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A maximum entropy method for solving the boundary
value problem of second order ordinary
differential equations

Congming Jin1,a) and Jiu Ding2
1Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China
2Department of Mathematics, University of Southern Mississippi, Hattiesburg,
Mississippi 39406-5045, USA

(Received 16 March 2018; accepted 5 September 2018; published online 3 October 2018)

We propose a new method to solve the boundary value problem for a class of sec-
ond order linear ordinary differential equations, which has a non-negative solution.
The method applies the maximum entropy principle to approximating the solution
numerically. The theoretical analysis and numerical examples show that our method
is convergent. Published by AIP Publishing. https://doi.org/10.1063/1.5029856

I. INTRODUCTION

The maximum entropy principle was proposed by Jaynes in 1957,1 which has been widely used
in statistical physics, image processing, networks, etc.2–6 The maximum entropy method has been
applied to computing absolutely continuous invariant measures of discrete dynamical systems7–9

and non-negative solutions of Fredholm integral equations.10,11 Theory and numerical experiments
have shown that the maximum entropy method is efficient when splines are used as moment
functions.12

There are a lot of numerical methods for solving differential equations, such as finite element
methods, finite difference methods, finite volume methods, spectral methods, etc. These methods
are not universal. There may be effective special techniques for special differential equations, for
example, the adaptive method and the multiscale method. Numerically solving two-point boundary
value problems for second order ordinary differential equations is often quite simple to formu-
late, but sometimes still needs particular techniques to get better results. For example, in Refs. 13
and 14, an initial value technique for singularly perturbed two-point boundary value problems using
an exponentially fitted finite difference scheme was proposed. In Refs. 15 and 16, a method based
on B-splines for solving a self-adjoint singularly perturbed two-point boundary value problem was
given. In Ref. 17, a method was provided for the numerical solution of second order linear ordinary
differential equations in the high-frequency regime. In Ref. 18, an exponentially fitted finite difference
scheme was proposed for singularly perturbed two-point boundary value problems for second order
ordinary differential equations with two small parameters multiplying the derivatives. In Ref. 19, a
new method based on a single layer Legendre neural network model was developed to solve initial
and boundary value problems.

The maximum entropy method was used to solve linear differential equations20 and the Fokker-
Planck equation.21 This method gave approximate solutions evaluated at some given points. The
employed moment functions there are trigonometric functions. Another type of moment functions
were used to solve some time dependent partial differential equations.22,23 In Ref. 24, higher order
moments with respect to {x, x2, x3, . . ., xN}were evaluated to solve the Fokker-Planck equation. Such
moment functions are all globally defined on the whole domain with single algebraic expressions,
like all the classic maximum entropy methods, and consequently the instability issue is present due to
the fact of ill-conditioning for the classic approach. Moreover, the maximum entropy principle behind
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all such methods was applied to a discrete system of algebraic equations, instead of the continuous
system directly out of the Boltzmann entropy, for the Lagrange multipliers, so another error occurs in
addition to the one from the use of finitely many moments. In our new method, we not only employ
piecewise cubic functions to eliminate the ill-conditioning but also apply the maximum entropy
principle to the whole involved integrals without choosing the evaluation points in the domain of
integration.

When the solution of the boundary value problem is guaranteed to be non-negative, the maximum
entropy principle, which is mainly used for the numerical recovery of unknown density functions,
can be effectively explored, at least in theory. Here we try this kind of exploration by using the
maximum entropy method to numerically solve the two-point boundary value problem for sec-
ond order ordinary differential equations that have non-negative solutions. We shall employ cubic
splines to form moment functions used in our method since such functions are locally nonzero
and globally twice continuously differentiable. Our scheme provides a new way to think of the
numerical solution of the special class of differential equations. In Sec. II, the maximum entropy
method is proposed for the solution of the boundary value problem of a second order linear dif-
ferential equation, and its convergence will be established in Sec. III. We provide an approximate
maximum entropy method for nonlinear boundary value problems in Sec. IV. In Sec. V, some
numerical experiments are given to show the efficiency of the method. The conclusion is given in
Sec. VI.

II. A MAXIMUM ENTROPY METHOD FOR BOUNDARY VALUE PROBLEMS OF SECOND
ORDER ORDINARY DIFFERENTIAL EQUATIONS

We consider the two-point boundary value problem for a second order linear ordinary differential
equation




Ly(x)≡− d
dx

(
p(x) dy

dx (x)
)

+ q(x)y(x)= f (x), a < x < b,

y(a)= β1, y(b)= β2,
(1)

where the given function p is differentiable and q and f are continuous functions. Suppose the
two-point boundary value problem has a non-negative solution, and our purpose is to calculate it
numerically.

For some boundary value problem, the maximum principle25 can guarantee that it has a non-
negative solution, as the following theorem shows.

Theorem 2.1. If p(x) ≥ 0, f(x) ≥ 0, and q(x) > 0 for x ∈ (a, b) and β1 ≥ 0 and β2 ≥ 0, then the
solution y∗ of the boundary value problem (1) satisfies that y∗(x) ≥ 0 for all x ∈ [a, b].

Proof. Let x̂ be the minimum point of y∗ in (a, b) and y∗(x̂)< 0. Then y′∗(x̂)= 0 and y′′∗ (x̂) ≥ 0,
and so

f (x̂)=− d
dx

(
p dy∗

dx

)
(x̂) + q(x̂)y∗(x̂)=−p(x̂) d2y∗

dx2 (x̂) + q(x̂)y∗(x̂)< 0,

which contradicts to the fact that f (x̂) ≥ 0. ◽

For the purpose of using a piecewise polynomial maximum entropy method to numerically
recover the non-negative solution y∗ from above, we first divide the interval [a, b] into n equal
subintervals of length h = (b � a)/n. The nodes of the partition are xi = a + ih, i = �1, 0, 1,
. . ., n, n + 1, where x

�1 and xn+1 are the two artificial ones to help dealing with the boundary
condition.

We shall use the cubic B-spline functions associated with the above partition of [a, b] to develop
our maximum entropy method. They are constructed via translation and scaling from the “mother”
cubic B-spline function defined on (�∞,∞),26 which can be directly calculated out as follows by the
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fundamental property of its being second order continuously differentiable:

B(x)=




1
6 (x3 + 6x2 + 12x + 8), −2 ≤ x ≤ −1,
1
6 (−3x3 − 6x2 + 4), −1 ≤ x ≤ 0,
1
6 (3x3 − 6x2 + 4), 0 ≤ x ≤ 1,
1
6 (−x3 + 6x2 − 12x + 8), 1 ≤ x ≤ 2,

0, x < [−2, 2].

Then the corresponding cubic B-spline functions are

Bi(x)=B
( x − xi

h

)
, i=−1, 0, . . . , n + 1.

Now we begin to develop the maximum entropy method with the cubic B-spline functions. Since
y∗ solves Eq. (1), there is the equality

−
d
dx

(
p

dy∗
dx

)
+ qy∗ = f .

For i = �1, 0, . . ., n + 1, multiplying Bi to both sides of the above equality and integrating from a to
b, we get ∫ b

a
Bi(x)

[
−

d
dx

(
p

dy∗
dx

)
(x) + q(x)y∗(x)

]
dx =

∫ b

a
Bi(x)f (x)dx. (2)

Using integration by parts two times gives

−

∫ b

a
Bi(x) d

dx

(
p dy∗

dx

)
(x)dx

= −Bi(x)p(x) dy∗
dx (x)��ba +

∫ b

a
p(x)y′∗(x)B′i (x)dx

= −Bi(x)p(x) dy∗
dx (x)��ba + p(x)y∗(x)B′i (x)��ba

−

∫ b

a
y∗(x)

[
p′(x)B′i (x) + p(x)B′′i (x)

]
dx.

For each i = �1, 0, . . ., n + 1, let

g̃i(x)=−[p′(x)B′i (x) + p(x)B′′i (x)] + q(x)Bi(x) (3)

and

m̃i =

∫ b

a
Bi(x)f (x)dx.

Then equality (2) can be written as∫ b

a
y∗(x)g̃i(x)dx +

[
−Bi(x)p(x)

dy∗
dx

(x)��ba + p(x)y∗(x)B′i (x)��ba
]
= m̃i. (4)

Now we evaluate the expression in the brackets above for various indices i. Clearly
Bi(a) = Bi(b) = 0 and B′i (a) = B′i (b) = 0 for i = 2, 3, . . ., n � 2. So for such indices i, (4) is reduced to∫ b

a
y∗(x)g̃i(x)dx = m̃i.

Since Bi(b) = B′i (b) = 0 for i = �1, 0, 1 and

B−1(a)=
1
6

, B0(a)=
2
3

, B1(a)=
1
6

,

B′
−1(a)=−

1
2h

, B′0(a)= 0, B′1(a)=
1

2h
,
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the equalities in (4) with i = �1, 0, 1 become




∫
b

a y∗(x)g̃−1(x)dx + 1
6 p(a) dy∗

dx (a) + 1
2h p(a)y∗(a) = m̃−1,

∫
b

a y∗(x)g̃0(x)dx + 2
3 p(a) dy∗

dx (a) = m̃0,

∫
b

a y∗(x)g̃1(x)dx + 1
6 p(a) dy∗

dx (a) − 1
2h p(a)y∗(a) = m̃1.

In the above equalities, multiplying the first and last by 4 and subtracting the second lead to∫ b

a
y∗(x)[4g̃−1(x) − g̃0(x)]dx = 4m̃−1 − m̃0 −

2
h

p(a)y∗(a)

and ∫ b

a
y∗(x)[4g̃1(x) − g̃0(x)]dx = 4m̃1 − m̃0 +

2
h

p(a)y∗(a).

Similarly, from Bi(a) = B′i (a) = 0 for i = n � 1, n, n + 1 and

Bn−1(b)=
1
6

, Bn(b)=
2
3

, Bn+1(a)=
1
6

,

B′n−1(b)=−
1

2h
, B′n(b)= 0, B′n+1(b)=

1
2h

,

the equalities (4) with i = n � 1, n, n + 1 are




∫
b

a y∗(x)g̃n−1(x)dx − 1
6 p(b) dy∗

dx (b) − 1
2h p(b)y∗(b) = m̃n−1,

∫
b

a y∗(x)g̃n(x)dx − 2
3 p(b) dy∗

dx (b) = m̃n,

∫
b

a y∗(x)g̃n+1(x)dx − 1
6 p(b) dy∗

dx (b) + 1
2h p(b)y∗(b) = m̃n+1,

from which it follows that∫ b

a
y∗(x)[4g̃n−1(x) − g̃n(x)]dx = 4m̃n−1 − m̃n +

2
h

p(b)y∗(b)

and ∫ b

a
y∗(x)[4g̃n+1(x) − g̃n(x)]dx = 4m̃n+1 − m̃n −

2
h

p(b)y∗(b).

Define the following numbers, which are called the moments, as

mi =




4m̃−1 − m̃0 −
2
h p(a)y∗(a), i= 0,

4m̃1 − m̃0 + 2
h p(a)y∗(a), i= 1,

m̃i, i= 2, . . . , n − 2,
4m̃n−1 − m̃n + 2

h p(b)y∗(b), i= n − 1,
4m̃n+1 − m̃n −

2
h p(b)y∗(b), i= n

and the corresponding moment functions as

gi(x)=




4g̃−1(x) − g̃0(x), i= 0,

4g̃1(x) − g̃0(x), i= 1,

g̃i(x), i= 2, . . . , n − 2,

4g̃n−1(x) − g̃n(x), i= n − 1,

4g̃n+1(x) − g̃n(x), i= n.

(5)

Then the following is valid: ∫ b

a
y∗(x)gi(x)dx =mi, for i= 0, 1, . . . , n.

The above equalities provide a framework for numerically solving the boundary value problem
(1) by the maximum entropy method. That is, among all the non-negative solutions y of the equality
constraints
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∫ b

a
y(x)gi(x)dx =mi, for i= 0, 1, . . . , n, (6)

we find the one, denoted as yn, which maximizes the corresponding generalized differential entropy
defined by

H(y)=−
∫ b

a
y(x) ln y(x)dx +

∫ b

a
y(x)dx, ∀ y ∈ L1(a, b), y ≥ 0. (7)

Namely, we solve the following constrained optimization problem:11

max

{
H(y) : y ≥ 0,

∫ b

a
y(x)gi(x)dx =mi, i= 0, 1, . . . , n

}
. (8)

To get the expression of the solution of (8), we need the following lemma.

Lemma 2.1. Given any two non-negative functions f, g ∈ L1(a, b),∫ b

a
f (x)dx −

∫ b

a
f (x) ln f (x)dx ≤

∫ b

a
g(x)dx −

∫ b

a
f (x) ln g(x)dx.

Proof. In the Gibbs inequality27

u − u ln u ≤ v − u ln v , ∀u, v ≥ 0,

letting u = f (x) and v = g(x) and then integrating both sides, we obtain the required integral
inequality. ◽

Theorem 2.2. The non-negative function in L1(a, b) that maximizes the entropy functional (7)
under the constraints (6) is

yn(x)= exp*
,

n∑
i=0

λigi(x)+
-

if the constants λ0, . . ., λn, which are called the Lagrange multipliers, satisfy the given constraints∫
X

gi(x)exp*.
,

n∑
j=0

λjgj(x)+/
-
dx =mi, i= 0, . . . , n. (9)

Proof. Let y ∈ L1(a, b) be non-negative and satisfy the moment constraints∫ b

a
y(x)gj(x)dx =mj, j = 0, . . . , n.

Then, using Lemma 2.1, we have

H(y) = −
∫ b

a
y(x) ln y(x)dx +

∫ b

a
y(x)dx

≤

∫ b

a
yn(x)dx −

∫ b

a
y(x) ln yn(x)dx

=

∫ b

a
yn(x)dx −

n∑
i=0

λi

∫ b

a
y(x)gi(x)dx

=

∫ b

a
yn(x)dx −

n∑
i=0

λimi

=

∫ b

a
yn(x)dx −

∫ b

a
yn(x)



n∑
i=0

λigi(x)

dx

=

∫ b

a
yn(x)dx −

∫ b

a
yn(x) ln yn(x)dx =H(yn).
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This shows that yn is an optimal solution. Furthermore, since H is strictly concave,28 the optimal
solution is unique. ◽

The nonlinear equation (9) can be solved by Newton’s method as in other maximum entropy
algorithms. Since the support of each Bi(x) is local, from (3) to (5), the Jacobian matrix of the nonlinear
equation is banded, which can be shown to be positive definite with the same technique as in Ref. 8.
For more details of the maximum entropy method, see Refs. 7, 8, and 11.

III. CONVERGENCE OF THE METHOD

The weak convergence of the classic maximum entropy method was first obtained by Mead and
Papanicolaou in their pioneering paper,29 and Borwein and Lewis28 gave the first rigorous conver-
gence analysis for the moment problem under the L1-norm, based on a more general convergence
theory in the context of topological spaces, as developed in Ref. 30. The norm convergence of our
cubic spline maximum entropy method for the boundary value problem (1) can be established via
the general convergence theory from Ref. 28. To put our algorithm in the framework for the con-
vergence analysis in Ref. 28, we divide [a, b] into 2r equal subintervals in succession with r = 2,
3, . . .. And we use yr instead of y2r to denote the approximate maximum entropy solution of (1)
with respect to the corresponding partition of [a, b] into 2r equal sub-intervals. In other words, we
calculate the function yr among all non-negative functions of L1(a, b) that satisfy the 2r + 1 moment
constraints (6).

Denote by Dr the feasible set of the maximum entropy problem, that is, the collection of all
non-negative solutions of (6). Then Dr ⊃ Dr+1 for all r. Clearly yr solves

max



H(y) : y ∈Dr =

r⋂
k=2

Dk




.

On the other hand, it is easy to see that the unique solution y∗ of the original boundary value problem
(1) is the unique solution of

max



H(y) : y ∈
∞⋂

r=2

Dr




.

Using the same idea for the convergence analysis in Ref. 11, we can prove the following theorem.

Theorem 3.1. Suppose that H(y∗) > �∞. Let yr be the maximum entropy solution of (8) with
respect to the equal partition of [a, b] into 2r subintervals. Then limr→∞‖yr � y∗‖1 = 0.

As for the convergence rate of our algorithm, from Theorem 4.7 of Ref. 28,

‖yr − y∗‖1 ≤ dre
dr
2 =O(dr),

where

dr = inf










ln y∗ −

2r∑
i=0

αigi







∞
: ∀α0, α1, . . . , α2r




is the minimal distance of the function ln y∗ to the subspace spanned by all gi’s. From the expressions
(5) of the moment functions gi’s, which involve the differential operator L as well as the cubic
B-spline functions Bi’s, we see that in general, it is not an easy task to estimate dr theoretically.
However, our numerical experiments in Sec. V show that the convergence rate of the method is
‖yn � y∗‖1 = O(1/n2), where yn is the approximate solution of the boundary value problem when
[a, b] is partitioned into n equal sub-intervals.

IV. A CLASS OF NONLINEAR BOUNDARY VALUE PROBLEMS

The idea of the above maximum entropy method for linear boundary value problems may be
extended to solving nonlinear boundary value problems numerically, resulting in an approximate



103505-7 C. Jin and J. Ding J. Math. Phys. 59, 103505 (2018)

maximum entropy method for a class of boundary value problems of nonlinear ordinary differential
equations.

Let the right-hand side of the boundary value problem (1) be f (x, y) that is a general nonlinear
differentiable function of its variables. Motivated by the explicit expression of maximum entropy
solutions, we choose an initial vector (λ0

0, . . . , λ0
n) for the Lagrange multipliers and form the initial

approximate maximum entropy solution

y0
n(x)= exp*

,

n∑
i=0

λ0
i gi(x)+

-
for the boundary value problem. Next, we substitute y0

n into the right side of the differential equation
for the variable y in the expression of f (x, y) so that we have obtained the corresponding linear
boundary value problem (1) as




Ly(x)≡− d
dx

(
p(x) dy

dx (x)
)

+ q(x)y(x)= f (x, y0
n(x)), a < x < b,

y(a)= β1, y(b)= β2.
(10)

We can apply the maximum entropy method developed in Secs. II and III to solve (10). Then we
get new values λ1

0, . . . , λ1
n of the Lagrange multipliers, and a new approximate maximum entropy

solution of the nonlinear boundary value problem is

y1
n(x)= exp*

,

n∑
i=0

λ1
i gi(x)+

-
.

By the same token, we substitute y1
n into the right-hand side of (10), solve the updated linear boundary

value problem by the maximum entropy method, and get the next approximate maximum entropy
solution y2

n. From this iterative process, we can get a sequence of approximate maximum entropy
solutions {y0

n, y1
n, . . .} by our maximum entropy method. The fourth example of Sec. V will illustrate

this approach for a famous boundary value problem.

V. NUMERICAL RESULTS

In this section, we present some numerical examples for solving boundary value problems for
second-order linear ordinary differential equations using our method.

Example 1. The first example is




y′′ − y= x, 0 < x < 1,

y(0)= 0, y(1)= 1,

whose exact solution is

y(x)=
2(ex − e−x)

e − e−1
− x.

The L1-norm errors ‖yn � y∗‖1 and the L∞-norm ones ‖yn � y∗‖∞ of the numerical approximations
are shown in Table I. The numerical solutions converge, and the convergence rate is approximately
O(1/n2) for the L1-norm errors and O(1/n) for the L∞-norm errors.

Example 2. We consider a singular perturbation two-point boundary value problem16




−εy′′ + y= 1 + 2
√
ε

[
exp

(
− x√

ε

)
+ exp

(
x−1√
ε

)]
, 0 < x < 1,

y(0)= 0, y(1)= 0,

and the exact solution is

y(x)= 1 − (1 − x) exp

(
−

x
√
ε

)
− x exp

(
x − 1
√
ε

)
.



103505-8 C. Jin and J. Ding J. Math. Phys. 59, 103505 (2018)

TABLE I. Errors for Example 1.

n L1-norm error L∞-norm error

4 5.3× 10�3 2.6× 10�2

8 1.6× 10�3 1.3× 10�2

16 4.5× 10�4 6.4× 10�3

32 1.3× 10�4 3.2× 10�3

64 3.6× 10�5 1.6× 10�3

128 9.9× 10�6 8.0× 10�4

256 2.7× 10�6 4.0× 10�4

Example 3. The third example is also from Ref. 16, which is another singularly perturbed two-
point boundary value problem




−εy′′ + y= x, 0 < x < 1,

y(0)= 1, y(1)= 1 + exp
(
− 1√

ε

)
,

whose exact solution is

y(x)= x + exp

(
−

x
√
ε

)
.

The numerical results for Examples 2 and 3 are shown in Tables II and III, respectively. The
second and third columns are the results when ε = 1/16 and the fourth and fifth columns are the
results when ε = 1/32. We see that the convergence rate for Example 2 is the same as for Example 1,
but both L1-norm and L∞-norm errors are roughly O(1/n2) for Example 3.

Example 4. The last example is a nonlinear two-point boundary value problem for the so-called
Thomas-Fermi equation,31

TABLE II. Errors for Example 2.

n L1-norm error L∞-norm error L1-norm error L∞-norm error

4 4.99× 10�2 1.91× 10�1 6.62× 10�2 0.27× 10�1

8 1.45× 10�2 9.21× 10�2 1.89× 10�2 1.26× 10�1

16 4.40× 10�3 4.5× 10�2 5.45× 10�3 6.10× 10�2

32 1.31× 10�3 2.26× 10�2 1.63× 10�3 3.02× 10�2

64 3.81× 10�4 1.13× 10�2 4.80× 10�4 1.51× 10�2

128 1.09× 10�4 5.67× 10�3 1.37× 10�4 7.56× 10�3

256 3.05× 10�5 2.84× 10�3 3.89× 10�5 3.79× 10�3

TABLE III. Errors for Example 3.

n L1-norm error L∞-norm error L1-norm error L∞-norm error

4 4.36× 10�3 3.39× 10�2 6.23× 10�3 5.39× 10�2

8 9.74× 10�4 8.12× 10�3 1.28× 10�3 1.16× 10�2

16 2.36× 10�4 2.07× 10�3 3.06× 10�4 2.98× 10�3

32 5.86× 10�5 5.24× 10�4 7.56× 10�5 7.63× 10�4

64 1.46× 10�5 1.32× 10�4 1.88× 10�5 1.93× 10�4

128 3.65× 10�6 3.31× 10�5 4.70× 10�6 4.86× 10�5

256 9.12× 10�7 8.29× 10�6 1.18× 10�6 1.22× 10�5
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TABLE IV. Errors for Example 4.

n L1-norm error L∞-norm error y′(0)

4 1.1× 10�3 1.0× 10�2
�1.0855

8 3.1× 10�4 4.3× 10�3
�1.2032

16 8.3× 10�5 1.7× 10�3
�1.2980

32 2.2× 10�5 6.6× 10�4
�1.3725

64 5.6× 10�6 2.5× 10�4
�1.4298

128 1.4× 10�6 9.2× 10�5
�1.4729

256 4.3× 10�7 3.4× 10�5
�1.5049




y′′ = y
3
2 (x)
√

x
, 0 < x < +∞,

y(0)= 1, limx→∞ y(x)= 0,

whose exact solution is unknown. There are lots of papers about the above equation; see Ref. 32
and the references therein. To test our method in Sec. IV, we consider the following boundary value
problem of the Thomas-Fermi equation on a finite interval




y′′ = y
3
2 (x)
√

x
, 0 < x < 1,

y(0)= 1, y(1)= y∗(1),

where the boundary condition is chosen according to an approximate analytic solution in the
following:33

y∗(x)=
(1 + 1.810 61x

1
2 + 0.601 12x)2

(1 + 1.810 61x
1
2 + 1.395 15x + 0.771 12x

3
2 + 0.214 65x2 + 0.047 93x

5
2 )2

. (11)

In this example, the right-hand side of the differential equation contains the unknown solution y. So
the moments used in the maximum entropy method cannot be defined as in Eq. (5). However, we can
follow the iterative process described in Sec. IV to obtain an approximate maximum entropy solution
accurate to a desired precision.

The L1-norm errors ‖yn � y∗‖1 and the L∞-norm ones ‖yn � y∗‖∞ of the numerical approximations
are shown in Table IV, where y∗ is given by (11). The numerical solutions seem to converge, and
the convergence rate is approximately O(1/n2) for the L1-norm errors and faster than O(1/n) for the
L∞-norm errors. We also list an estimated value of the derivative y′(0) by our method, which is
important in physics32 that obtained a better approximate value �1.588 071. . . for y′(0) after a rather
complicated iterative process.

VI. CONCLUSIONS

In this study, we proposed a maximum entropy method, based on cubic B-spline functions, to
approximate non-negative solutions of boundary value problems of second order linear ordinary
differential equations. The theoretical analysis and numerical results show the convergence of the
method. Furthermore, since the main numerical work is solving a system of nonlinear equations for
the Lagrange multipliers without ill-conditioning, the algorithm is stable and easy to be implemented.
We also applied this method to the boundary value problem for some special second order nonlinear
ordinary differential equations.

The maximum entropy method with splines as moment functions provides a serious and promis-
ing numerical approach for the recovery of non-negative function solutions of differential, integral,
and operator equations. Extending our method to multi-variable differential equations and other dif-
ficult problems in stochastic analysis and random dynamical systems will be our future work when
non-negative or density functions need our computational exploration.
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