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Abstract

The fluorescence excitation—emission matrix (EEM) technique coupled with parallel factor
(PARAFAC) modeling and measurements of bulk organic carbon and other optical properties
were used to characterize the oil components released from the Deepwater Horizon oil spill in
the Gulf of Mexico and to examine the chemical evolution and transformation of oil in the
water column. Seawater samples were collected from the Gulf of Mexico during October 2010
and October 2011, three months and fifteen months, respectively, after the oil spill was
stopped. Together with previous results from samples collected during the oil spill in
May/June 2010, these time series samples allow us to elucidate changes in the optical
properties of dissolved organic matter (DOM) from the time of maximum oil impact to its
recovery, 15 months after the spill. Although the oil had profoundly altered the optical
properties of the DOM in the entire water column during the oil spill, naturally occurring
DOM became predominant in surface waters by October 2010, three months after the spill.
Anomalous DOM with high optical yields, however, still resided in deep waters even 15
months after the oil spill in October 2011, showing a persistent influence of the oil in deep
waters. Based on fluorescence EEM data and PARAFAC modeling, three oil components and
one natural humic-like DOM could be readily identified. The most prominent oil component
had its maximum fluorescence intensity at Ex/Em 224 /328 nm, and the other two centered on
Ex/Em 264 /324 and 232/346 nm, respectively. The humic-like DOM component had its wide
emission peak from 390 to 460 nm over the excitation wavelength at ~248 nm. We
hypothesized that component-2 (264 /324 nm) was mostly derived from photochemical
degradation and the component-3 (232/346 nm) could be a degradation product from both
microbial and photochemical degradation, although both C2 and C3 are subject to degradation
at different rates. The oil component ratios, such as C2/C1 and C3/C1, were closely related to
degradation states of oil and can be used as a sensitive index to track the fate, transport and
transformation of oil in the water column.

Keywords: Deepwater Horizon, Macondo well, Gulf of Mexico, oil spill, fluorescence EEM,
dissolved organic matter

1. Introduction
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oil spill event in which over 800 million liters of crude
oil gushed from the seafloor at ~1500 m depth, and a
total of ~7 million liters of dispersants were released into
surface and deep waters [1-8]. Massive studies have been
carried out to investigate the impacts of oil on ecosystems
and factors and processes that regulate the weathering and
change of oil composition in the water columns of natural
systems [1, 5, 9-11] and in the laboratory [12, 13]. Recent
studies have reported the extent and transport of oil, methane
and dispersants in the Gulf of Mexico since the DWH oil
spill [2, 6, 7, 14, 15]. However, there are no published results
on the characterization of oil from seawater samples using
fluorescence excitation—emission matrix (EEM) techniques
coupled with parallel factor (PARAFAC) analysis. The fate
and degradation pathways of oil from the DWH oil spill
remain poorly understood. How oil interacts with natural
organic matter and the subsequent dynamic changes in
chemical and optical properties in the water column after the
DWH oil spill in the Gulf of Mexico are largely unknown.

Crude oil contains diverse hydrocarbons and organic
molecules that could contribute to UV absorbance and
fluorescence signatures in seawater and could be readily
determined and characterized by UV-vis spectroscopy and
fluorescence spectroscopy techniques [16-21]. Similarly, the
composition and sources of dissolved organic matter (DOM)
in aquatic environments can be effectively characterized
by its optical properties, including UV-vis absorbance
and fluorescence EEM spectra [22-30], especially when
combining the application of PARAFAC modeling [31-36].
Indeed, fluorescence EEM and PARAFAC techniques have
been used in many previous studies to characterize, fingerprint
and monitor oil in coastal and marine environments [20, 21,
37-43]. Unfortunately, few studies have been conducted for
the DWH oil spill in the northern Gulf of Mexico using
the fluorescence EEM technique and PARAFAC modeling
to track the fate, transport and transformation of oil in the
water column. Our hypothesis was that oil from DWH should
significantly alter the optical properties of DOM in the water
column and the degradation and transformation processes of
oil components could be effectively traced by their dynamic
changes in optical properties.

The objective of this study was to examine the
dynamic changes in time series bulk organic matter, UV—vis
absorbance, and fluorescence EEM spectra in the water
column near the Macondo Well in the Gulf of Mexico through
cruises from 2010 to 2011 after the oil spill using UV-vis
and 3D fluorescence spectroscopy coupled with PARAFAC
modeling. Together with data obtained during the oil spill, the
variation in oil components and DOM optical properties in
the water column over the 15 month time period was used to
derive indices for tracking the degradation and transformation
processes, and thus the fate and transport of oil in the Gulf of
Mexico.

2. Methods

2.1. Study site and sampling

Water samples were collected from stations around the
Deepwater Horizon oilrig in the northern Gulf of Mexico
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Figure 1. Sampling locations in the northern Gulf of Mexico
during October 2010 (blue circles) and October 2011 (teal
pentacles) onboard R/V Cape Hatteras. The location of the
Macondo Well is shown by a red square.

during two cruises in October 2010 and October 2011
(figure 1). Both cruises were accomplished onboard the
R/V Cape Hatteras and they covered 24 and 27 stations
during October 2010 and October 2011, respectively. Detailed
sampling locations and selected hydrographic data are listed
in table 1.

Water samples from different depths at each station were
collected with Niskin or Go-flo bottles mounted on a CTD
rosette system, including surface waters at ~2-5 m depth,
deepwater samples between 1100 and 1400 m, and bottom
water samples (table 1). Immediately after sample collection,
the water samples were filtered through pre-combusted glass
fiber filters (0.7 um, Whatman). Filtered water samples
for dissolved organic carbon (DOC) were collected in
30 ml HDPE bottles and stored frozen, while samples
for optical measurements, including UV-vis absorbance
and fluorescence EEMs, were collected with pre-combusted
(550°C) 125 ml amber bottles and stored in the dark at 4 °C.

2.2. Measurements of DOC and UV—-vis absorption

Concentrations of DOC were measured on a Shimadzu TOC-
V total organic carbon analyzer using the high temperature
combustion method [44]. For DOC measurements, samples
were acidified with concentrated HCI to pH < 2 before
analysis. Three to five replicate measurements, each using
150 wl samples were made, with a coefficient of variance
of <2%. Calibration curves were generated before sample
analysis. Nanopure water, working standards and certified
DOC standards (University of Miami) were measured
as samples every eight seawater samples to check the
performance of the instrument. Total DOC blank, including
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Table 1. Sampling locations, sampling dates, and hydrographic data for stations occupied during October 2010 and October 2011 in the

Gulf of Mexico.
Surface water Surface water

Station ID  Latitude (°N)  Longitude (°W)  Date Water depth (m)  temp. (°C) salinity
Oct 2010

GIP 01 30°6.113' 88°42.328' 10/12/10 16 24.42 31.64
GIP 02 29°45.038’ 88°35.618’ 10/12/10 28 25.46 32.92
GIP 03 29°23.384' 88°41.304 10/12/10 53 25.62 30.77
GIP 04 28°57.278' 88°56/.103' 10/14/10 126 26.30 30.26
GIP 05 28°52.122' 89°38'.413' 10/13/10 72 26.17 30.52
GIP 06 28°30.663’ 89°48.499 10/13/10 530 27.11 35.36
GIP 07 28°14.383’ 89°7.240' 10/13/10 1136 27.43 35.62
GIP 08 27°54.370 88°27.001’ 10/14/10 2360 25.83 33.48
GIP 09 28°12.581’ 87°37.515 10/15/10 2530 27.27 36.41
GIP 10 28°25.614 87°55.219 10/15/10 2315 26.95 36.30
GIP 11 28°14.216 88°21.528’ 10/16/10 1973 26.17 35.62
GIP 12 28°26.275 88°49.166 10/16/10 1210 25.96 32.70
GIP 13 28°40.100 88°52.327 10/14/10 1025 26.63 32.36
GIP 15 28°44.315 88°33.390 10/16/10 1207 25.44 33.00
GIP 16 28°43.383/ 88°24.577 10/17/10 1560 25.66 34.26
GIP 17 28°38.237 88°31.128' 10/18/10 1595 25.99 34.38
GIP 18 28°44.336 88°20.416 10/17/10 1570 26.49 35.82
GIP 19 28°37.587 88°12.515 10/20/10 2010 26.99 36.43
GIP 20 28°45.393’ 88°90.595' 10/20/10 1760 26.83 36.35
GIP 21 28°42.960' 87°54.086 10/20/10 2180 26.97 36.35
GIP 22 28°40.502 87°39.250/ 10/19/10 2370 26.97 36.28
GIP 23 28°51.774' 88°11.835 10/20/10 1350 25.90 34.66
GIP 24 28°46.235 88°22.874 10/18/10 1418 26.11 35.56
GIP 25 28°55.602’ 88°19.579 10/21/10 1160 26.05 34.99
Oct 2011

GIP 02 29°45.423' 88°35.125 10/20/11 20 25.28 34.58
GIP 04 29°45.423' 88°35.125' 10/20/11 126 23.94 32.27
GIP 06 28°57.252/ 88°56.095 10/21/11 520 26.44 36.47
GIP L 28°30.633’ 89°48.488' 10/21/11 1130 26.33 35.08
GIP7 28°06.175' 88°24.657 10/21/11 1150 26.24 35.34
GIP K 28°14.264 89°07.380 10/21/11 1332 26.26 35.17
GIP 11 28°23.047 88°52.007 10/22/11 1984 26.20 35.39
GIPI 28°14.255 88°21.631' 10/22/11 1734 26.19 35.51
GIPH 28°32.779 88°28.153’ 10/22/11 1697 26.21 35.47
GIP 17b 28°35.169 88°30.717 10/23/11 1577 26.11 3547
GIP 13 28°38.186 88°31.018’ 10/23/11 1017 26.03 35.86
GIP M 28°40.153' 88°52.284 10/23/11 1207 26.24 35.34
GIP G 28°41.288’ 88°44.181 10/23/11 1395 26.13 35.14
GIP 15 28°41.113' 88°33.161' 10/24/11 1178 26.12 35.35
GIP B 28°44.331 88°33.668’ 10/24/11 1480 26.11 35.32
GIP A 28°44.593' 88°28.894 10/24/11 1237 26.22 35.40
GIPC 28°48.874 88°26.403’ 10/25/11 1378 26.03 35.42
GIP 24 28°46.135' 88°25.902 10/25/11 1400 25.97 35.35
GIP 18 28°46.258’ 88°22.852 10/25/11 1554 25.97 35.27
GIP 16b 28°44.304' 88°20.326 10/25/11 1554 25.88 35.27
GIPD 28°43.788’ 88°24.619 10/26/11 1618 25.84 35.23
GIPE 28°41.365’ 88°22.549 10/26/11 1708 25.89 35.28
GIPJ 28°38.349 88°21.051 10/26/11 1847 26.15 35.34
GIP 23 28°35.657 88°18.951’ 10/27/11 1345 25.98 35.45
GIP 20 28°51.770/ 88°11.777 10/27/11 1752 25.99 35.41
GIPF 28°45.374' 88°09.595' 10/28/11 1729 26.24 35.62
GIP 25 28°42.65' 88°14.45' 10/28/11 1150 26.09 35.46

water and instrument blanks,
2-6 uM [44].

UV-visible absorption spectra of the samples were
measured using an Agilent 8453 spectrophotometer and a
1 cm path-length quartz cuvette over the 200-1100 nm
wavelength ranges with 0.1 nm increments. The water blank
was subtracted, and the refractive index effect was corrected

was normally less than

by subtracting the averaged absorbance between 650 and
800 nm [45]. Specific UV absorbance at 254 nm (SUVA3s4)
values were calculated by dividing the absorption coefficient
(m’l) at 254 nm (aps54) by the DOC concentration (mg C 1-h.
The non-linear spectral slopes between 290 and 400 nm were
calculated to provide information on the overall molecular
weight of DOM [30, 46, 47].



Environ. Res. Lett. 7 (2012) 025301

Z Zhou and L Guo

30°N

30°

29°N

Latitude (°N)

30°

28°N

0 goow 0
Longitude ("W)

88°W

30°N

30

29°N

Latitude (°N)

30°

28°N

30°

go°w 0 gg°w

Longitude ("W)

24
30°N
2.2
30° 2
£ 18
Q o
g N 1.6
S 1.4
30’
12
28°N 1
30 89°W 30;) 38°W
Longitude (W)
30°N
1.6
30’
o’i 1.4
Q o
g N -
5]
=
30 1
o 0.8
28°N .
0 goow 0 gsow
Longitude (W)

Figure 2. Distributions of salinity (upper left panel), DOC concentration (mg C 17!, upper right panel), UV absorption coefficient at
254 nm (aps4 in m~', lower left panel) and specific UV absorbance (SUVAzs4 in m? g~! C~!, lower right panel) in the surface water from
the northern Gulf of Mexico during October 2010, three months after the oil spill. Note that the Macondo Well is marked with a red square.

2.3. Measurements of fluorescence EEMs

A Shimadzu RF-5301PC spectrofluorometer was used to
measure fluorescence signatures of water samples in a
1 cm path-length quartz cuvette. Each sample was scanned
from 240 to 680 nm with 1 nm interval under excitation
wavelengths from 220 to 400 nm with a 2 nm step. Ninety-one
separate fluorescence emission spectra were concatenated
to generate an excitation—emission matrix that was able to
provide DOM component information for the water sample
qualitatively and quantitatively [48, 49]. PARAFAC modeling
was used to derive DOM fluorescence components [33]
and to examine the spatial and temporal changes in DOM
components in the Gulf of Mexico.

A water blank was scanned daily before sample analysis
and its EEM was subtracted from each sample’s EEM.
An emission correction spectrum was generated using
Rhodamine B and barium sulfate with the correction package
from Shimadzu and multiplied to the EEM spectra. Quinine
sulfate standards were also scanned daily for fluorescence
calibration and for checking the instrument performance.
All fluorescence intensities were converted to ppb-QSE
units [49]. Data in two triangular areas, corresponding to the

Rayleigh and Raman scattering peaks, were eliminated in the
PARAFAC analysis to acquire better mathematical results.

2.4. PARAFAC modeling

PARAFAC modeling was applied to all field seawater samples
collected from 2010 to 2011, using MATLAB (MathWorks
R2010b) and the DOMFluor Toolbox [33]. Sample matrices
were calibrated and corrected before running the PARAFAC
analysis. A non-negativity outlier test was performed and no
outlier samples were chosen for removal. Thus, no samples
were removed before split-half analysis and model validation.
The fluorescence intensities of each component in every
sample were quantified as a result of the PARAFAC modeling.

3. Results and discussion

3.1. Variations in quantity and quality of DOM in the water
column

The spatial distributions of salinity, DOC concentration, UV
absorption coefficient at 254 nm (azs4) and specific UV
absorbance at 254 nm (SUVAjs4) during October 2010 are
shown in figure 2. During October 2010, three months after
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Figure 3. Relationships between salinity, DOC concentration, ays4, and SUVAs4 in the water column of the northern Gulf of Mexico

during October 2010.

the oil spill was capped, the DOC concentration and azs4 in
surface waters did not show an obvious influence of oil and
their abundance had dropped back to more naturally occurring
levels, with the highest values found at stations close to the
Mississippi River plume and a general decrease in DOC with
increasing salinity (figure 3).

These surface distribution patterns are distinctly different
from those observed during the oil spill in the May and
June cruises [14, 50], showing remarkable resilience of the
surface waters. The distributions of DOC and chromophoric
dissolved organic matter (CDOM) in surface waters during
the early stages of the oil spill in May and June 2010 showed a
profound influence of oil released from the Macondo Well in
the northern Gulf of Mexico [50], with DOC concentrations
as high as 6 mg C I=! found around the oilrig, which
were considerably higher than the baseline values in the
northern Gulf of Mexico [44, 51, 52]. Similarly, elevated DOC
concentrations and absorbance values in deep waters between
1100 and 1400 m were also observed during May/June
2010 [50], consistent with the presence of oil plume observed
in the deepwater [1, 2, 8].

Even though the surface water DOC and CDOM did
not seem to have a significant oil signature by October
2010, as shown in figure 2, the relationship between DOC
concentration and salinity in all water samples throughout the
water column showed an abnormal deviation from a general
conservative DOC—salinity relationship as observed before
the oil spill in the Gulf of Mexico and in other oceanic
environments [24, 44, 53-55]. Surprisingly, some of the DOC
concentrations from those abnormal deepwater samples were
significantly lower than those observed previously from deep
waters in the Gulf of Mexico and North Atlantic Ocean

(figure 3 and [44, 51, 52]). We hypothesized that the extremely
low DOC concentrations measured for oil contaminated deep
waters were the result of the scavenging or removal of DOC
by oil droplets and subsequent sorption of oil on the glass fiber
filters during water sample filtration.

Based on the correlations between salinity, DOC, ajs4,
and SUVA»s4, two major types of DOM could be identified
in the water column during October 2010, three months after
the oil spill (figure 3). The first type of DOM, residing mostly
in the upper water column, had natural DOM characteristics
with a positive correlation between DOC concentration
and SUVA»s54 values. The second group of DOM, found
exclusively in deep waters with a characteristic salinity of
34.96 £ 0.03, had an anomalously high optical yield and
a negative correlation between SUVAjs4 values and DOC
concentrations, showing a strong influence of oil on deep
waters in October 2010 (figure 3), although rapid recovery
was observed in surface waters.

Similarly to the results observed during October 2010
(figures 2 and 3), surface water samples collected during
October 2011 (15 months after the oil spill) had undetectable
oil signals (figure 4), but deeper water samples again showed
a strong presence of oil contaminated DOM (figure 5).
While the oil signatures in surface waters identified from
optical properties faded away quickly, the presence of oil
in the deepwater column persisted even 15 months after
the oil spill in the Gulf of Mexico was capped. Effective
microbial and photochemical degradation in surface waters,
water stratification in the deeper water column, as well as
circulation in the Gulf of Mexico [56] are likely the major
factors governing the distribution of oil and DOM and their
fate and transport in the water column.
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3.2. Fluorescence characteristics of DOM in the water
column

Fluorescence EEM spectra of crude oil and a time series of
seawater samples taken from the same depth at ~1050 m in
the Gulf of Mexico in May 2010, October 2010 and October
2011 are shown in figure 6. The crude oil had its maximum
fluorescence emission at 320-360 nm over excitation of
220-240 nm, centering on Ex/Em 226/340 nm. Another peak
in the crude oil EEM was located at an emission wavelength
of 322 nm under excitation between 260 and 280 nm, similar
to that reported by Bugden ef al [21].

The fluorescence EEM signatures of the seawater samples
taken in May 2010 strongly resemble those of the crude
oil, indicating the presence of oil in the water column and
its influence on the seawater samples [50]. However, the oil
fluorescence signatures derived from the EEM spectra were
weak in the samples collected during the October 2010 and
October 2011 cruises (figure 6), indicating effective dilution,
degradation and transformation of the oil in the water column.
Since the data for DOC and other optical properties clearly
demonstrated the presence of oil in deep waters even 15
months after capping the spill (see section 3.1), the weak oil
fluorescence signatures observed after the oil spill likely also
resulted from the application of a vast quantity of dispersants
during the DWH oil spill and thus the interaction of oil with
dispersants in the water column [57, 58]. Indeed, significant

alterations in oil EEM spectra have been observed when
dispersants are present with oil [21, 50, 59]. Other factors
contributing to the weak fluorescence signatures included a
possible sorption effect during the sample filtration processes
since, in general, oil has a very low solubility in seawater, and
can be readily removed on filters and sorb on the bottle wall
during sample processing.

3.3. Oil components as derived from PARAFAC modeling

Despite low fluorescence oil signatures, oil components could
be recognized from these seawater samples using PARAFAC
modeling (figure 7). As shown in table 2, four DOM
fluorescence components were identified using PARAFAC
analysis of EEM data from seawater samples taken during
and after the oil spill. A total of 228 fluorescence emission
matrices collected at wavelengths from 240 to 680 nm
over excitation wavelengths from 220 to 400 nm were
decomposed into a four-factor PARAFAC model, including
three oil-related components (C1, C2 and C3) and one
humic-like DOM component (C4). The first component,
Cl1, having an emission maximum at 224 nm under an
excitation wavelength of 328 nm, was the most prominent
oil component. The second and third components were
identified at Ex/Em maximum wavelengths of 264/324 and
232/346 nm, respectively. The fourth component, with its
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Figure 7. Characteristics of four major DOM components identified by PARAFAC analysis based on fluorescence EEMs of all field
samples collected during four cruises from May 2010, during the oil spill (data from Zhou [50]) to October 2011, 15 months after the oil

spill in the northern Gulf of Mexico.

Table 2. Fluorescent DOM components identified using PARAFAC
analysis based on EEM spectra of all field seawater samples
collected from the Gulf of Mexico.

Excitation Emission
DOM wavelength wavelength
component (nm) (nm) Description
Component-1 224 328 Oil
Component-2 264 324 Oil
Component-3 232 346 Oil
Component-4 248 446 Humic-like

maximum Ex/Em of 248/446 nm, was characterized as
naturally occurring humic-like DOM (table 2, figure 7).

As shown in figure 8, the fluorescence intensities of the
oil component C3 had a broad correlation with ajs4 in the Gulf
of Mexico in October 2010, suggesting an oil component with
similar quantum yields and optical activities. A more scattered
relationship between azs4 and the fluorescence intensities was
observed for oil components C2 and C1 (figure 8), suggesting
that both C1 and C2 were more complex in composition and
might have multiple production/degradation pathways.

3.4. The chemical evolution of oil as characterized by its
component ratios

Since the oil-related fluorescence components identified by
PARAFAC modeling were derived from seawater samples
collected at different times during and after the oil spill,
changes in the fluorescence intensities and component ratios
between seawater samples would likely reflect the results
of degradation and transformation of the oil in the water

column. Additionally, the fluorescence component ratio is an
intensive property, which is not related to the quantity or
abundance of oil, and should be an ideal parameter or index
to evaluate time series samples in the same water column.
As shown in figure 9, even though the intensity/concentration
of DOM fluorescence components decreased with time, the
C2/C1 and C3/Cl ratios increased consistently in seawater
samples from the middle of May to May/June to October
2010 and to October 2011, indicating that these oil component
ratios are indeed correlated with oil degradation and can be
used as an index for tracking the chemical evolution of the
oil during its degradation and transformation in the water
column. The increase in the C2/C1 and C3/C1 ratios during
oil degradation in the water column suggested that the two oil
components C2 and C3 had significantly lower degradation
rates as compared to the C1 oil component, or that C2 and
C3 were also degraded products of crude oil. Independent
controlled laboratory experiments on the degradation of crude
oil also provided similar variation trends of oil component
ratios with increasing C2/C1 and C3/C1 ratios during oil
degradation [50], further supporting the use of C2/C1 and
C3/Cl ratios as an index to trace weathered and degraded oil
in marine environments.

Data from the October 2010 cruise also show a broad
correlation between spectral slope values and oil component
ratios such as C2/Cl, C3/Cl and C2/C3 in the water
column of the Gulf of Mexico although the correlations
are somewhat scattered (figure 8). Given that the spectral
slope values are inversely related with the aromaticity and
average molecular weight of DOM [30, 46], these positive
correlations between oil components and spectral slope values
suggested that C2 and C3 were less aromatic, lower inferred
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Figure 8. Relationships between ays4 and the fluorescence intensities of oil components C1, C2 and C3 and between the spectral slope (S)
and oil component ratios C2/C1, C3/C1 and C2/C3 in the water column of the northern Gulf of Mexico during October 2010.
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Figure 9. Variations in the oil component ratios, C2/C1 and C3/C1, with time based on field samples collected during four cruises at
different times in the Gulf of Mexico, including samples taken in mid-May 2010 [M10] and late May—early June 2010 [MJ10] during the oil
spill (data from [50]), October 2010 [O10] three months after the oil spill, and October 2011 [O11] 15 months after the oil spill was capped.
Deepwater samples are denoted with purple squares, while surface water samples are denoted with green pentacles.

molecular weight components compared with crude oil. Thus,
the overall molecular weight of DOM in the water column is
expected to decrease as the oil is degraded and as the C2/Cl1
and C3/ClI ratios increase (figure 9). A similar correlation
between the C2/C3 ratio and the spectral slope (figure 8)
further suggests a decreasing trend of average molecular

weight in oil components from C1 to C3 and then to C2.
However, detailed analyses of hydrocarbon composition are
needed to confirm this conclusion derived from spectral slope
measurements.

Interestingly, the C2/C1 ratios in surface water samples
were, in general, slightly higher than those in deepwater
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samples regardless of sampling time, suggesting that either
the C2 component was less sensitive to photochemical
degradation, or its production rate from degradation was
slightly higher than its degradation. In contrast, surface water
C3/Cl1 ratios were in general lower than deepwater samples
except for the May 2010 samples collected during the oil spill
(figure 9), suggesting that the production of C3 in the surface
waters could be lower than its degradation. We hypothesize
that C2 is mostly derived from photochemical degradation
and C3 is a degradation product from both microbial and
photochemical degradation, while both of them are also
subject to degradation in the water column. The inferred
C2/C3 ratio was higher in surface water samples than in deep
waters, and increased with time, which further confirmed the
degradation preference of C2 and C3. Thus, changes in oil
component ratios in the water column could be quantitatively
linked to the fate, degradation and transformation pathways of
crude oil in the water column.

4. Conclusions

The Deepwater Horizon oil spill had a profound influence
on the optical characteristics of DOM in the northern Gulf
of Mexico. At the early stages of the oil spill, more
freshly released crude oil in the water column gave rise to
elevated DOC concentration and optical reactivity, showing
two distinct types of DOM in the water column, with a strong
influence of oil throughout the entire water column. During
October 2010, three months after the oil spill was capped,
the DOM in the upper water column seemed to contain
mostly natural organic matter. However, anomalous DOM
with high optical yields still resided in deep waters, showing
a persistent oil influence on the optical properties. The strong
presence and persistent influence of oil in the water column
was also observed in deep waters surrounding the Macondo
Well even during October 2011, 15 months after the oil
spill had been capped. Four DOM fluorescence components
were identified using PARAFAC modeling on EEM data of
seawater samples from the Gulf of Mexico. Three of them
were oil components and one was UV humic-like DOM. The
fluorescence component ratios, such as C2/C1 and C3/Cl,
showing a consistent increase with increasing time from 2010
to 2011 in the Gulf of Mexico, could be quantitatively linked
to the degradation status of the oil in the water column
and thus be used as indices to effectively track the fate and
transport of oil in marine environments. These results have
important implications in oil spill research, environmental
monitoring, and the development of in situ sensors.
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