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1 Introduction

The integral
1Z
0

e�ax � e�bx

x
dx D log

�
b

a

�
(1)

appears as entry 3:434:2 in [12]. It is one of the simplest examples of the so-called Frullani integrals. These are
examples of the form

S.a; b/ D

1Z
0

f .ax/ � f .bx/

x
dx; (2)

and Frullani’s theorem states that

S.a; b/ D Œf .0/ � f .1/� log
�
b

a

�
: (3)

The identity (3) holds if, for example, f 0 is a continuous function and the integral in (3) exists. Other conditions for
the validity of this formula are presented in [3, 13, 16]. The reader will find in [1] a systematic study of the Frullani
integrals appearing in [12].

The goal of the present work is to use the method of brackets, a new procedure for the evaluation of definite
integrals, to compute a variety of integrals similar to those in (1). The method itself is described in Section 2. This
is based on a small number of heuristic rules, some of which have been rigorously established [2, 8]. The point to
be stressed here is that the application of the method of brackets is direct and it reduces the evaluation of a definite
integral to the solution of a linear system of equations.
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2 S. Bravo et al.

2 The method of brackets

A method to evaluate integrals over the half-line Œ0; 1/, based on a small number of rules has been developed in
[6, 9–11]. This method of brackets is described next. The heuristic rules are currently being placed on solid ground
[2]. The reader will find in [5, 7, 8] a large collection of evaluations of definite integrals that illustrate the power and
flexibility of this method.

For a 2 R, the symbol

hai D

1Z
0

xa�1 dx; (4)

is the bracket associated to the (divergent) integral on the right. The symbol

�n D
.�1/n

�.nC 1/
; (5)

is called the indicator associated to the index n. The notation �n1n2���nr , or simply �12���r , denotes the product
�n1�n2 � � ��nr .

Rules for the production of bracket series
Rule P1. If the function f is given by the power series

f .x/ D

1X
nD0

anx
˛nCˇ�1; (6)

with ˛; ˇ 2 C, then the integral of f over Œ0;1/ is converted into a bracket series by the procedure
1Z
0

f .x/ dx D
X
n

anh˛nC ˇi: (7)

Rule P2. For ˛ 2 C, the multinomial power .a1 C a2 C � � � C ar /˛ is assigned the r-dimension bracket seriesX
n1

X
n2

� � �

X
nr

�n1 n2 ���nra
n1
1
� � � anrr

h�˛ C n1 C � � � C nr i

�.�˛/
: (8)

Rules for the evaluation of a bracket series
Rule E1. The one-dimensional bracket series is assigned the valueX

n

�nf .n/hanC bi D
1

jaj
f .n�/�.�n�/; (9)

where n� is obtained from the vanishing of the bracket; that is, n� solves an C b D 0. This is precisely the
Ramanujan’s Master Theorem.

The next rule provides a value for multi-dimensional bracket series of index 0, that is, the number of sums is
equal to the number of brackets.

Rule E2. Assume the matrix A D .aij / is non-singular, then the assignment isX
n1

� � �

X
nr

�n1���nrf .n1; � � � ; nr /ha11n1 C � � � C a1rnr C c1i � � � har1n1 C � � � C arrnr C cr i

D
1

jdet.A/j
f .n�1 ; � � �n

�
r /�.�n

�
1/ � � ��.�n

�
r /

where fn�
i
g is the (unique) solution of the linear system obtained from the vanishing of the brackets.

Rule E3. The value of a multi-dimensional bracket series of positive index is obtained by computing all the
contributions of maximal rank by RuleE2. These contributions to the integral appear as series in the free parameters.
Series converging in a common region are added and divergent series are discarded.
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Integrals of Frullani type and the method of brackets 3

3 The formula in one dimension

The goal of this section is to establish Frullani’s evaluation (3) by the method of brackets. The notation �k D
.�1/k=�.k C 1/ is used in the statement of the next theorem.

Theorem 3.1. Assume f .x/ admits an expansion of the form

f .x/ D

1X
kD0

�kC.k/x
˛k ; for some ˛ > 0 with C.0/ ¤ 0 and C.0/ <1: (1)

Then,

S.a; b/ WD

1Z
0

f .ax/ � f .bx/

x
dx (2)

D lim
"!0

1

j˛j
�
� "
˛

�
C
�
�
"

˛

� �
a�" � b�"

�
D C.0/ log

�
b

a

�
;

independently of ˛.

Proof. Introduce an extra parameter and write

S.a; b/ D lim
"!0

1Z
0

f .ax/ � f .bx/

x1�"
dx: (3)

Then,

S.a; b/ D lim
"!0

1Z
0

1X
kD0

�kC.k/
�
a˛k � b˛k

� 1Z
0

x˛kC"�1 dx

D lim
"!0

X
k

�kC.k/
�
a˛k � b˛k

�
h˛k C "i:

The method of brackets gives

S.a; b/ D lim
"!0

1

j˛j
�
� "
˛

�
C
�
�
"

˛

� �
a�" � b�"

�
: (4)

The result follows from the expansions �."=˛/ D ˛=" � 
 CO.�/;

C.�"=˛/ D C.0/CO."/ and a�" � b�" D .log b � log a/ "CO."2/:

In the examples given below, observe that C.0/ D f .0/ and that f .1/ D 0 is imposed as a condition on the
integrand.

Example 3.2. Entry 3:434:2 of [12] states the value
1Z
0

e�ax � e�bx

x
dx D log

b

a
: (5)

This follows directly from (2).

Note 3.3. The method of brackets gives a direct approach to Frullani style problems if the expansion (1) is replaced
by the more general one

f .x/ D

1X
kD0

�kC.k/x
˛kCˇ; (6)

with ˇ ¤ 0 and if the function f does not necessarily have a limit at infinity.
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4 S. Bravo et al.

Example 3.4. Consider the evaluation of

I D

1Z
0

sin ax � sin bx
x

dx; (7)

for a; b > 0. The integral is evaluated directly as

I D

1Z
0

sin ax
x

dx �

1Z
0

sin bx
x

dx; (8)

and since a; b > 0, both integrals are �=2, giving I D 0. The classical version of Frullani theorem does not apply,
since f .x/ does not have a limit as x !1. Ostrowski [15] shows that in the case f .x/ is periodic of period p, the
value f .1/ might be replaced by

1

p

pZ
0

f .x/ dx: (9)

In the present case, f .x/ D sin x has period 2� and mean 0. This yields the vanishing of the integral.
The computation of (7) by the method of brackets begins with the expansion

sin x D x � 0F1

�
�

3
2

ˇ̌̌̌
�
1
4
x2
�
: (10)

Here

pFq

�
a1; : : : ; ap

b1; : : : ; bq

ˇ̌̌̌
z

�
D

1X
nD0

.a1/n � � � .ap/n

.b1/n � � � .bq/n

zn

nŠ
; (11)

with .a/n D a.aC1/ � � � .aCn�1/, is the classical hypergeometric function. The integrand has the series expansion

X
n�0

�n
.a2nC1 � b2nC1/

.3
2
/n 4n

x2n; (12)

that yields

I D
X
n

�n
.a2nC1 � b2nC1/

.3
2
/n 4n

h2nC 1i: (13)

The vanishing of the bracket gives n� D �1=2 and the bracket series vanishes in view of the factor a2nC1�b2nC1.

Example 3.5. The next example is the evaluation of

I D

1Z
0

cos ax � cos bx
x

dx D log
�
b

a

�
; (14)

for a; b > 0. The expansion

cos x D
1X
nD0

�n
nŠ

.2n/Š
x2n; (15)

and C.n/ D
nŠ

.2n/Š
D

�.nC 1/

�.2nC 1/
in (1). Then C.0/ D 1 and the integral is I D log

�
b

a

�
, as claimed.

Example 3.6. The integral

I D

1Z
0

tan�1.e�ax/ � tan�1.e�bx/
x

dx; (16)

is evaluated next. The expansion of the integrand is

tan�1.e�t / D e�t � 2F1

 
1
2

1

3
2

ˇ̌̌̌
� e�2t

!
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Integrals of Frullani type and the method of brackets 5

D
1

2

1X
nD0

�n
�
�
nC 1

2

�
�.nC 1/

�
�
nC 3

2

� 1X
kD0

�k.2nC 1/
k tk

D

1X
kD0

�k

"
1

2

1X
nD0

�n
�
�
nC 1

2

�
�.nC 1/

�
�
nC 3

2

� .2nC 1/k

#
tk :

Therefore,

C.k/ D
1

2

1X
nD0

�n
�
�
nC 1

2

�
�.nC 1/

�
�
nC 3

2

� .2nC 1/k ; (17)

and from here it follows that

C.0/ D
1

2

1X
nD0

�n
�
�
nC 1

2

�
�.nC 1/

�
�
nC 3

2

� D tan�1.1/ D
�

4
: (18)

Thus, the integral is

I D C.0/ log
�
b

a

�
D
�

4
log

�
b

a

�
: (19)

4 A first generalization

This section describes examples of Frullani-type integrals that have an expansion of the form

f .x/ D
X
k�0

�kC.k/x
˛kCˇ; (20)

with ˇ ¤ 0.

Theorem 4.1. Assume f .x/ admits an expansion of the form (20). Then,

S.a; b/ D

1Z
0

f .ax/ � f .bx/

x
dx (21)

D lim
"!0

1

j˛j
�

�
ˇ

˛
C
"

˛

�
C

�
�
ˇ

˛
�
"

˛

� �
a�" � b�"

�
:

Proof. The method of brackets gives

S.a; bI "/ D

1Z
0

f .ax/ � f .bx/

x1�"
(22)

D

X
k�0

�kC.k/
h
a˛kCˇ � b˛kCˇ

i 1Z
0

x˛kCˇC��1 dx

D

X
k

�kC.k/
h
a˛kCˇ � b˛kCˇ

i
h˛k C ˇ C "i

D
1

j˛j
�.�k/C.k/

h
a˛kCˇ � b˛kCˇ

i
with k D �.ˇ C �/=˛ in the last line. The result follows by taking � ! 0.

Example 4.2. The integral
1Z
0

tan�1 ax � tan�1 bx
x

D �
�

2
log

�
b

a

�
(23)
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6 S. Bravo et al.

appears as entry 4:536:2 in [12]. It is evaluated directly by the classical Frullani theorem. Its evaluation by the
method of brackets comes from the expansion

tan�1 x D x � 2F1

 
1
2

1

3
2

ˇ̌̌̌
�x2

!
(24)

D

X
k�0

�k

�
1
2

�
k
.1/k�

3
2

�
k

x2kC1:

Therefore, ˛ D 2; ˇ D 1 and

C.k/ D
�
�
1
2
C k

�
�.1C k/

2�
�
3
2
C k

� D
�.1C k/

2k C 1
: (25)

Then

1Z
0

tan�1 ax � tan�1 bx
x

D lim
"!0

1

2
�

�
1C "

2

�
C

�
�
1C "

2

� �
a�" � b�"

�
D lim
"!0

1

2
�

�
1C "

2

�
�

�
1 � "

2

�
Œa�" � b�"�

�"

D �
�

2
log

�
b

a

�
:

5 A second class of Frullani type integrals

Let f1; � � � ; fN be a family of functions. This section uses the method of brackets to evaluate

I D I.f1; � � � ; fN / D

1Z
0

1

x

NX
kD1

fk.x/ dx; (1)

subject to the condition
NX
kD1

fk.0/ D 0; required for convergence.

The functions ffk.x/g are assumed to admit a series representation of the form

fk.x/ D

1X
nD0

�nCk.n/x
˛n; (2)

where ˛ > 0 is independent of k and Ck.0/ ¤ 0. The coefficients Ck are assumed to admit a meromorphic extension
from n 2 N to n 2 C.

Theorem 5.1. The integral I is given by

I D �
1

j˛j

NX
kD1

C 0k.0/; (3)

where

C 0k.0/ D
dCk."/

d"

ˇ̌̌
"D0

: (4)

Proof. The proof begins with the expansion

fk.x/

x1�"
D

1X
nD0

�nCk.n/x
˛n�1C" (5)
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Integrals of Frullani type and the method of brackets 7

and the bracket series for the integral is

I D lim
"!0

X
n

�n

 
NX
kD1

Ck.n/

!
h˛nC "i (6)

D lim
"!0

1

j˛j
�
�
�
�

˛

� NX
kD1

Ck

�
�
"

˛

�
:

The result follows by letting "! 0.

Example 5.2. Entry 3:429 in [12] states that

I D

1Z
0

�
e�x � .1C x/��

� dx
x
D  .�/; (7)

where � > 0 and  .x/ D � 0.x/=�.x/ is the digamma function. This is one of many integral representation for this
basic function. The reader will find a classical proof of this identity in [14]. The method of brackets gives a direct
proof.

The functions appearing in this example are

f1.x/ D e
�x
D

1X
nD0

�nx
n; (8)

and

f2.x/ D �.1C x/
��
D �

1X
nD0

�n.�/nx
n; (9)

where .�/n D �.�C 1/ � � � .�C n� 1/ is the Pochhammer symbol (this comes directly from the binomial theorem).
The condition f1.0/C f2.0/ D 0 is satisfied and the coefficients are identified as

C1.n/ D 1 and C2.n/ D �.�/n D �
�.�C n/

�.�/
: (10)

Then, C 0
1
.0/ D 0 and C 02.0/ D �

� 0.�/

�.�/
: This gives the evaluation.

Example 5.3. The elliptic integrals K.x/ and E.x/ may be expressed in hypergeometric form as

K.x/ D
�

2
2F1

 
1
2

1
2

1

ˇ̌̌̌
x2

!
and E.x/ D

�

2
2F1

 
�
1
2

1
2

1

ˇ̌̌̌
x2

!
(11)

The reader will find information about these integrals in [4, 17].
Theorem 5.1 is now used to establish the value

1Z
0

�e�ax
2
�K.bx/ � E.cx/

x
dx D

�

2

�
log

�
bc

a

�
� 
 � 4 log 2C 1

�
: (12)

Here 
 D �� 0.1/ is Euler’s constant.
The first step is to compute series expansions of each of the terms in the integrand. The exponential term is easy:

�e�ax
2

D �

1X
n1D0

.�ax2/n1

n1Š
D

X
n1

�n1a
n1x2n1 ; (13)

and this gives C1.n/ D an: For the first elliptic integral,

K.bx/ D
�

2
2F1

 
1
2

1
2

1

ˇ̌̌̌
b2x2

!
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8 S. Bravo et al.

D
�

2

1X
n2D0

�
1
2

�
n2

�
1
2

�
n2

.1/n2 n2Š
b2n2x2n2

D

X
n2

�n2
�

2

 
.�1/n2b2n2

n2Š

�
1
2

�2
n2

!
x2n2 :

Therefore,

C2.n/ D
�

2

cos.�n/�2.nC 1
2
/

�.nC 1/
b2n; (14)

where the term .�1/n has been replaced by cos.�n/. A similar calculation gives

C3.n/ D
�

4

cos.�n/�.n � 1
2
/�.nC 1

2
/

�.nC 1/
c2n: (15)

A direct calculation gives

C 01.0/ D log a; C 02.0/ D �



2
� log b �  

�
1
2

�
and C 03.0/ D �




2
� log c �  

�
�
1
2

�
:

The result now comes from the values

 
�
1
2

�
D �2 log 2 � 
 and  

�
�
1
2

�
D �2 log 2 � 
 C 2: (16)

Example 5.4. Let a; b 2 R with a > 0. Then

1Z
0

exp
�
�ax2

�
� cos bx

x
dx D


 � log aC 2 log b
2

: (17)

To apply Theorem 5.1 start with the series

f1.x/ D e
�ax2

D

X
n

�na
nx2n (18)

and

f2.x/ D cos bx D
X
n

�n

�
�.nC 1/

�.2nC 1/
b2n

�
x2n: (19)

In both expansions ˛ D 2 and the coefficients are given by

C1.n/ D a
n and C2.n/ D

�.nC 1/

�.2nC 1/
b2n: (20)

Then, C 01.0/ D log a and C 02.n/ D
b2n�.nC 1/

�.2nC 1/
Œ2 log b C  .nC 1/ �  .2nC 1/� yield C 02.0/ D 2 log b �

 .1/ D 2 log b C 
: The value (17) follows from here.

Example 5.5. The next example in this section involves the Bessel function of order 0

J0.x/ D

1X
nD0

.�1/n

nŠ2

�x
2

�2n
(21)

and Theorem 5.1 is used to evaluate
1Z
0

J0.x/ � cos ax
x

dx D log 2a: (22)

This appears as entry 6:693:8 in [12]. The expansions

J0.x/ D

1X
nD0

�n
1

nŠ 22n
x2n and cos ax D

1X
nD0

�n
nŠ

.2n/Š
a2nx2n; (23)
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Integrals of Frullani type and the method of brackets 9

show ˛ D 2 and

C1.n/ D
1

�.nC 1/ 22n
and C2.n/ D �

�.nC 1/

�.2nC 1/
a2n: (24)

Differentiation gives

C 01.n/ D �
2 ln 2C  .nC 1/
22n�.nC 1/

; (25)

and

C 02.n/ D �
a2n�.nC 1/ .2 log aC  .nC 1/ � 2 .2nC 1//

�.2nC 1/
: (26)

Then,
C 01.0/ D 
 � 2 log 2 and C 02.0/ D �.
 C 2 log a/; (27)

and the result now follows from Theorem 5.1. The reader is invited to use the representation

J 20 .x/ D 1F2

 
1
2

1 1

ˇ̌̌̌
�x2

!
; (28)

to verify the identity
1Z
0

J 2
0
.x/ � cos x
x

dx D log 2: (29)

Example 5.6. The final example in this section is

I D

1Z
0

J 2
0
.x/ � e�x

2
cos x

x
dx: (30)

The evaluation begins with the expansions

J0.x/ D

1X
kD0

�k
x2k

4k�.k C 1/
and cos x D

1X
kD0

�k

p
�

4k�
�
k C 1

2

� : (31)

Then,

J 20 .x/ D
X
k;n

�k;n
1

4kCn�.k C 1/�.nC 1/
x2kC2n; (32)

and

e�x
2

cos x D
X
k;n

�k;n

p
�

4k�
�
k C 1

2

�x2kC2n: (33)

Integration yields

I D

1Z
0

J 2
0
.x/ � e�x

2
cos x

x1�"
dx

D

X
k;n

�k;n

"
1

4kCn�.k C 1/�.nC 1/
�

p
�

4k�
�
k C 1

2

�# 1Z
0

x2kC2nC"�1 dx

D

X
k;n

�k;n

"
1

4kCn�.k C 1/�.nC 1/
�

p
�

4k�
�
k C 1

2

�# h2k C 2nC "i:
The method of brackets now gives

I D lim
"!0

1

2

1X
kD0

.�1/k�
�
k C "

2

�
kŠ

"
1

2�"�.k C 1/�.1 � k � "=2/
�

p
�

22k�
�
k C 1

2

�# :
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The term corresponding to k D 0 gives

lim
"!0

1

2
�
� �
2

�" 1

2�"�
�
1 � "

2

� � 1# D log 2 �



2
(34)

and the terms with k � 1 as "! 0 give

�

p
�

2

1X
kD1

�k
�.k/

22k�
�
k C 1

2

� D 1

4
2F2

�
1 1
3
2

2

ˇ̌̌̌
�
1

4

�
: (35)

Therefore,
1Z
0

J 2
0
.x/ � e�x

2
cos x

x
dx D

1

4

�
4 log 2 � 2
 C 2F2

�
1 1
3
2

2

ˇ̌̌̌
�
1

4

��
: (36)

No further simplification seems to be possible.

6 A multi-dimensional extension

The method of brackets provides a direct proof of the following multi-dimensional extension of Frullani’s theorem.

Theorem 6.1. Let aj ; bj 2 RC. Assume the function f has an expansion of the form

f .x1; � � � ; xn/ D

1X
`1;:::;`nD0

.�1/`1

`1Š
� � �
.�1/`n

`nŠ
C.`1; � � � ; `n/x


1
1
� � � x
nn ; (1)

where the 
j are linear functions of the indices given by


1 D ˛11`1 C � � � C ˛1n`n C ˇ1 (2)

� � � � � � � � � � � � � � � � � � � � �


n D ˛n1`1 C � � � C ˛nn`n C ˇn:

Then,

I D

1Z
0

� � �

1Z
0

f .b1x1; � � � ; bnxn/ � f .a1x1; � � � ; anxn/

x
1C�1
1

� � � x
1C�n
n

dx1 � � � dxn

D
1

j detAj
lim
"!0

�
b
�1�"

1
� � � b�n�"n � a

�1�"

1
� � � a�n�"n

�
�.�`�1/ � � ��.�`

�
n/C.`

�
1 ; � � � ; `

�
n/;

where A D
�
˛ij

�
is the matrix of coefficients in (2) and `�

j
; 1 � j � n is the solution to the linear system

˛11`1 C � � � C ˛1n`n C ˇ1 � �1 C " D 0 (3)

� � � � � � � � � � � � � � � � � � � � � � � �

˛n1`1 C � � � C ˛nn`n C ˇn � �n C " D 0:

Proof. The proof is a direct extension of the one-dimensional case, so it is omitted.

Example 6.2. The evaluation of the integral

I D

1Z
0

1Z
0

e��st
2

cos.ast/ � e��st
2

cos.bst/
p
s

ds dt (4)
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uses the expansion

f .s; t/ D e�st
2

cos.st/ D
X
n1

X
n2

�1;2

p
�

�
�
n2 C

1
2

�
4n2

sn1C2n2 t2n1C2n2 ; (5)

with parameters �1 D �12 ; �2 D �1; b1 D a2=�; b2 D �=a; a1 D b2=�; a2 D �=b. The solution to the linear
system is n�

1
D �

1
2

and n�
2
D �

"
2

and j detAj D 2. Then

I D
1

2
lim
"!0

24 a2
�

!�1=2�" ��
a

��1�"
�

 
b2

�

!�1=2�" ��
b

��1�"35 � � �1
2

�
�
� "
2

� p
�

�
�
1�"
2

�
4�"=2

D

r
�

�
lim
"!0

�
b" � a"

"

�
�
�.1C "/ cos

�
�"
2

�
.ab/"

D

r
�

�
log

�
b

a

�
:

The double integral (4) has been evaluated.

Example 6.3. The method is now used to evaluate

1Z
0

1Z
0

sin.�xy2/ cos.axy/ � sin.�xy2/ cos.bxy/
xy

D
�

2
log

b

a
: (6)

The evaluation begins with the expansion

f .x; y/ D sin.xy2/ cos.xy/

D

0@xy2 X
n1�0

�n1
�
�
3
2

�
.xy2/2n1

�
�
n1 C

3
2

�
4n1

1A0@ X
n2�0

�n2
�
�
1
2

�
.xy/2n2

�
�
n2 C

1
2

�
4n2

1A
D

X
n1

X
n2

�n1�n2
�

2�
�
n1 C

3
2

�
�
�
n2 C

1
2

�
4n1Cn2

x2n1C2n2C1y4n1C2n2 :

The parameters are b1 D a2=�; b2 D �=a; a1 D b2=�; a2 D �=b and �1 D �2 D 0. The solution to the linear
system is n�

1
D �

1
2

and n�
2
D �

"
2

and j detAj D 4. Then,

I D lim
"!0

a�" � b�"

4
�

�
1

2

�
�
� "
2

� �

2�.1/�
�
1�"
2

�
4�"�1/=2

D lim
"!0

�3=24"=2

4

b" � a"

.ab/"
21�2"

p
� �."/

� csc
�
1
2
C
"
2

�
D
�

2
log

�
b

a

�
;

as claimed.

7 Conclusions

The method of brackets consists of a small number of heuristic rules that reduce the evaluation of a definite integral
to the solution of a linear system of equations. The method has been used to establish a classical theorem of Frullani
and to evaluate, in an algorithmic manner, a variety of integrals of Frullani type. The flexibility of the method yields
a direct and simple solution to these evaluations.
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