 1 and discuss its specific points 

in detail in the rest of Section 2.  

-- Insert Table 1 about here -- 

2.2. Issues to Consider During the Pre-Analysis Stage 

Considerations of construct formulation and analysis techniques should begin in the 

research design stage. To choose between CBSEM and PLS, researchers should carefully 

consider the objectives of their study, the state of the existing knowledge about the research 

model to be tested, the characteristics of the research model (i.e., is the research model extremely 

complex?), and the conceptualization and formulation of the constructs (i.e., are constructs 

formative or reflective?).  

2.2.1. Research Objectives (Confirmatory versus Exploratory Studies)  
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PLS aims to assess the extent to which one part of the research model predicts values in 

other parts of the research model. In this sense, PLS is prediction-oriented (Fornell and 

Bookstein, 1982; Vinzi et al., 2010). In contrast, CBSEM estimates the complete research model 

and produces fit statistics that explain how well the empirical data fits the theoretical model (i.e., 

minimizing the discrepancy between the covariances of sample data and those specified by the 

theoretical model). As such, CBSEM is parameter-oriented because it seeks to create parameter 

estimates that are close to population parameters. This difference suggests that CBSEM is more 

appropriate when there are well-established theories underlying the proposed research model. In 

such a circumstance, researchers can use CBSEM to obtain population parameter estimates that 

explain covariances with the assumption that the underlying model is correct. However, if the 

overall nomological network has not been well understood and researchers are trying to explore 

relationships among the theoretical constructs and to assess the predictive validity of the 

exogenous variables, then PLS can be considered.  

An illustrative research model that can be tested using CBSEM is the theory of quality 

management underlying the Deming management method, as described in Anderson et al. (1994). 

The main tenets of Deming’s management methods are well accepted by both scholars and 

practitioners. Anderson et al. (1994) articulate the theoretical relationships among the constructs 

in the research model based on the relevant literature, an observation of industry practices, and 

the results of a Delphi study that assembled a panel of industry and academic experts in quality 

management. Their research model has since been subjected to empirical validation (Anderson et 

al., 1995). To evaluate whether their research model still holds from a theoretical standpoint, a 

study should be confirmatory in nature because the theory underlying the research model to be 
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tested is well-established. Thus, a main objective of the data analysis should be to find out how 

well the data collected from the current business environment fit the research model. CBSEM 

would be appropriate for this end, assuming that the other requirements for CBSEM (e.g., sample 

sizes and sample distribution) are met.  

An example of when PLS might be more appropriate for testing a research model can be 

found in Cheung et al. (2011). The objective of their study is to explore the extent to which 

relational learning is associated with the relational performance of both the buyer and the 

supplier in a supply chain dyad. These relationships had seldom been examined in the literature 

at the time, and there was no well-established theory that could directly serve as the theoretical 

foundation of their hypothesized relationships. As such, a main objective of the analysis should 

be to identify the predictive power of the exogenous variables (a list of proposed drivers of 

relational performance) on the endogenous variables (relational performance), making PLS a 

potentially appropriate analysis tool. 

2.2.2. Sample Sizes and Model Complexity   

Sample Sizes 

Sample sizes are an important consideration in SEM because it can affect the reliability 

of parameter estimates, model fit, and the statistical power of SEM (Shah and Goldstein, 2005). 

The literature proposes different sample size requirements for CBSEM and PLS. Common 

sample size rules of thumb for CBSEM suggest examining the ratio of the sample size to the 

total number of parameters estimated, whereas sample size rules of thumb for PLS usually only 

suggest examining the ratio of the sample size to the most complex relationship in the research 

model.   



 8 

Commonly used rules of thumb for determining sample size adequacy in CBSEM include 

“establishing a minimum (e.g., 200), having a certain number of observations per measurement 

item, having a certain number of observations per parameters estimated (Bentler and Chou, 1987; 

Bollen, 1989), and through conducting [a] power analysis (MacCallum et al., 1996)” (Shah and 

Goldstein, 2006, p.154). With respect to PLS, the literature frequently uses the “10 times” rule of 

thumb as the guide for estimating the minimum sample size requirement. This rule of thumb 

suggests that PLS only requires a sample size of 10 times the most complex relationship within 

the research model. The most complex relationship is the larger value between (1) the construct 

with the largest number of formative indicators if there are formative constructs in the research 

model (i.e., largest measurement equation (LME)) and (2) the dependent latent variable (LV) 

with the largest number of independent LVs influencing it (i.e., the largest structural equation 

(LSE)). Researchers have suggested that the “10 times” rule of thumb for determining sample 

size adequacy in PLS analyses only applies when certain conditions, such as strong effect sizes 

and high reliability of measurement items, are met. Thus, the literature calls for researchers to 

calculate statistical power to determine sample size adequacy (Marcoulides and Saunders, 2006).  

We use the theoretical framework underlying Deming’s management theory (Anderson et 

al., 1995) as an illustrative example to explain the “10 times” rule of thumb for evaluating 

sample size adequacy when using PLS. We are not suggesting that PLS is more appropriate for 

testing the above theoretical model. Because the research model includes only reflective 

constructs, the most complex relationship is the dependent LV with the largest number of 

independent LVs influencing it, which would be 2 in this research model. Thus, the minimum 

sample size requirement can be as low as 20 (10×2=20) when PLS is used to test the research 
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model, assuming certain conditions are met (e.g., adequate effect sizes, a sufficiently large 

number of items per construct, and highly reliable constructs). However, if we follow the rules of 

thumb for CBSEM sample size requirements, which typically range from 5 (Tanaka, 1987) to 20 

(Bentler and Chou, 1987) times the number of parameters estimated, the sample size requirement 

for testing the same model using CBSEM would be 370 to 1,480 observations (the number of 

parameters estimated is 74 in the research model, such that 74×5=370 and 74×20=1,480). We 

note that the above methods for determining sample size requirements are rules of thumb that 

researchers can use in the pre-analysis stage to make a rough estimate. Researchers still should 

perform a power analysis to formally determine whether the sample size is adequate for using 

PLS or CBSEM. 

A point related to the sample size issue is the questionnaire design. Because increasing 

the number of indicators per construct is one way to reduce the bias in the parameter estimate for 

reflective constructs in PLS, researchers can consider including a large number of items for 

reflective constructs in the survey questionnaire if they anticipate that PLS may be used in the 

analysis stage. It should be noted that researchers often face a tradeoff between response rate and 

questionnaire length, and that increasing the number of items per construct can adversely affect a 

survey’s response rate. Nevertheless, we suggest that researchers take the number of items per 

construct into consideration during the research design stage.  

Model Complexity 

The overall complexity of the research model has a direct impact on sample size 

adequacy in CBSEM, but not necessarily in PLS. Considerations such as multi-level analyses, 

multiple endogeneity, mediation analyses, moderation analyses, and higher-order factors can 
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increase the total number of parameter estimates, possibly leading to model identification and 

convergence issues in CBSEM. For instance, in a multi-level analysis where group size is small 

and intra-cluster correlation is low, the between-group part of the model may yield an 

inadmissible solution in CBSEM (Hox and Mass, 2001). A moderation effect in SEM is typically 

tested via a new construct that uses indicators computed by cross-multiplying the standardized 

items of each construct involved in the moderation effect (Chin et al., 2003). This cross-

multiplying can potentially generate a large number of indicators, thus increasing the model 

complexity. Tests for mediation effects can also potentially increase the sample size requirement 

(Kenny et al., 1998).  

Unlike CBSEM, PLS uses an iterative algorithm to separately solve blocks of the 

measurement model and subsequently estimate the structural path coefficients. This iterative 

method successively estimates factor loadings and structural paths subset by subset. As such, the 

estimation procedure employed by PLS allows researchers to estimate highly complex models as 

long as the sample size is adequate to estimate the most complex block (relationship) in the 

model. The literature suggests that PLS is appropriate for testing the magnitude of moderation 

effects (Helm et al., 2010) and for performing between-group comparisons (Qureshi and 

Compeau, 2009). PLS is more likely to detect between-group differences than CBSEM when 

data are normally distributed, sample size is small, and exogenous variables are correlated. Thus, 

we suggest that researchers consider PLS when the research model is extremely complex and 

may lead to estimation problems in CBSEM. 
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2.2.3. Data Properties 

CBSEM generally requires a multivariate normal distribution of the sample data. Non-

normal data may lead to underestimated standard errors and inflated goodness-of-fit statistics in 

CBSEM (MacCallum et al., 1992), although these effects are lessened with larger sample sizes 

(Lei and Lomax, 2005). In social science research, data often do not follow a multivariate normal 

distribution, thus limiting the applicability of CBSEM in some circumstances. Compared with 

CBSEM, PLS generally places less strict assumptions on data distribution. PLS also does not 

require a multivariate normal data distribution. Because PLS is regression-based, it generally 

only requires the data distribution assumptions of the ordinary least squares (OLS) regression. 

PLS “involves no assumptions about the population or scale of measurement” (Fornell and 

Bookstein, 1982, p.443) and consequently works with nominal, ordinal, and interval scaled 

variables. 

Therefore, if violations of data distribution assumptions could potentially undermine 

CBSEM estimation, researchers should consider using PLS. A close examination the results of 

both CBSEM and PLS provides a useful robustness check of the analysis.  

2.2.4. Specifying Formative Constructs  

Although the presence of formative constructs does not preclude the use of CBSEM, 

CBSEM generally lacks the ability to estimate research models with formative constructs. 

Applying CBSEM to research models with formative constructs often results in unidentified 

models (Jarvis et al., 2003). This is because using formative indicators in CBSEM implies zero 

covariance among indicators, and the model can only be solved when it includes a substantial 

number of additional parameters (MacCallum and Browne, 1993). Because the algorithms 
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performed in a PLS analysis generally consist of a series of ordinary least squares analyses (Chin, 

1998b), identification is not a problem for recursive models (i.e., models without feedback loops). 

This feature gives PLS an advantage in estimating research models with formative constructs. 

PLS can estimate research models with both reflective and formative constructs without 

increasing model complexity (Chin, 1998a; Vinzi et al., 2010). Therefore, Diamantopoulos and 

Winklhofer (2001) suggest using PLS when formative indicators are present in the research 

model. Because the presence of formative constructs in the research model typically leads 

researchers to consider PLS, we include specifying and evaluating formative constructs as a part 

of our guideline for using PLS.  

The fundamental difference between reflective and formative constructs is that the latent 

variable determines the indicators for reflective constructs whereas the indicators determine the 

latent variable for formative constructs (see Figure 1). Researchers can refer to Chin (1998b), 

Diamantopoulos and Winklhofer (2001) and Petter et al. (2007) for in-depth coverage of 

reflective versus formative constructs.   

-- Insert Figure 1 about here -- 

If the research model includes formative constructs, researchers should carefully consider 

the conceptual domain of each formative construct and make sure that measurement items 

capture each aspect and the entire scope of the conceptual domain. Unlike reflective constructs, 

formative constructs “need a census of indicators, not a sample” (Bollen and Lennox, 1991, 

p.307). “Failure to consider all facets of the construct will lead to an exclusion of relevant 

indicators [and] thus exclude part of the construction itself, [therefore], breadth of definition is 

extremely important to causal indicators [i.e., formative indicators]” (Nunnally and Bernstein, 
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1994, p.484). Because content validity is particularly important for formative constructs, Petter et 

al. (2007) suggest making content validity tests a mandatory practice for assessing formative 

constructs. As part of the effort to establish the content validity of formative constructs, we 

recommend that researchers conduct a thorough literature review related to the construct’s 

conceptual domain. When literature is not available or does not support the construct validity, 

qualitative research methods such as expert interviews, panel discussions, and Q-sorting should 

be used to ensure content validity (Andreev et al., 2009). 

Another potential problem is misspecifying a formative construct as a reflective construct. 

A review of SEM in OM research suggests that 97% of all studies model latent constructs as 

reflective (Roberts et al., 2010). The authors argue that the small proportion (3%) of studies that 

model formative constructs under-represents the true theoretical nature of OM constructs. Petter 

et al. (2007) report that 29% of the studies published in MIS Quarterly and Information Systems 

Research, two leading IS journals, have misspecification problems. When a formative construct 

is specified as a reflective construct, it may lead to either Type I or Type II errors. As a result, 

the structural model tends to be inflated or deflated (Jarvis et al., 2003). Jarvis et al. (2003) 

provide a four-point guideline for determining whether a construct should be reflective or 

formative: (1) direction of causality, (2) interchangeability of the indicators, (3) covariation 

among the indicators, and (4) nomological network of the indicators.   

We use operational performance as an illustrative example of a formative construct 

because it is a multi-dimensional concept that typically includes cost, quality, delivery, and 

flexibility. In the OM literature, operational performance is modeled as reflective constructs in 

some studies (e.g., Cao and Zhang, 2011; Inman et al., 2011). However, it is more appropriate to 
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model operational performance as a formative construct if one follows the guidelines set by 

Jarvis et al. (2003) and Diamantopoulos and Winklhofer (2001). First, the direction of causality 

should be from the indicators to the construct because a firm’s operational performance is 

defined collectively by its cost, quality, delivery, and flexibility performance rather than the 

opposite (Jarvis et al., 2003). Conceptually, researchers cannot expect that an underlying latent 

construct of operational performance causes cost, quality, delivery, and flexibility performance 

to all change in the same direction and with the same magnitude. Second, the measurement items 

of a particular operational performance dimension are not interchangeable with items measuring 

other performance dimensions. For instance, items measuring manufacturing flexibility cannot 

be replaced by items measuring cost, quality, or delivery, and vice versa. Third, a change in one 

performance indicator is not necessarily associated with changes in other indicators. For instance, 

conceptually, an item measuring flexibility does not have to correlate with an item measuring 

manufacturing costs. Fourth, with respect to nomological network, one cannot expect that 

different operational performance items will be impacted by the same set of antecedents or lead 

to the same set of consequences. Empirical evidence suggests that different antecedents may 

impact various operational performance dimensions to different extents (Swink et al., 2007). 

Similarly, the effect of various operational performance dimensions on outcome variables such 

as business performance can vary considerably (White, 1996).   

Because a formative construct by itself is under-identified, researchers should consider 

including two or more reflective indicators in each formative construct. These reflective 

indicators are not usually a part of the research model to be tested, but rather are used as an 

external criterion to assess the formative construct validity (Diamantopoulos and Winklhofer, 



 15 

2001). The additional reflective indicators and the set of formative items together allow 

researchers to estimate a multiple indicators and multiple causes (MIMIC) model (Bollen and 

Davis, 2009; Diamantopoulos and Winklhofer, 2001) to evaluate the external validity of 

formative constructs. More details about estimating a MIMIC model are provided in subsection 

2.3.1. 

2.3. Issues to Consider in the Analysis Stage 

2.3.1. Measurement Validity Assessment 

CBSEM has a set of well-established procedures for evaluating reflective constructs.  

Researchers can examine item loadings and cross-loadings and assess various measures of 

construct reliability and validity. Typical measures of construct reliability include Cronbach’s 

Alpha and composite reliability. Convergent validity can be assessed by checking whether the 

average variance extracted (AVE) of the construct is greater than 0.50 (at the construct level) and 

the item loadings are greater than 0.70 and statistically significant (at the item level). 

Discriminant validity is usually examined by comparing the square root of AVE with the 

correlations between the focal construct and all other constructs. In PLS, researchers can use 

similar procedures to evaluate the reliability and validity of reflective constructs. Chin (1998b) 

recommends that researchers examine Cronbach’s Alpha, composite reliability, and AVE to 

assess reflective construct properties. Because OM researchers who have used CBSEM are 

generally familiar with techniques for assessing measurement models that involve only reflective 

constructs, our discussion below focuses on techniques for assessing formative constructs. 

Although widely accepted standard procedures for evaluating formative construct 

properties have yet to emerge, researchers generally agree that the criteria used to evaluate 
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reflective constructs should not apply to formative constructs (Diamantopoulos and Winklhofer, 

2001). As Bollen (1989, p.222) notes, “Unfortunately, traditional validity assessments and 

classical test theory do not cover cause [formative] indicators.” Likewise, Hair et al. (2006, p.788) 

suggest that “because formative indicators do not have to be highly correlated, internal 

consistency is not a useful validation criterion for formative indicators.” 

We summarize various procedures for evaluating formative constructs in Table 2. First, 

researchers should check multicollinearity of formative indicators (items). High multicollinearity 

suggests that some items may be redundant. To detect multicollinearity, researchers can examine 

the correlation matrix, the condition index, and the variance inflation factor (VIF). Examining 

the VIF is a frequently used means of detecting multicollinearity. “General statistics theory 

suggests that multicollinearity is a concern if the VIF is higher than 10; however, with formative 

measures, multicollinearity poses more of a problem” (Petter et al., 2007, p.641). 

Diamantopoulos and Siguaw (2006) suggest a more conservative criterion of VIF at 3.3. Most 

PLS software packages do not provide VIF outputs. Calculating the VIF of formative items 

involves an OLS regression with the formative construct score as the dependent variable and all 

of its formative items as the independent variables. Gefen and Straub (2005) demonstrate how to 

obtain construct scores and Mathieson et al. (2001) provide a useful example of reporting 

multicollinearity. 

---Insert Table 2 about here--- 

Petter et al. (2007) suggest that if some of the formative items exhibit high 

multicollinearity, researchers can (1) model the construct with both formative and reflective 

items in which highly correlated items are specified as reflective, (2) remove the highly 
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correlated items, (3) collapse the highly correlated items into a composite index (e.g., Boßow-

Thies and Albers, 2010), or (4) convert the construct into a multidimensional construct, in which 

highly correlated items are specified as reflective indicators of a latent variable that serves as a 

formative indicator of the original construct. Regarding the second method, researchers should 

be very careful in deleting formative items and ensure that the conceptual domain of the 

formative construct will not change if they delete items with high multicollinearity. We suggest 

that OM researchers theoretically and semantically assess whether the items exhibiting high 

multicollinearity are redundant, and then follow the guidelines provided by Petter et al. (2007) to 

deal with multicollinearity among formative items. 

Second, researchers should evaluate each formative item’s contribution or importance to 

the formative index (i.e., the formative construct score). A formative index is a composite 

created by aggregating the formative items of a construct using their respective item weights. 

This assessment involves examining each formative item’s weight, sign, and magnitude (Götz et 

al., 2010). For formative items, researchers should examine item weight rather than item loading. 

The item weight should be statistically significant, the sign of the item weight should be 

consistent with the underlying theory, and the magnitude of the item weight should be no less 

than 0.10 (Andreev et al., 2009). 

Third, researchers should check the external validity of formative constructs. To establish 

external validity, researchers should typically assess a MIMIC model (Diamantopoulos and 

Winklhofer, 2001). To conduct MIMIC, researchers should use at least two reflective items that 

capture the essence of the formative index, as shown in Figure 2a (see example in 

Diamantopoulos and Winklhofer, 2001). Alternatively, they can create a reflective construct 
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that serves as a “shadow” of the formative construct (i.e., the reflective construct should capture 

the essence of the formative construct). The MIMIC model can then be estimated using the 

formative and the shadow construct (Figure 2b, and see example in Cenfetelli and Bassellier, 

2009). Note that the MIMIC model should be estimated using CBSEM for each formative 

construct and its related reflective items or shadow constructs. This is because researchers 

should examine overall model fit statistics to determine the validity of the formative construct 

and such statistics are only available in CBSEM. However, the complete research model may 

still need to be estimated using PLS if the model is under-identified in CBSEM. 

---Insert Figure 2 about here--- 

Nomological validity is manifested in the magnitude and significance of the relationships 

between the formative construct and other constructs in the research model, which are expected 

to be strong and significant based on theory and previous research. Several authors suggest 

testing the nomological validity of a formative construct by correlating its formative items with 

variables with which the formative construct should theoretically be correlated (e.g., Bagozzi, 

1994; Diamantopoulos and Winklhofer, 2001). Ruekert and Churchill (1984) and McKnight et al. 

(2002) provide examples of nomological validity analysis.   

Finally, researchers can examine the discriminant validity of a formative construct. Klein 

and Rai (2009) propose that for a formative construct, the intra-construct item correlations 

should be greater than the inter-construct item correlations. Furthermore, formative items should 

have stronger correlations with their composite construct score than with that of other constructs. 

We note that these methods for establishing the discriminant validity of formative constructs are 
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not yet well-established in the literature, and therefore should be adopted at researchers’ 

discretion. 

2.3.2. Structural Model Estimation and Assessment 

Because PLS does not assume a multivariate normal distribution, traditional parametric-

based techniques for significance tests are inappropriate. PLS uses a bootstrapping procedure to 

estimate standard errors and the significance of parameter estimates (Chin, 1998b). The default 

setting in the most popular PLS software, PLS-Graph 3.0, is to resample 100 times. The default 

setting for bootstrapping resampling in another popular PLS software, SmartPLS, is to resample 

200 times. The number of bootstrap samples recommended in the literature has increased. For 

instance, Chin (1998b) recommends resampling 500 times. Given the computing power available 

today, as many bootstrapping samples as possible (>500) should be generated. Although 

increasing the number of bootstrapping samples does not increase the amount of information in 

the original data, it reduces the effect of random sampling errors that may arise from the 

bootstrap procedure. Another issue pertaining to bootstrapping is the sample size of each 

bootstrapped resampling. The sample size of bootstrap resampling is usually set to equal the 

sample size of the original data from which the bootstrap samples are drawn (Chung and Lee, 

2001). Some researchers argue that in certain circumstances the bootstrapping sample size can be 

smaller than the sample size of the original data, especially when the original sample is large 

(Andreev et al., 2009, p.8).   

Researchers should consider performing bootstrapping using different resampling 

schemes to verify the results, as in Ahuja et al. (2003) and Rosenzweig (2009). For instance, in 

Ahuja et al. (2003), the authors used a default bootstrapping resampling setting of 100 times in a 
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PLS-Graph and verified the results using settings of 250 and 500 times. After performing 

bootstrapping procedures, several techniques are available for assessing the structural model in 

PLS. 

First, researchers should check the sign, magnitude, and significance of each path 

coefficient, all of which should be consistent with theory. To evaluate the predictive power of the 

research model, researchers should examine the explained variance (R
2
) of the endogenous 

constructs. Using R
2
 to assess the structural model is consistent with the objective of PLS to 

maximize variance explained in the endogenous variables. The literature suggests that R
2
 values 

of 0.67, 0.33, and 0.19 are substantial, moderate, and weak, respectively (Chin, 1998b).   

Second, researchers can evaluate the effect size of the predictor constructs using Cohen’s 

f
2 

(Cohen, 1998). The effect size is computed as the increase in R
2
 relative to the proportion of 

variance that remains unexplained in the endogenous latent variable. According to Cohen (1988), 

f
2
 values of 0.35, 0.15, and 0.02 are considered large, medium, and small, respectively.   

Third, researchers can assess the predictive relevance. Chin (1998b) argues “the 

prediction of observables or potential observables is of much greater relevance than the estimator 

of what are often artificial construct-parameters” (p.320). Stone-Geisser’s Q
2 

(Geisser, 1975; 

Stone, 1974) is often used to assess predictive relevance and can be calculated using the 

blindfolding procedure, which is available in most PLS software packages. If Q
2
 >0, then the 

model is viewed as having predictive relevance.  

Fourth, post-hoc power analyses should be conducted to check if the power of the 

research study is acceptable (>0.80). The effect size, reliability, the number of indicators, or 

other factors may affect the statistical power of a hypothesis test. Simply applying the “10 times” 
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rule of thumb may lead researchers to underestimate the sample size requirement in certain 

situations, such as small effect sizes and low reliability of measurement items. In other words, 

applying the “10 times” rule of thumb without performing a formal power analysis may lead to 

hypothesis tests with low power (Goodhue et al., 2006; Marcoulides and Saunders, 2006). Based 

on the results of a simulation study, Goodhue et al. (2006) argue that the “10 times” rule of 

thumb for PLS sample size requirement should only be used when effect sizes are large and 

constructs are highly reliable. Another Monte Carlo simulation by Marcoulides and Saunders 

(2006) also shows that the sample size requirement to achieve a 0.80 statistical power increases 

substantially as factor loadings and item inter-correlations decrease. Considering that OM studies 

tend to have relatively small effect sizes (Verma and Goodale, 1995), a power analysis is 

particularly needed. 

Fifth, although PLS does not provide overall fit statistics, researchers have recently begun 

to compute Goodness of Fit (GoF) when using PLS (Tenenhaus et al., 2005), which considers the 

quality of the complete measurement model in terms of average communality (i.e., AVE) and the 

quality of the complete structural model in terms of average R
2
. The average of communality is 

computed as a weighted average of all of the communalities using weights as the number of 

manifest variables in each construct with at least two manifest variables.   

Finally, we recommend that researchers conduct alternative analyses to check the 

robustness of the results. Previous empirical research has compared the parameter estimates of 

the alternative analysis to evaluate whether the results are similar to those generated by the PLS 

analysis. For instance, Klein and Rai (2009) compare the ordinary least squares (OLS) path 

analysis results with the PLS results, and Barrosoet et al. (2010) and Vilareset et al. (2010) 
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compare maximum likelihood CBSEM results with the PLS results. If PLS is chosen mainly 

because the data distribution assumption is not met, it is helpful for researchers to run CBSEM 

and compare the results of CBSEM with those of PLS. Even with the violation of data 

distribution assumptions, the maximum likelihood estimation procedure employed by CBSEM 

can be quite robust and may still produce reasonably good estimates of the population parameters 

(Chin, 1995).  

2.3.3. Reporting and Interpreting Results 

First, researchers should explain in detail their reasons for using PLS. Rather than present 

the potential advantages of PLS in general, researchers should explain how PLS can help them 

overcome specific challenges they face that may render CBSEM inappropriate, such as 

inadequate sample sizes or non-normal data. Researchers should also be careful not to make 

generalized statements regarding the ability of PLS to estimate research models using small 

samples that may violate the multivariate normality assumption.  

Second, researchers should report the PLS software used. Explicitly reporting the PLS 

software used enables researchers to replicate previous research, which is important for 

providing support to worthwhile theories (Tsang and Kwan, 1999).   

Third, researchers should adequately report the results needed to assess the predictive 

power of the research model. Because PLS emphasizes predictive ability, the explained variance 

(R
2
) for all endogenous constructs in the research model should be reported (Hulland, 1999). For 

the formative constructs, researchers should report item weights, which represent each formative 

item’s contribution to the formative index. “The interpretation of LVs [latent variables] with 

formative indicators in any PLS analysis should be based on the weights” (Chin, 1998b, p.307). 
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We also recommend that researchers report not only the statistical significance, but also the 

confidence interval of structural paths (Streukens et al., 2010). Hypothesis tests using confidence 

intervals are advantageous because they provide more information about the parameter estimate 

(Henseler et al., 2009). Shaffer (1995, p.575) notes, “If the hypothesis is not rejected, the power 

of the procedure can be gauged by the width of the interval.” The literature suggests that 

researchers can use bias-corrected confidence intervals as an appropriate means for testing the 

significance of the path coefficients estimated by PLS (Gudergan et al., 2008). 

Finally, we suggest that researchers report the statistical power of their studies. Although 

PLS is believed to have the ability to estimate research models with a smaller sample, 

researchers still should show that the statistical power of the hypothesis tests are adequate, which 

is typically a concern for studies with small samples.   

3. AN ILLUSTRATIVE EXAMPLE OF USING PLS 

In this section, we provide an illustrative example of using PLS to estimate a research 

model that includes both reflective and formative constructs. The research model is presented in 

Figure 3, in which operational performance is modeled as a formative construct, cross-

functional integration and trust with suppliers are the antecedents, and customer satisfaction and 

market share are the outcomes. We use data from the third round of the High Performance 

Manufacturing (HPM) study (Schroeder and Flynn, 2001) to test the research model. The sample 

size is 266. The measurement items are presented in Tables 3 and 4.  

---Insert Figure 3 about here--- 

---Insert Tables 3 and 4 about here--- 
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We use SmartPLS 2.0.M3 to estimate our research model. Because the criteria for 

assessing reflective and formative constructs are different, we assess the two types of constructs 

separately. The item loadings, composite reliability (CR), and average variance extracted (AVE) 

of the reflective constructs are shown in Table 3. All item loadings are greater than 0.70 and 

significant at the 0.001 level, indicating convergent validity at the indicator level.  All AVE 

values are greater than 0.50, suggesting convergent validity at the construct level.  All CR values 

are greater than 0.70, indicting acceptable reliability. The square root of each AVE (shown on 

the diagonal in Table 5) is greater than the related inter-construct correlations (shown off the 

diagonal in Table 5) in the construct correlation matrix, indicating adequate discriminant validity 

for all of the reflective constructs.   

---Insert Table 5 about here--- 

Regarding the formative construct, we examine the formative item weights, 

multicolinearity between items, discriminant validity, and nomological validity of the formative 

construct.  For each formative item, we examine its weight (rather than its item loading), sign, 

and magnitude. Each item weight is greater than 0.10 (Andreev et al., 2009) and the sign of the 

item weight is consistent with the underlying theory (see Table 4). With the exception of “unit 

cost of manufacturing (Opf1),” all other items are significant at the 0.01 level. In addition, all 

VIF values are less than 3.3 (Diamantopoulos and Siguaw, 2006), indicating that 

multicollinearity is not severe. Although Opf1 is not significant at the 0.01 level, this item should 

be included in the measurement model because conceptually it is an indispensable aspect of 

operational performance (Petter et al., 2007). To examine the discriminant validity of the 

formative construct operational performance, we compute the average of intra-construct item 
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correlations for this construct and the average of intra-construct item correlations between this 

construct and other constructs. We find that the average of intra-construct item correlations is 

greater than the average of intra-construct item correlations. 

We are unable to assess the external validity of the formative construct by performing the 

MIMIC because the research design of the HPM project does not include additional reflective 

items or “shadow” reflective constructs that capture the overall operational performance. 

However, we are able to assess the nomological validity of the operational performance construct 

by examining the structural paths of its antecedents and outcomes. As Table 6 shows, our results 

indicate positive and highly significant relationships between operational performance and its 

two antecedents and two outcomes, indicating the nomological validity of operational 

performance measures. 

The results of the structural model estimate are shown in Tables 6 and 7. We run the 

structural model using the bootstrap procedure with 200, 500 and 1,000 times of resampling and 

the magnitude and significance of the structural paths are consistent.  

---Insert Tables 6 and 7 about here--- 

As the t-statistics and 95% confidence intervals indicate, all path coefficients are 

significant at the 0.01 level. The R
2 

of endogenous constructs are 0.129, 0.050  and 0.095 for 

operational performance, market share, and customer satisfaction, respectively, which do not 

appear to be very strong (Chin, 1998b). Because the operational performance construct has more 

than one exogenous construct (i.e., trust and integration), the relative effect sizes (f
2
) of the 

exogenous constructs are calculated using the equation )1/()( 2222

includedexcludedincluded RRRf  . The 

f
2
 of trust and integration are 0.034 and 0.064, respectively, which are considered relatively small 
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effect sizes (Cohen, 1988). Stone-Geisser’s Q
2
 for endogenous constructs are 0.0416, 0.0316, 

and 0.0563 for operational performance, market share and satisfaction, respectively, indicating 

acceptable predictive relevance.   

  Regarding the overall quality of the research model, we computed the Goodness of Fit 

(GoF) following Tenenhaus et al. (2005). The GOF is calculated as:  

______________________
2* 0.0916*0.5793 0.2303GOF Communality R    

Our sample size of 266 is well above the minimum sample size requirement of 40 as 

determined by the “10 times” rule of thumb. The most complex block in our model is the 

formative construct operational performance, which has 4 formative indicators. Although the 

sample size is deemed adequate using the “10 times” rule of thumb, a statistical power analysis is 

needed to formally determine if the sample size is adequate. We run a power analysis for each 

structural path and for the largest structural equation (LSE), which is the dependent latent 

variable (LV) with the largest number of independent LVs influencing it. As Table 6 shows, the 

power of each path is much greater than 0.80. In our research model, the LSE is the latent 

construct operational performance with two predictors (i.e., trust and integration) in which the 

smallest effect size (f
2
) is 0.034 (see Table 7). For this effect size, our sample size of 266 can 

achieve a power of 0.768 at the significance level of 0.05 (α), which is only slightly smaller than 

0.80. 

Finally, we check the robustness of the PLS results. Because our research model includes 

both reflective and formative constructs, we are unable to run CBSEM and compare PLS results 

with CBSEM results. Instead, we calculate the average of the items within each construct and 
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subject these average values to the OLS regression. The OLS regression results are largely 

consistent with the PLS results (see Table 6). 

4. A SUMMARY OF PLS USE IN THE OM LITERATURE  

This section reviews PLS use in recent OM literature. This review allows us to identity 

which aspects of PLS researchers should pay attention to and also serves as the starting point for 

creating our guideline for evaluating and using PLS. Because PLS is an empirical research 

method, we consider OM journals that are recognized as publishing relevant and rigorous 

empirical research. The Journal of Operations Management (JOM), Management Science (MS), 

Decision Sciences Journal (DSJ), Production and Operations Management Journal (POMS), the 

International Journal of Operations and Production Management (IJOPM), the International 

Journal of Production Economics (IJPE), the International Journal of Production Research 

(IJPR), and IEEE Transactions on Engineering Management (IEEE) have been cited as those 

whose missions involve publishing empirical research examining OM topics (Barman et al., 

2001; Goh et al., 1997; Malhotra and Grover, 1998; Soteriou et al., 1998; Vokurka, 1996). Our 

review also covers several major journals in strategy, management, and organization science that 

sometimes publish research related to operations management, including Strategic Management 

Journal (SMJ), Academy of Management Journal (AMJ), and Organization Science. Because the 

use of PLS among business research communities is a relatively recent phenomenon and we 

want to focus on issues commonly observed in recent OM research, we review articles published 

from 2001 to 2011. Because MS, DSJ and IEEE Transactions are multi-disciplinary journals 

with a large OM component, we only review the PLS articles in these three journals that 

examined OM-related topics.  
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We perform a key-word search of the titles, key words, abstracts and full texts of the 

articles in the targeted journals using the following keywords: “partial least squares,” “partial-

least-squares,” “PLS,” “formative,” “PLS Graph,” “PLS-Graph”, and “SmartPLS.” We focus our 

search on papers that use PLS as an SEM approach to test empirical research models. Next, each 

author individually examine the search results to ensure that the articles using PLS are correctly 

identified and those not using PLS are not included in our review. In total, we found 42 OM-

related articles that use the PLS method within the scope of our journal selection and time frame. 

Our literature review indicates that no articles using the PLS method to examine OM topics were 

published in POM, AMJ, and Organization Science from 2001 to 2011. Thus, our summary 

excludes these three journals. The distribution of these articles by journal and year is presented in 

Table 8. It appears that the number of OM articles using PLS has increased in recent years, 

particularly since 2007. 

We summarize the papers we review in Table 9. Among the 42 articles, 30 explicitly 

provide a rationale for using PLS. However, the remaining 12 articles do not explain why PLS 

was chosen. Not unexpectedly, small sample size is the most frequently cited reason for using 

PLS (n=14), followed by the exploratory or predictive nature of the study (n=11), the use of 

formative constructs (n=8), non-normal data (n=6), and high model complexity (n=4). Although 

a small sample size is cited most frequently as the reason for using PLS, only two of the 42 

articles perform a power analysis. The median sample size is 126, with a range from 35 to 3,926. 

Only 13 articles (31%) have a sample size greater than 200. 

---Insert Table 9 about here--- 
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The presence of formative constructs is a commonly cited reason for using PLS. 

Interestingly, although 19 articles use formative constructs, only eight articles state that the use 

of formative constructs is the reason for using PLS. Among the 19 articles that use formative 

constructs, three do not perform any analysis on the measurement properties of the formative 

constructs, and five use techniques for evaluating reflective constructs (e.g., Cronbach’s Alpha, 

composite reliability, and AVE) to assess formative constructs, which is considered 

inappropriate. Overall, many of the articles we review do not adequately assess the properties of 

the formative constructs. Seven articles examine formative construct item weights; four evaluate 

the multicolinearity of the formative measurement items, mostly using the variance inflation 

factor (VIF); three examine discriminant validity. None of the articles we review evaluates the 

external validity of the formative construct because no study includes additional reflective items 

or constructs to capture the formative constructs.  

We find that 26 out of the 42 articles report which PLS software is used. PLS-Graph is 

the most popular PLS software, adopted by 19 of the articles. SmartPLS, however, is gaining 

popularity, considering that all six OM articles that use SmartPLS were published after 2009. 

Only one article adopts Visual PLS.   

Our review identifies 22 articles that report the details of their bootstrapping procedures. 

We observe that the number of bootstrap samples generated ranges from 100 to 1,500, with the 

most common number of resampling being 500 (n=11). Two of the articles perform 

bootstrapping procedures with different rounds of resampling to check the robustness of the 

results (Ahuja et al., 2003; Rosenzweig, 2009). This is a good practice for checking the 

robustness of the significance of path coefficients.   
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With respect to reporting results, each of the articles we review reports the sign, 

magnitude, and statistical significance of path coefficients. In general, all of the reviewed articles 

exhibit a good understanding that the objective of PLS is not to estimate overall model fit, but 

rather to maximize the variance explained of the endogenous variables. Thirty six of the 42 

articles report R
2
 of the endogenous variables. However, other techniques for evaluating 

predictive validity are underused. Only six articles report the effect size (f
2
) and four report 

predictive relevance (Q
2
). Among the articles we review, Műller and Gaudig (2011) provide a 

good example of reporting the predictive validity of the research model because they report R
2
,
 
f
2
 

and
 
Q

2
. 

 We note that some of the problems, particularly those related to bootstrapping 

procedures, evaluating formative constructs and reporting results, could have been avoided if 

stricter “quality control” mechanisms related to the use of PLS had been enforced during the 

review process. We recommend that editors and reviewers request contributing authors to follow 

rigorous standards when using PLS to help improve the rigor of PLS use.  

5. DISCUSSION AND CONCLUSION 

Our study aims to provide a practical guideline that helps OM researchers evaluate and 

use PLS. Our study also reviews PLS use in the recent empirical OM literature, which points to 

the need for a practical guideline for using PLS tailored to the OM audience. 

The use of PLS has been growing in the OM literature and will likely gain more 

popularity. Given the specific challenges empirical OM researchers face, such as the difficulties 

of obtaining large samples and a lack of well-established scales, PLS can be a potentially useful 

approach to SEM. Because many OM researchers are unfamiliar with PLS, an OM-specific 
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guideline that focuses on practical applications rather than the technical details of PLS will be 

particularly helpful.  

The main contribution of our study is to provide a practical guideline for using PLS with 

detailed illustrative examples from the OM literature. This guideline is expected to help improve 

the methodology rigor of PLS use in the OM field. A second contribution is that our study 

presents a review and summary of PLS use in the OM and related fields. Our review helps OM 

researchers learn from past PLS use and subsequently improve future PLS use.  

Although PLS has been used in a variety of research fields, the extent to which it has 

been used is far less than that of CBSEM in most research fields. Goodhue et al. (2006) assert 

that it is only in the IS field where PLS has become the dominant approach to SEM. The 

somewhat limited use of PLS relative to CBSEM in many research fields seems to reflect 

researchers’ general concerns about the weaknesses of the PLS method. Indeed, statistically, 

CBSEM is superior to PLS in the sense that parameter estimates are unbiased (Chin 1995). Thus, 

if CBSEM assumptions are met, researchers should strongly consider using CBSEM.  

However, we suggest that concerns about PLS should not preclude it as a potential 

analysis technique because no empirical methodology is perfect. If the assumptions of the PLS 

method are met and it is used appropriately, it can be a useful data analysis technique. Our 

position is that OM researchers should consider PLS when CBSEM is unobtainable due to the 

violations of some key CBSEM assumptions (e.g., sample sizes and sample distribution) or 

model identification problems. “PLS is not a competing method to CBSEM. Depending upon the 

researcher’s objective and epistemic view of data to theory, properties of the data at hand, or 

level of theoretical knowledge and measurement development, the PLS approach may be more 
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appropriate in some circumstances” (Chin, 1998b, p.295). In fact, “CBSEM and PLS are 

considered as complementary rather than competitive methods, and both have a rigorous 

rationale of their own” (Barroso et al., 2010, p.432). 

Although we argue that OM researchers should not preclude the possibility of using PLS, 

we oppose accepting PLS as the preferred approach to SEM without a careful assessment of its 

applicability. OM researchers should be cautious in assessing their model assumptions and data 

requirements, especially the sample size requirement because it is often cited as the main reason 

for using PLS. Because “PLS is not a silver bullet to be used with samples of any size” 

(Marcoulides and Saunders, 2006, p.VIII), researchers should consider a variety of factors and 

perform power analyses to determine whether the sample size is adequate to support the 

statistical inference.  

As empirical OM researchers start to recognize the potential of PLS, we expect that more 

OM researchers will seriously consider PLS as a potential SEM method. We hope our study can 

serve as a useful guideline to help empirical OM researchers evaluate and use PLS.  
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Table 1: A guideline for evaluating and using PLS 

Issues to consider in the pre-analysis  stage (2.2) 

   Should PLS be used as a data analysis method? 

1. Research objectives – exploratory study (2.2.1) 

2. Sample size and model complexity – Small sample sizes and highly complex research models 

(2.2.2) 

3. Data property – data does not follow a multivariate normal distribution  (2.2.3) 

4. Does the research model include formative constructs? (2.2.4) 

  If PLS is used later in the data analysis stage: 

5. If formative constructs are involved:  

 Consider using items that summarize the meaning of the formative constructs for 

subsequent construct validity analysis (2.2.4) 

 Consider using reflective items that capture the essence of the formative construct 

6. Consider increasing the number of items per construct for reflective constructs (2.2.5) 

Issues to consider in the analysis stage (2.3) 

1. Check the validity of formative constructs (2.3.1) 

2. Structural model estimation (2.3.2) 

 Properly set up bootstrapping procedures that generate the significance level of 

parameter estimates 

3. Assess the research model (2.3.2) 

 Check the model’s explanatory power and predictive validity (R
2
, f

2
, and Q

2
) 

 Perform power analysis and robustness check of the results 

4. Report results (2.3.3) 

 Report software used to perform PLS analysis 

 Clearly state the rationales for using PLS (nature of the study, construct formulation 

and data characteristics) 

 Report item weights of formative indicators and item loading of reflective indicators 

 Report statistical power of the analysis  

 Report statistical significance and confidence interval of structural paths 
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Table 2: Validity tests of formative constructs 
 Aspects of validity Description Test Recommended criterion Note 

Item-level tests The contribution of 

each item to the 

formative construct 

Formative item weights should 

be large and significant 

Check the sign, magnitude, 

significance, range, and average of 

formative item weights (Klein and Rai, 

2009) 

When N orthogonal 

formative items are 

specified, the ceiling on their 

average weight is sqrt (1/N) 

– the average weights should 

not be too far below the 

ceiling  

The weight, rather than the 

loading of the formative 

items should be examined 

(Chin, 1998b) 

Multicolinearity 

between items  

A high multicolinearity 

suggests that some indicators 

may be redundant  

Check variance inflation factor (VIF)  A VIF below 3.3 indicates 

the absence of 

multicollinearity 

(Diamantopoulos and 

Siguaw, 2006) 

Researchers should be 

careful about deleting 

items because doing so 

can change the conceptual 

domain of the construct 

Construct-level 

tests 

Nomological 

validity 

The relationship between the 

formative construct and other 

theoretically related constructs 

in the research model should be 

strong  

Check the structural path coefficients 

related to the formative construct  

  

External validity The formative index should 

explain the variance of 

alternative reflective items of 

the focal construct to a large 

extent (Diamantopoulos and 

Winklhofer, 2001) 

Check the reflective item factor 

loadings  

 

Estimate a multiple indicators and 

multiple causes (MIMIC) model 

(Bollen and Davis, 2009) 

 

 

The reflective indicators 

should have a significant and 

large factor loading 

 

 

The MIMIC model should 

have a good model fit 

 

Researchers need to 

should develop reflective 

items for the formative 

construct, mainly for 

checking construct 

validity.  

MIMIC should be fitted 

using CBSEM 

(Diamantopoulos and 

Winklhofer, 2001) 

Discriminant 

validity 

*Compare item-to-own-

construct-correlations with 

item-to-other-construct- 

correlations (Klein and Rai, 

2009) 

Formative items should correlate with 

their composite construct score to a 

greater extent than with the composite 

score of other constructs  

  

* This method was recently proposed in the literature (Klein and Rai, 2009) and is not as well-established as the other validity tests listed in the above table. Klein and Rai 

(2009) do not provide detailed guidance on how to apply this test.  
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Table 3: Measurement properties of reflective constructs 
Construct Indicator (label) Item 

Loading 

T-Stat. Composite 

Reliability 

Communality 

(AVE) 

Trust with 

Suppliers 

 

We are comfortable sharing problems with our 

suppliers (Tst1) 

0.8678 28.3379 0.8592 0.6709 

In dealing with our suppliers, we are willing to 

change assumptions in order to find more effective 

solutions (Tst2) 

0.7851 16.4536 

We emphasize openness of communications in 

collaborating with our suppliers (Tst3) 

0.7911 16.5213 

Cross-

functional 

Integration 

 

The functions in our plant work well together (Int1) 0.8829 45.7463 0.9180 0.7367 

The functions in our plant cooperate to solve 

conflicts between them, when they arise (Int2) 

0.8450 31.0738 

Our plant’s functions coordinate their activities 

(Int3) 

0.8550 38.1051 

Our plant’s functions work interactively with each 

other (Int4) 

0.8458 29.9594 

Customer 

Satisfaction 

Our customers are pleased with the products and 

services we provide for them (Sat1) 

0.9273 78.6283 0.8998 0.7511 

Our customers seem happy with our responsiveness 

to their problems (Sat2) 

0.7522 14.1533 

Our customers have been well satisfied with the 

quality of our products, over the past three years 

(Sat3) 

0.9072 44.6741 

Market 

Share 

How large is the plant’s market share, relative to the 

next largest competitor?  For example, a response of 

200% indicates your market share is twice that of 

the next largest competitor (Mrkt) 

1.0000 -- -- -- 

 

Table 4: Measurement properties of formative constructs 

Construct Indicator 
Item 

Weight 
T-Stat. VIF 

Operational 

Performance 

Unit cost of manufacturing (Opf1) 0.1494 1.2695 1.078 

Conformance to product specifications (Opf2) 0.3651 3.7948 1.152 

On time delivery performance (Opf3) 0.5886 5.6621 1.208 

Flexibility to change product mix (Opf4) 0.3269 2.8544 1.118 

 

 

Table 5: Construct correlations 
 X1 X2 X3 X4 X5 

Trust with Suppliers (X1) 0.8191     

Cross-Functional Integration (X2) 0.2846 0.8583    

Operational Performance (X3) 0.2659 0.3077 --   

Market Share (X4) 0.0435 -0.1039 0.2237 --  

Customer Satisfaction (X5) 0.2793 0.2583 0.3088 0.0746 0.8667 

Note: The square root of average variance extracted (AVE) is shown on the diagonal of the correlation matrix and inter-construct correlations 
are shown off the diagonal. 
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Table 6: Structural estimates 

 PLS Result 
OLS Regression 

Result 

Power 

Path Coefficient T-Stat. 
95% Confidence 

Interval 
Coefficient T-Stat. 

Trust with Suppliers 

 Operational Performance 
0.2043 3.3447 (0.2007, 0.2079) 0.194 2.727 0.9238 

Cross-functional Integration  

 Operational Performance 
0.2611 4.2546 (0.2574, 0.2648) 0.252 3.546 0.9926 

Operational Performance  

 Market Share 
0.2235 3.6089 (0.2196, 0.2273) 0.224 3.148 0.9613 

Operational Performance  

Customer Satisfaction 
0.3199 5.6398 (0.3165, 0.3233) 0.309 4.451 0.9998 

 

Table 7: R
2
, communality, and redundancy 

Construct R
2
 Communality 

(AVE) 

Redundancy Q
2 
 f

2
 

Trust with Suppliers -- 0.6709 -- -- 0.034 

Cross-functional Integration -- 0.7367 -- -- 0.064 

Operational Performance 0.1293 0.4115 0.0403 0.0416 -- 

Market Share 0.0501 N/A 0.0501 0.0316 -- 

Customer  Satisfaction 0.0953 0.7511 0.0678 0.0563 -- 

Average 0.0916 *0.5793 0.0527 0.0432 -- 

*The average of communality is computed as a weighted average of all of the communalities using weights as the  

number of manifest variables in each construct with at least two manifest indicators. 

.   

 

Table 8: Distribution of empirical OM articles that use PLS 

  DSJ IEEE IJOPM IJPE IJPR JOM MS SMJ Total 

Year 2000 0 1 0 0 0 0 0 0 1 

 2001 0 1 0 0 0 0 0 0 1 

 2003 0 0 0 0 0 0 1 0 1 

 2004 1 0 0 0 0 1 1 0 3 

 2005 0 0 1 0 0 0 0 0 1 

 2006 1 0 0 0 0 0 0 0 1 

 2007 2 1 0 0 0 2 1 0 6 

 2008 0 0 2 0 0 0 1 0 3 

 2009 1 0 0 2 0 2 0 0 5 

 2010 3 2 2 2 3 1 0 1 14 

 2011 0 0 0 2 3 0 0 1 6 

Total  8 5 5 6 6 6 4 2 42 
The list of PLS articles we reviewed is available upon request. 
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Table 9: Summary of the OM articles that use PLS (n=42) 

Rationales for  

using PLS 
30 articles specify the 

rationale for using PLS 

aBreakdown of rationales for using PLS 

Exploratory or 

predictive nature 

of the study 

Small sample size 
Model 

complexity 

Formative 

constructs used 

Non-normal 

data 

No rationale for 

using PLS 

specified 

 

*11 14 4 8 6 12  

Sample size 

bSample size  summary (n)    

Mean=246 Median=126 Min=35 Max=3,926    

Sample size  distribution 

n<50 50<n<100 100<n<150 150<n<200 200<n<300 300<n<500 n>500 

1 13 11 4 8 4 1 

Formative constructs 
19 articles use formative 

constructs 

Assessment of formative constructs 

Contribution of 

items to the 

construct 

Multicolinearity 

between items 

cNomological 

validity 

External 

validity 

Discriminant 

validity 

Formative 

constructs not 

assessed 

Formative constructs 

assessed as reflective 

constructs 

7 4 N/A 0 3 3 5 

Bootstrapping  
22 articles report details of 

bootstrapping procedures 

Number of bootstrapping samples 

n=100 n=200 200<n<500 n=500 n>500   

1 4 2 11 5   

PLS software used 
26 articles report PLS 

software used 

PLS Graph SmartPLS Visual PLS     

19 6 1     

Report results 

Statistical power 

analysis 

performed 

Structural path 

confidence 

interval reported 

R2 reported f2 reported Q2 reported 
Formative item 

weights reported 

 

2 0 36 6 4 14  

*Each number in the above table indicates the number of articles that are classified in a given category. 
aSome articles provide more than one rationale for using PLS. 
bIn cases where sample sizes can be counted differently depending on the level of observation, we use the smaller sample size to be conservative. 
cWe did not summarize nomological validity because each article reports some statistically significant structural paths, which to some extent demonstrates   

 the nomological validity of formative constructs.  
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Figure 1: Reflective and formative constructs 
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Figure 2: MIMIC tests 
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Figure 3: The illustrative research model 

 

 

 

Appendix A: PLS algorithms (PLS-Graph) 

The basic idea behind the PLS algorithm is relatively straightforward. First, the PLS 

algorithm uses an iterative process to estimate item weights that link the items to their respective 

latent variable. Second, once the final item weights are obtained, the latent variable (LV) scores of 

each LV are calculated as a weighted average of its items. Here the item weights estimated earlier are 

used as the weights for aggregating item scores into the LV scores. Finally, the LV scores just 

estimated are used in a set of regression equations to estimate the structural path weights (i.e., 

relationships between LVs) (Fornell and Bookstein, 1982). 

Central to the PLS algorithm is the estimation of item weights, which uses an iterative 

process that almost always converges to a stable set of item weight estimates. The procedure for 

obtaining item weights is shown in Figure 4. Each iteration involves a two-step estimation. The two 

steps are called inside approximation and outside approximation, respectively. Inside approximation 

generates LV scores as a weighted average of item scores based on the item weight estimates. 

Outside approximation generates LV scores as a weighted average of the LV scores of the 

neighboring LVs based on the structural path weights. In each iteration, the inside approximation 

first uses LV score estimates from the previous round of outside approximation to calculate structural 

path weights. The structural path weight between two LVs is equal to the correlation between the two 
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LV scores if the two LVs are structurally connected, and zero otherwise. Next, PLS uses these 

structural path weights to compute a new set of LV scores. In the inside approximation, PLS uses the 

just generated LV scores to estimate a new set of item weights. Finally, these item weights are used 

to generate another set of LV scores that will be used in the next iteration. The method for 

determining item weights using factor scores is similar to simple regression for reflective constructs 

(i.e., the item scores of each reflective item are regressed on the LV scores) and similar to multiple 

regression for formative constructs (i.e.,  LV scores are regressed on all of the formative items of the 

LV). PLS repeats the iteration until the percentage changes of each outside approximation of items 

weights relative to the previous round are less than 0.001. Once the final item weights are obtained, 

PLS calculates the LV scores of each LV as the weighted average of its items. PLS then uses the LV 

scores just generated to estimate the structural path weights using ordinary least squares (OLS) 

regression. The LV scores of each dependent LV in the research model are regressed on the LV 

scores of the respective independent LVs.   
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Figure 4: PLS algorithms 
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