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Abstract: The method of brackets is an efficient method for the evaluation of a large class of definite integrals on the
half-line. It is based on a small collection of rules, some of which are heuristic. The extension discussed here is based
on the concepts of null and divergent series. These are formal representations of functions, whose coefficients an
have meromorphic representations for n 2 C, but might vanish or blow up when n 2 N. These ideas are illustrated
with the evaluation of a variety of entries from the classical table of integrals by Gradshteyn and Ryzhik.

Keywords: Definite integrals, Method of brackets, Divergent series

MSC: 33C05, 33F10

1 Introduction

The evaluation of definite integrals have a long history dating from the work of Eudoxus of Cnidus (408-355 BC)
with the creation of the method of exhaustion. The history of this problem is reported in [17]. A large variety of
methods developed for the evaluations of integrals may be found in older Calculus textbooks, such as those by
J. Edwards [4, 5]. As the number of examples grew, they began to be collected in tables of integrals. The table
compiled by I. S. Gradshteyn and I. M. Ryzhik [16] is the most widely used one, now in its 8th-edition.

The interest of the last author in this topic began with entry 3:248:5 in [14]

I D

1Z
0

.1C x2/�3=2
h
'.x/C

p
'.x/

i�1=2
dx (1)

where '.x/ D 1C 4
3
x2.1C x2/�2: The value �=2

p
6 given in the table is incorrect, as a direct numerical

evaluation will confirm. Since an evaluation of the integral still elude us, the editors of the table found an ingenious
temporary solution to this problem: it does not appear in [15] nor in the latest edition [16]. This motivated an effort
to present proofs of all entries in Gradshteyn-Ryzhik. It began with [19] and has continued with several short papers.
These have appeared in Revista Scientia, the latest one being [1].

The work presented here deals with the method of brackets. This is a new method for integration developed
in [11–13] in the context of integrals arising from Feynman diagrams. It consists of a small number of rules that
converts the integrand into a collection of series. These rules are reviewed in Section 2, it is important to em-
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1182 I. Gonzalez et al.

phasize that most of these rules are still not rigorously justified and currently should be
considered a collection of heuristic rules.

The success of the method depends on the ability to give closed-form expressions for these series. Some of
these heuristic rules are currently being placed on solid ground [2]. The reader will find in [8–10] a large collection
of examples that illustrate the power and flexibility of this method.

The operational rules are described in Section 2. The method applies to functions that can be expanded in a
formal power series

f .x/ D

1X
nD0

a.n/x˛nCˇ�1; (2)

where ˛; ˇ 2 C and the coefficients a.n/ 2 C. (The extra �1 in the exponent is for a convenient formulation of the
operational rules). The adjective formal refers to the fact that the expansion is used to integrate over Œ0;1/, even
though it might be valid only on a proper subset of the half-line.

Note 1.1. There is no precise description of the complete class of functions f for which the method can be applied.
At the moment, it is a working assumption, that the coefficients a.n/ in (2) are expressions that admit a unique
meromorphic continuation to n 2 C. This is required, since the method involves the evaluation of a.n/ for n not a
natural number, hence an extension is needed. For example, the Bessel function

I0.x/ D

1X
nD0

1

nŠ2

�x
2

�2n
(3)

has ˛ D 2; ˇ D 1 and a.n/ D 1=22nnŠ2 can be written as a.n/ D 1=22n�2.nC 1/ and now the evaluation, say
at n D 1

2
, is possible. The same observation holds for the Bessel function

J0.x/ D

1X
nD0

.�1/n

nŠ2

�x
2

�2n
: (4)

The goal of the present work is to produce non-classical series representations for functions f , which do not have
expansions like (2). These representations are formally of the type (2) but some of the coefficients a.n/ might be
null or divergent. The examples show how to use these representations in conjunction with the method of brackets
to evaluate definite integrals. The examples presented here come from the table [16]. This process is, up to now,
completely heuristic. These non-classical series are classified according to the following types:

1/ Totally (partially) divergent series. Each term (some of the terms) in the series is a divergent value.
For example,

1X
nD0

�.�n/xn and
1X
nD0

�.n � 3/

nŠ
xn: (5)

2/ Totally (partially) null series. Each term (some of the terms) in the series vanishes. For example,

1X
nD0

1

�.�n/
xn and

1X
nD0

1

�.3 � n/
xn: (6)

This type includes series where all but finitely many terms vanish. These are polynomials in the corresponding
variable.

3/ Formally divergent series. This is a classical divergent series: the terms are finite but the sum of the series
diverges. For example,

1X
nD0

nŠ2

.nC 1/ .2n/Š
5n: (7)

In spite of the divergence of these series, they will be used in combination with the method of brackets to evaluate a
variety of definite integrals. Examples of these type of series are given next.

Some examples of functions that admit non-classical representations are given next.
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An extension of the method of brackets. Part 1 1183

� The exponential integral with the partially divergent series

Ei.�x/ D �

1Z
1

t�1e�xt dt D

1X
nD0

.�1/n
xn

nnŠ
: (8)

� The Bessel K0-function

K0.x/ D

1Z
0

cos xt dt
.t2 C 1/1=2

(9)

with totally null representation

K0.x/ D
1

x

1X
nD0

.�1/n
�2.nC 1

2
/

nŠ �.�n/

�
4

x2

�n
(10)

and the totally divergent one

K0.x/ D
1

2

1X
nD0

.�1/n
�.�n/

nŠ

 
x2

4

!n
: (11)

Section 2 presents the rules of the method of brackets. Section 3 shows that the bracket series associated to an
integral is independent of the presentation of the integrand. The remaining sections use the method of brackets and
non-classical series to evaluate definite integrals. Section 4 contains the exponential integral Ei.�x/ in the integrand,
Section 5 has the Tricomi function U.a; bI x/ (as an example of the confluent hypergeometric function), Section 6 is
dedicated to integrals with the Airy function Ai.x/ and then Section 7 has the Bessel function K�.x/, with special
emphasis on K0.x/. Section 8 gives examples of definite integral whose value contains the Bessel function K�.x/.
The final section has a new approach to the evaluation of bracket series, based on a differential equation involving
parameters.

The examples presented in the current work have appeared in the literature, where the reader will find proofs
of these formulas by classical methods. One of the goals of this work is to illustrate the flexibility of the method of
brackets to evaluate these integrals.

2 The method of brackets

The method of brackets evaluates integrals over the half line Œ0; 1/. It is based on a small number of rules reviewed
in this section.

Definition 2.1. For a 2 C, the symbol

hai D

1Z
0

xa�1 dx (12)

is the bracket associated to the (divergent) integral on the right. The symbol

�n D
.�1/n

�.nC 1/
(13)

is called the indicator associated to the index n. The notation �n1n2���nr , or simply �12���r , denotes the product
�n1�n2 � � ��nr .

Note 2.2. The indicator �n will be used in the series expressions used in the method of brackets. For instance (8) is
written as

Ei.�x/ D
X
n

�n
xn

n
(14)
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1184 I. Gonzalez et al.

and (11) as

K0.x/ D
1

2

X
n

�n�.�n/

 
x2

4

!n
: (15)

In the process of implementing the method of brackets, these series will be evaluated for n 2 C, not necessarily
positive integers. Thus the notation for the indices does not include its range of values.

Rules for the production of bracket series
The first part of the method is to associate to the integral

I.f / D

1Z
0

f .x/ dx (16)

a bracket series. This is done following two rules:

Rule P1. Assume f has the expansion

f .x/ D

1X
nD0

�na.n/x
˛nCˇ�1: (17)

Then I.f / is assigned the bracket series

I.f / D
X
n

�na.n/ h˛nC ˇi : (18)

Note 2.3. The series including the indicator �n have indices without limits, since its evaluation requires to take n
outside N.

Rule P2. For ˛ 2 C, the multinomial power .u1 C u2 C � � � C ur /˛ is assigned the r-dimension bracket seriesX
n1;n2;:::;nr

�n1 n2 ���nru
n1
1
� � �unrr

h�˛ C n1 C � � � C nr i

�.�˛/
: (19)

The integer r is called the dimension of the bracket series.

Rules for the evaluation of a bracket series
The next set of rules associates a complex number to a bracket series.

Rule E1. The one-dimensional bracket series is assigned the valueX
n

�na.n/h˛nC bi D
1

j˛j
a.n�/�.�n�/; (20)

where n� is obtained from the vanishing of the bracket; that is, n� solves anC b D 0.

Note 2.4. The rule E1 is a version of the Ramanujan’s Master Theorem. This theorem requires an extension of the
coefficients a.n/ from n 2 N to n 2 C. The assumptions imposed on the function f is precisely for the application of
this result. A complete justification of this rule is provided in [2]. Making the remaining rules rigorous is the subject
of active research.

The next rule provides a value for multi-dimensional bracket series where the number of sums is equal to the number
of brackets.

Rule E2. Assume the matrix B D .bij / is non-singular, then the assignment isX
n1;n2;��� ;nr

�n1���nra.n1; � � � ; nr /hb11n1 C � � � C b1rnr C c1i � � � hbr1n1 C � � � C brrnr C cr i
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An extension of the method of brackets. Part 1 1185

D
1

jdet.B/j
a.n�1 ; � � �n

�
r /�.�n

�
1/ � � ��.�n

�
r /

where fn�
i
g is the (unique) solution of the linear system obtained from the vanishing of the brackets. There is no

assignment if B is singular.

Rule E3. Each representation of an integral by a bracket series has associated an index of the representation via

index D number of sums � number of brackets: (21)

In the case of a multi-dimensional bracket series of positive index, the system generated by the vanishing of the
coefficients has a number of free parameters. The solution is obtained by computing all the contributions of maximal
rank in the system by selecting these free parameters. Series expressed in the same variable (or argument) are added.

Example 2.5. A generic bracket series of index 1 has the formX
n1;n2

�n1;n2C.n1; n2/A
n1Bn2ha11n1 C a12n2 C c1i; (22)

where a11; a12; c1 are fixed coefficients, A; B are parameters and C.n1; n2/ is a function of the indices.
The Rule E3 is used to generate two series by leaving first n1 and then n2 as free parameters. The Rule E1 is

used to assign a value to the corresponding series:

n1 as a free parameter produces

T1 D
B�c1=a12

ja12j

1X
n1D0

�n1�

�
a11n1 C c1

a12

�
C

�
n1;�

a11n1 C c1

a12

��
AB�a11=a12

�n1
I

n2 as a free parameter produces

T2 D
A�c1=a11

ja11j

1X
n2D0

�n2�

�
a12n2 C c1

a11

�
C

�
�
a12n2 C c1

a11
; n2

��
BA�a12=a11

�n2
:

The series T1 and T2 are expansions of the solution in terms of different parameters

x1 D AB
�a11=a12 and x2 D BA

�a12=a11 : (23)

Observe that x2 D x
a12=a11
1

. Therefore the bracket series is assigned the value T1 or T2. If one of the series is a
null-series or divergent, it is discarded. If both series are discarded, the method of brackets does not produce a value
for the integral that generates the bracket series.

Some special cases will clarify the rules to follow in the use of the series T1 and T2. Suppose a12 D �a11, then

T1 D
B�c1=a11

ja11j

1X
n1D0

�n1�

�
n1 C

c1

a11

�
C

�
n1;�n1 �

c1

a11

�
.AB/n1 (24)

and

T2 D
A�c1=a11

ja11j

1X
n2D0

�n2�

�
n2 C

c1

a11

�
C

�
�n2 �

c1

a11
; n2

�
.AB/n2 (25)

and since both series are expansions in the same parameter .AB/, their values must be added to compute the value
associated to the bracket series. On the other hand, if a12 D �2a11, then

T1 D
Bc1=2a11

2ja11j

1X
n1D0

�n1�

�
�
1

2
n1 �

c1

2a11

�
C

�
n1;

1

2
n1 C

c1

2a11

��
AB1=2

�n1
and

T2 D
A�c1=a11

ja11j

1X
n2D0

�n2�

�
�2n2 C

c1

a11

�
C

�
2n2 �

c1

a11
; n2

��
A2B

�n2
:

Splitting the sum in T1 according to the parity of the indices produces a power series in A2B when n1 D 2n3 is
even and for n1 odd a second power series in the same argument A2B times an extra factor AB1=2. Since these are
expansions in the same argument, they have to be added to count their contribution to the bracket series.
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1186 I. Gonzalez et al.

Note 2.6. It is important to observe that the index is attached to a specific representation of the integral and not just
to integral itself. The experience obtained by the authors using this method suggests that, among all representations
of an integral as a bracket series, the one with minimal index should be chosen.

Note 2.7. The extension presented in this work shows how to use these divergent series in the evaluation of definite
integrals. Example 9.3 illustrates this procedure.

Rule E4. In the evaluation of a bracket series, repeated series are counted only once. For instance, a convergent series
appearing repeated in the same region of convergence should be counted only once. The same treatment should be
given to null and divergent series.

Note 2.8. Example 8.1 in Section 4 illustrates the use of this rule.

Note 2.9. A systematic procedure in the simplification of the series has been used throughout the literature: express
factorials in terms of the gamma function and the transform quotients of gamma terms into Pochhammer symbols,
defined by

.a/k D a.aC 1/ � � � .aC k � 1/ D
�.aC k/

�.a/
: (26)

Any presence of a Pochhammer with a negative index k is transformed by the rule

.a/�k D
.�1/k

.1 � a/k
; for k 2 N: (27)

In the special case when a is also a negative integer, the rule

.�km/�m D
k

k C 1
�
.�1/m.km/Š

..k C 1/m/Š
(28)

holds. This value is justified in [7]. The duplication formula

.a/2n D 2
2n
�a
2

�
n

�
aC 1

2

�
n

(29)

is also used in the simplifications.
Many of the evaluations are given as values of the hypergeometric functions

pFq

�
a1; : : : ; ap

b1; : : : ; bq

ˇ̌̌̌
z

�
D

1X
nD0

.a1/n � � � .ap/n

.b1/n � � � .bq/n

zn

nŠ
; (30)

with .a/n as in (26). It is often that the value of 2F1 at z D 1 is required. This is given by the classical formula of
Gauss:

2F1

�
a b

c

ˇ̌̌̌
1

�
D
�.c/�.c � a � b/

�.c � a/ �.c � b/
: (31)

Note 2.10. The extension considered here is to use the method of brackets to functions that do not admit a series
representation as described in Rule P1. For example, the Bessel function K0.x/ has a singular expansion of the
form

K0.x/ D � .
 � ln 2C ln x/ I0.x/C
1X
jD0

Hj

j Š2
x2j

22j
(32)

(see [21, 10.31.2]). Here I0.x/ is the Bessel function given in (3), Hj D
jX
kD1

1

k
is the harmonic number and


 D lim
j!1

�
Hj � ln j

�
is Euler’s constant. The presence of the logarithm term in (32) does not permit a direct

application of the method of brackets. An alternative is presented in Section 7.
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An extension of the method of brackets. Part 1 1187

3 Independence of the factorization

The evaluation of a definite integral by the method of brackets begins with the association of a bracket series to the
integral. It is common that the integrand contains several factors from which the bracket series is generated. This
representation is not unique. For example, the integral

I D

1Z
0

e�axJ0.x/ dx (33)

is associated the bracket series X
n1;n2

�n1;n2
an1

22n2�.n2 C 1/
hn1 C 2n2 C 1i; (34)

and rewriting (33) as

I D

1Z
0

e�ax=2e�ax=2J0.x/ dx; (35)

provides the second bracket seriesX
n1;n2;n3

�n1;n2;n3
an1Cn2

2n1Cn2C2n3�.n3 C 1/
hn1 C n2 C 2n3 C 1i (36)

associated to (33). It is shown next that all such bracket series representations of an integral produce the same value.

Theorem 3.1. Assume f .x/ D g.x/h.x/, where f; g and h have expansions as in (2). Then, the method of brackets
assigns the same value to the integrals

I1 D

1Z
0

f .x/ dx and I2 D

1Z
0

g.x/h.x/ dx: (37)

Proof. Suppose that

f .x/ D
X
n

�na.n/x
˛nCˇ

g.x/ D
X
n1

�n1b .n1/ x
˛n1Cˇ1

h.x/ D
X
n2

�n2c .n2/ x
˛n2Cˇ2 :

Then

I1 D

1Z
0

f .x/dx D
X
n

�na .n/ h˛nC ˇ C 1i D
1

j˛j
a.�s/�.s/; (38)

with s D .1C ˇ/=˛.
To evaluate the second integral, observe that

g.x/h.x/ D xˇ1Cˇ2

0@ 1X
n1D0

.�1/n1

n1Š
b.n1/x

˛n1

1A0@ 1X
n2D0

.�1/n2

n2Š
c.n2/x

˛n2

1A
D xˇ1Cˇ2

1X
nD0

F.n/x˛n;
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1188 I. Gonzalez et al.

with

F.n/ D

nX
kD0

.�1/k

kŠ
b.k/

.�1/n�k

.n � k/Š
c.n � k/ (39)

D
.�1/n

nŠ

nX
kD0

 
n

k

!
b.k/c.n � k/:

This yields

f .x/ D

1X
nD0

.�1/n

nŠ

"
nX
kD0

 
n

k

!
b.k/c.n � k/

#
x˛nCˇ1Cˇ2 (40)

and matching this with (38) gives ˇ D ˇ1 C ˇ2 and

a.n/ D

nX
kD0

 
n

k

!
b.k/c.n � k/ D

1X
kD0

.�1/k

kŠ
.�n/kb.k/c.n � k/: (41)

Now, the method of brackets gives

I2 D

1Z
0

g.x/h.x/ dx D
X
n1;n2

�n1;n2b.n1/c.n2/h˛n1 C ˛n2 C ˇ C 1i (42)

and it yields two series as solutions

T1 D
1

j˛j

X
n

�n� .nC s/ b.n/c.�n � s/ (43)

T2 D
1

j˛j

X
n

�n� .nC s/ b.�n � s/c.n/;

with s D .ˇ C 1/=˛. Comparing with (38) shows that I1 D I2 is equivalent to

�.s/a.�s/ D
X
n

�n�.nC s/b.n/c.�s � n/; (44)

that is,
a.�s/ D

X
n

�n.s/nb.n/c.�s � n/: (45)

The identity (45) is the extension of (41) from n 2 N to s 2 C. This extension is part of the requirements on the
functions f explained in Note 1.1. The proof is complete.

It is direct to extend the result to the case of a finite number of factors.

Theorem 3.2. Assume f admits a representation of the form f .x/ D
rQ
iD1

fi .x/. Then the value of the integral,

obtained by method of brackets, is the same for both series representations.

4 The exponential integral

The exponential integral function is defined by the integral formula

Ei.�x/ D �

1Z
1

exp.�xt/
t

dt; for x > 0: (46)
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An extension of the method of brackets. Part 1 1189

(See [16, 8:211:1]). The method of brackets is now used to produce a non-classical series for this function. Start by
replacing the exponential function by its power series to obtain

Ei.�x/ D �
X
n1

�n1x
n1

1Z
1

tn1�1 dt (47)

and then use the method of brackets to produce

1Z
1

tn1�1 dt D

1Z
0

.y C 1/n1�1 dy D
X
n2;n3

�n2n3
h�n1 C 1C n2 C n3i hn2 C 1i

�.�n1 C 1/
:

Replace this in (47) to obtain

Ei.�x/ D �
X

n1;n2;n3

�n1n2n3x
n1
h�n1 C 1C n2 C n3i hn2 C 1i

�.�n1 C 1/
: (48)

The evaluation of this series by the method of brackets generates two identical terms for Ei.�x/:

Ei.�x/ D
1X
nD0

.�1/n

n�.nC 1/
xn: (49)

Only one of them is kept, according to Rule E4. This is a partially divergent series (from the value at n D 0), written
as

Ei.�x/ D
X
n

�n
xn

n
: (50)

The next example illustrates how to use this partially divergent series in the evaluation of an integral.

Example 4.1. Entry 6:223 of [16] gives the Mellin transform of the exponential integral as

1Z
0

x��1Ei.�bx/ dx D �
b��

�
�.�/: (51)

To verify this, use the partially divergent series (50) and the method of brackets to obtain

1Z
0

x��1Ei.�bx/ dx D
X
n

�n
bn

n

1Z
0

x�Cn�1 dx (52)

D

X
n

�n
bn

n
h�C ni

D �
b��

�
�.�/;

as claimed.

Example 4.2. Entry 6:228:2 in [16] is

G.�; �; ˇ/ D

1Z
0

x��1e��xEi.�ˇx/ dx D �
�.�/

�.ˇ C �/�
2F1

�
1 �

� C 1

ˇ̌̌̌
�

ˇ C �

�
: (53)

The partially divergent series (50) is now used to establish this formula. First form the bracket series

G.�; �; ˇ/ D
X
n1;n2

�n1;n2
ˇn1�n2

n1
hn1 C n2 C �i: (54)

Rule E1 yields two cases from the equation n1 C n2 C � D 0:
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Case 1: n2 D �n1 � � produces

T1 D �
��

1X
n1D0

.�1/n1

n1Š

�.n1 C �/

n1

�
ˇ

�

�n1
; (55)

which is discarded since it is partially divergent (due to the term n1 D 0).

Case 2: n1 D �n2 � � gives

T2 D �ˇ
��

1X
n2D0

.�1/n2

n2Š

�
�

ˇ

�n2 �.n2 C �/
n2 C �

; (56)

and using

�.n2 C �/ D .�/n2�.�/ and n2 C � D
�.n2 C � C 1/

�.n2 C �/
D
.� C 1/n2�.� C 1/

.�/n2�.�/
(57)

equation (56) becomes

T2 D �
�.�/

� ˇ�

1X
n2D0

.�/n2.�/n2
n2Š .� C 1/n2

�
�
�

ˇ

�n2
(58)

D �
�.�/

� ˇ�
2F1

�
� �

� C 1

ˇ̌̌̌
�
�

ˇ

�
:

The condition j�j < jˇj is imposed to guarantee the convergence of the series. Finally, the transformation rule (see
entry 9:131:1 in [16])

2F1

�
˛ ˇ




ˇ̌̌̌
z

�
D .1 � z/�˛2F1

�
˛ 
 � ˇ




ˇ̌̌̌
z

z � 1

�
(59)

with ˛ D ˇ D �; 
 D � C 1 and z D ��=ˇ yields (53).

Example 4.3. The next evaluation is entry 6:232:2 in [16]:

G.a; b/ D

1Z
0

Ei.�ax/ cos bx dx D �
1

b
tan�1

�
b

a

�
: (60)

A direct application of the method of brackets using

cos x D 0F1

 
�

1
2

ˇ̌̌̌
�
x2

4

!
(61)

gives

G.a; b/ D
p
�
X
n1;n2

�n1;n2
b2n1an2

22n1�.n1 C
1
2
/ n2
h2n1 C n2 C 1i: (62)

This produces two series for G.a; b/:

T1 D

p
�

b

1X
n2D0

.�1/n2

n2Š

�.1
2
.n2 C 1//

n2 �.�
1
2
n2/

�
2a

b

�n2
; (63)

and

T2 D �

p
�

a

1X
n1D0

.�1/n1

n1Š

�.2n1 C 1/

.2n1 C 1/�.n1 C
1
2
/

 
b2

4a2

!n1
: (64)

The analysis begins with a simplification of T2. Use the duplication formula for the gamma function

�.2u/

�.u/
D
22u�1
p
�
�.uC 1

2
/ (65)

Brought to you by | Cook Library - Serials
Authenticated

Download Date | 8/13/18 10:29 PM



An extension of the method of brackets. Part 1 1191

and write
1

2n1 C 1
D
.1/n1

�
1
2

�
n1

n1Š
�
3
2

�
n1

(66)

to obtain

T2 D �
1

a
2F1

 
1 1
2

3
2

ˇ̌̌̌
�
b2

a2

!
; (67)

provided jbj < jaj to guarantee convergence. The form (60) comes from the identity

2F1

 
1
2
1

3
2

ˇ̌̌̌
�z2

!
D

tan�1 z
z

(68)

(see 9:121:27 in [16]).
The next step is the evaluation of T1. Separating the sum (63) into even and odd indices yields

T1 D

p
�

2b

1X
nD0

1

.2n/Š

�
�
nC 1

2

�
n�.�n/

 
4a2

b2

!n
(69)

�

p
�

b

1X
nD0

1

.2nC 1/Š

�.nC 1/

.2nC 1/�
�
�n � 1

2

� �2a
b

�2nC1
;

and in hypergeometric form

T1 D �
�

2b
2F1

 
0 1
2

1
2

ˇ̌̌̌
�
a2

b2

!
C

a

b2
2F1

 
1
2
1

3
2

ˇ̌̌̌
�
a2

b2

!
(70)

D �
�

2b
C
1

b
tan�1

�a
b

�
:

and this is the same as (60).
The evaluation of entry 6:232:1 in [16]

1Z
0

Ei.�ax/ sin bx dx D �
1

2b
ln

 
1C

b2

a2

!
(71)

is obtained in a similar form.

Example 4.4. Entry 6:782:1 in [16] is

B.z/ D

1Z
0

Ei.�x/J0.2
p
zx/ dx D

e�z � 1

z
: (72)

Here

J0.x/ D 0F1

 
�

1

ˇ̌̌̌
�
x2

4

!
(73)

is the classical Bessel function defined in (4). Therefore

J0.2
p
zx/ D

X
n2

�n2
zn2

�.n2 C 1/
xn2 : (74)

The standard procedure using the partially divergent series (49) now gives

B.z/ D
X
n1;n2

�n1;n2
1

n1

zn2

�.n2 C 1/
hn1 C n2 C 1i; (75)
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which gives the convergent series

T1 D �

1X
n1D0

.�1/n1

n1Š

.1/n1

.2/n1
zn1 D �1F1

�
1

2

ˇ̌̌̌
�z

�
D
e�z � 1

z
; (76)

and the series

T2 D �
1

z

1X
n2D0

.�z/�n2

�.1 � n2/
: (77)

Observe that the expression T2 contains a single non-vanishing term, so it is of the partially null type. An alternative
form of T2 is to write

T2 D �
1

z

1X
n2D0

.�z�1/n2

�.1 � n2/
(78)

D �
1

z

1X
n2D0

.�z�1/n2

�.1/ .1/�n2

D �
1

z

1X
n2D0

.z�1/n2.0/n2 .1/n2
.z�1/n2

n2Š

D �
1

z
2F0

�
0 1

�

ˇ̌̌̌
1

z

�
:

The series 2F0

�
a b

�

ˇ̌̌̌
z

�
diverges, unless one of the parameters a or b is a non-positive integer, in which case the

series terminates and it reduces to a polynomial. This is precisely what happens here: only the term for n2 D 0 is
non-vanishing and T2 reduces to

T2 D �
1

z
: (79)

This gives the asymptotic behavior B.z/ � �1=z, consistent with the value of T1 for large z. This phenomena
occurs every time one obtains a series of the form pFq.z/ with p � q C 2 when the series diverges. The truncation
represents an asymptotic approximation of the solution.

5 The Tricomi function

The confluent hypergeometric function, denoted by 1F1

�
a

c

ˇ̌̌̌
z

�
, defined in (30), arises when two of the regular

singular points of the differential equation for the Gauss hypergeometric function 2F1

�
a b

c

ˇ̌̌̌
z

�
, given by

z.1 � z/y00 C .c � .aC b C 1/z/y0 � aby D 0; (80)

are allowed to merge into one singular point. More specifically, if we replace z by z=b in 2F1

�
a b

c

ˇ̌̌̌
z

�
, then the

corresponding differential equation has singular points at 0, b and1. Now let b ! 1 so as to have infinity as a

confluence of two singularities. This results in the function 1F1

�
a

c

ˇ̌̌̌
z

�
so that

1F1

�
a

c

ˇ̌̌̌
z

�
D lim
b!1

2F1

�
a b

c

ˇ̌̌̌
z

b

�
; (81)

and the corresponding differential equation

zy00 C .c � z/y0 � ay D 0; (82)
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known as the confluent hypergeometric equation. Evaluation of integrals connected to this equation are provided
in [3].

The equation (82) has two linearly independent solutions:

M.a; bI x/ D 1F1

�
a

b

ˇ̌̌̌
x

�
; (83)

known as the Kummer function and the Tricomi function with integral representation

U.a; bI x/ D
1

�.a/

1Z
0

ta�1 exp.�xt/.1C t /b�a�1 dt; (84)

and hypergeometric form

U.a; bI x/ D
�.b � 1/

�.a/
x1�b1F1

�
1C a � b

2 � b

ˇ̌̌̌
x

�
C

�.1 � b/

�.1C a � b/
1F1

�
a

b

ˇ̌̌̌
x

�
: (85)

A direct application of the method of brackets gives

U.a; bI x/ D
1

�.a/

1Z
0

ta�1

 X
n1

�n1x
n1 tn1

! X
n2;n3

�n2;n3 t
n3
h1C a � b C n2 C n3i

�.1C a � b/

!
dt

D
1

�.a/

X
n1;n2;n3

�n1;n2;n3x
n1
h1C a � b C n2 C n3i

�.1C a � b/
haC n1 C n3i:

This is a bracket series of index 1 and its evaluation produces three terms:

U1.a; bI x/ D
�.1 � b/

�.1C a � b/
1F1

�
a

b

ˇ̌̌̌
x

�
;

U2.a; bI x/ D
�.b � 1/

�.a/
x1�b1F1

�
1C a � b

2 � b

ˇ̌̌̌
x

�
;

U3.a; bI x/ D x�a 2F0

�
a 1C a � b

�

ˇ̌̌̌
�
1

x

�
:

The first two are convergent in the region jxj < 1 and their sum yields (85). The series U3 is formally divergent, the
terms are finite but the series is divergent.

Example 5.1. The Mellin transform of the Tricomi function is given by

I.a; bIˇ/ D

1Z
0

xˇ�1U.a; b; x/ dx: (86)

Entry 7:612:1 of [16]
1Z
0

xˇ�11F1

�
a

b

ˇ̌̌̌
�x

�
dx D

�.ˇ/�.a � ˇ/�.b/

�.b � ˇ/�.a/
(87)

is used in the evaluation of I.a; b; ˇ/. A proof of (87) appears in [3].
The first evaluation of (86) uses the hypergeometric representation (85) and the formula (87). This is a

traditional computation. Direct substitution gives

I.a; b; ˇ/ D
�.b � 1/

�.a/

1Z
0

xˇ�b1F1

�
1C a � b

2 � b

ˇ̌̌̌
x

�
dx C

�.1 � b/

�.1C a � b/

1Z
0

xˇ�11F1

�
a

b

ˇ̌̌̌
x

�
dx
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D �.�1/�ˇCb
�.b � 1/

�.a/

�.ˇ � b C 1/�.a � ˇ/�.2 � b/

�.1C a � b/�.1 � ˇ/

C.�1/�ˇ
�.1 � b/

�.1C a � b/

�.ˇ/�.a � ˇ/�.b/

�.b � ˇ/�.a/
:

The result
1Z
0

xˇ�1U.a; b; x/ dx D
�.a � ˇ/�.ˇ � b C 1/�.ˇ/

�.a/�.a � b C 1/
(88)

follows from simplification of the previous expression.
The second evaluation of (86) uses the method of brackets and the divergent series U3. It produces the result

directly. Start with

I.a; b; ˇ/ D

1Z
0

xˇ�1U.a; b; x/ dx

D

1Z
0

xˇ�a�12F0

�
a 1C a � b

�

ˇ̌̌̌
�
1

x

�
dx

D

X
n

�n.a/n.1C a � b/nhˇ � a � ni:

A standard evaluation by the method of brackets now reproduces (88).

Example 5.2. The evaluation of

J.a; bI�/ D

1Z
0

e��xU.a; b; x/ dx (89)

is given next. Start with the expansions

exp.��x/ D
X
n1

�n1�
n1xn1 (90)

and

U.a; b; x/ D x�a 2F0

�
a 1C a � b

�

ˇ̌̌̌
�
1

x

�
D

x�a

�.a/�.1C a � b/

X
n2

�n2�.aC n2/�.1C a � b C n2/x
�n2 ;

to write

J.a; bI�/ D
1

�.a/�.1C a � b/

X
n1;n2

�n1;n2�
n1�.aC n2/�.1C a � b C n2/hn1 � a � n2 C 1i:

This yields the two series

J1.a; bI�/ D
1

�.a/�.1C a � b/

X
n

�n�.a � 1 � n/�.nC 1/�.2 � b C n/�
n

D
�.2 � b/

.a � 1/�.1C a � b/
2F1

�
1 2 � b

2 � a

ˇ̌̌̌
�

�
;

and

J2.a; bI�/ D
�a�1

�.a/�.1C a � b/

X
n

�n�.�aC 1 � n/�.aC n/�.1C a � b C n/�
n

D �a�1�.1 � a/1F0

�
1C a � b

�

ˇ̌̌̌
�

�
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D
�a�1 �.1 � a/

.1 � �/1Ca�b
:

In the case j�j < 1, both J1 and J2 are convergent. Therefore

1Z
0

exp.��x/U.a; b; x/ dx D
�.2 � b/

.a � 1/�.1C a � b/
2F1

�
1 2 � b

2 � a

ˇ̌̌̌
�

�
C
�a�1 �.1 � a/

.1 � �/1Ca�b
:

In the case � D 1, the series J2 diverges, so it is discarded. This produces

1Z
0

e�xU.a; b; x/ dx D
�.2 � b/

.a � 1/�.1C a � b/
2F1

�
1 2 � b

2 � a

ˇ̌̌̌
1

�
: (91)

Gauss’ value (31) gives
1Z
0

e�xU.a; b; x/ dx D
�.2 � b/

�.2 � b C a/
: (92)

In particular, if a is a positive integer, say a D k, then

1Z
0

e�xU.k; b; x/ dx D
1

.b � 2/k
: (93)

This result is summarized next.

Proposition 5.3. Let

J.a; bI�/ D

1Z
0

e��xU.a; b; x/ dx: (94)

Then, for j�j < 1,

J.a; b; �/ D
�.2 � b/

.a � 1/�.1C a � b/
2F1

�
1 2 � b

2 � a

ˇ̌̌̌
�

�
C
�a�1 �.1 � a/

.1 � �/1Ca�b
; (95)

and for � D 1,

J.a; bI 1/ D
�.2 � b/

�.2 � b C a/
: (96)

In the special case a D k 2 N,

J.k; bI 1/ D
1

.b � 2/k
: (97)

6 The Airy function

The Airy function, defined by the integral representation

Ai.x/ D
1

�

1Z
0

cos

 
t3

3
C xt

!
dt (98)

satisfies the equation
d2y

dx2
� xy D 0; (99)

and the condition y ! 0 as x !1. A second linearly independent solution of (99) is usually taken to be

Bi.x/ D
1

�

1Z
0

"
exp

 
�
t3

3
C xt

!
C sin

 
t3

3
C xt

!#
dt: (100)
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Using (61) produces

Ai.x/ D
1

�

X
n1

�n
1�

1
2

�
n1
22n1

1Z
0

 
t3

3
C xt

!2n1
dt

D
1

�

X
n1;n2;n3

�n1;n2;n3
xn2h�2n1 C n2 C n3i�
1
2

�
n1
22n1 �.�2n1/3n3

1Z
0

t3n3Cn2 dt

D

X
n1;n2;n3

�n1;n2;n3
xn2

p
��.�2n1/�

�
1
2
C n1

�
22n13n3

h�2n1 C n2 C n3i h3n3 C n2 C 1i:

The usual resolution of this bracket series gives three cases:

T1 D
1

2

r
3

�

1X
nD0

.�1/n

nŠ

�.�1
2
� 3n/

�.�2n/

�
3

4

�n
x3nC1=2 (101)

a totally null series,

T2 D
1

62=3
p
�

1X
nD0

.�1/n

nŠ

�.1
6
�
n
3
/

�.1
3
�
2n
3
/

�
3

4

�n=3
xn (102)

a partially divergent series (at the index n D 18), and

T3 D
1
p
�

1X
nD0

.�1/n

nŠ

�.3nC 1/�.nC 1
2
/

�.�n/�.2nC 1/

�
4

3

�n
x�3n�1 (103)

a totally null series, as T1 was.

Example 6.1. The series for Ai.x/ are now used to evaluate the Mellin transform

I.s/ D

1Z
0

xs�1Ai.x/ dx: (104)

This integral is now computed using the three series Tj given above. Using first the value of T1 and the formulas

�.2u/ D
22u�1
p
�
�.u/�.uC 1

2
/ and �.3u/ D

3
3u�

1
2

2�
�.u/�.uC 1

3
/�.uC 2

3
/ (105)

(these appear as 8:335:1 and 8:335:2 in [16], respectively), give

I.s/ D
1

2

r
3

�

X
n

�n

�
3

4

�n �.�1
2
� 3n/

�.�2n/
hs C 3nC 1

2
i (106)

D
1

6

r
3

�

�
3

4

��s=3�1=6 � �2sC1
6

�
�.s/

�
�
2sC1
3

� :

D 3�.sC2/=3
�.s/

�. sC2
3
/

D
3.4s�7/=6

2�
�

�
s C 1

3

�
�
� s
3

�
:

Similar calculations, using T2 or T3, give the same result. This result is stated next.

Lemma 6.2. The Mellin transform of the Airy function is given by

1Z
0

xs�1Ai.x/ dx D
1

2�
3.4s�7/=6�

�
s C 1

3

�
�
� s
3

�
: (107)
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7 The Bessel function K�

This section presents series representations for the Bessel function K�.x/ defined by the integral representation

K�.x/ D
2��.� C 1

2
/

�.1
2
/

x�
1Z
0

cos t dt

.x2 C t2/
�C

1
2

; (108)

given as entry 8:432:5 in [16]. Using the representation (61) of cos t as 0F1

 
�

1
2

ˇ̌̌̌
�
t2

4

!
and using Rule P2 in Section

2 to expand the binomial in the integrand as a bracket series gives

K�.x/ D 2
�

X
n1;n2;n3

�n1;n2;n3
x2n3C�

22n1�.n1 C
1
2
/
h� C 1

2
C n2 C n3ih2n1 C 2n2 C 1i: (109)

The usual procedure to evaluate this bracket series gives three expressions:

T1 D 2��1x��
X
n

�n�.� � n/

 
x2

4

!n
; (110)

T2 D 2�1��x�
X
n

�n�.�� � n/

 
x2

4

!n
;

T3 D 2�
X
n

�n
22n

�.�n/
�.nC � C 1

2
/�.nC 1

2
/x�2n���1:

The series T3 is a totally null series forK� . In the case � 62 N, the series T1 and T2 are finite andK�.x/ D T1C T2
gives the usual expression in terms of the Bessel I� function

K�.x/ D
�

2

I��.x/ � I�.x/

sin��
; (111)

as given in entry 8:485 in [16].
In the case � D k 2 N, the series T1 is partially divergent (the terms n D 0; 1; : : : ; k have divergent coefficients)

and the series T2 is totally divergent (every coefficient is divergent). In the case � D 0, both the series T1 and T2
become

Totally divergent series for K0.x/ D
1

2

X
n

�n�.�n/

 
x2

4

!n
; (112)

using Rule E4 to keep a single copy of the divergent series. This complements the

Totally null series for K0.x/ D
X
n

�n
22n

�.�n/
�2.nC 1

2
/x�2n�1: (113)

The examples presented below illustrate the use of these divergent series in the computation of definite integrals
with the Bessel functionK0 in the integrand. Entries in [16] withK0 as the result of an integral have been discussed
in [6].

Example 7.1. Entry 6:511:12 of [16] states that

1Z
0

K0.x/ dx D
�

2
: (114)

To verify this result, use the totally null representation (113) to obtain

1Z
0

K0.x/ dx D
X
n

�n
�
�
nC 1

2

�2
�.�n/

4n
1Z
0

x�2n�1 dx (115)
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D

X
n

�n
�
�
nC 1

2

�2
�.�n/

4nh�2ni:

The value of the bracket series is

1Z
0

K0.x/ dx D
1

2
�
�
nC 1

2

�2
4n
ˇ̌̌
nD0

(116)

D
�

2
:

Example 7.2. The Mellin transform

G.ˇ; s/ D

1Z
0

xs�1K0.ˇx/ dx (117)

is evaluated next. Example 7.1 corresponds to the special case s D ˇ D 1. The totally divergent series (112) yields

G.ˇ; s/ D
1

2

X
n

�n�.�n/
ˇ2n

22n
h2nC si (118)

and a direct evaluation of the brackets series using Rule E1 gives

G.ˇ; s/ D
2s�2

ˇs
�2

� s
2

�
: (119)

Now using the totally null representation (113) gives the bracket series

G.ˇ; s/ D
X
n

�n
22n�2.nC 1

2
/

ˇ2nC1 �.�n/
hs � 1 � 2ni: (120)

One more application of Rule E1 gives (119) again.

Example 7.3. Entry 6:611:9 of [16] is

1Z
0

e�axK0.bx/ dx D
1

p
b2 � a2

cos�1
�a
b

�
; (121)

for Re .aC b/ > 0. This is a generalization of Example 7.1. The totally divergent representation (112) and the series
for the exponential function (90) give the bracket series

1Z
0

e�axK0.bx/ dx D
1

2

X
n1;n2

�n1n2�.�n2/
an1b2n2

22n2
hn1 C 2n2 C 1i: (122)

The usual procedure gives two expressions:

T1 D
1

2a

X
n

�n�.2nC 1/�.�n/

 
b2

4a2

!n
; (123)

which is discarded since it is divergent and

T2 D
1

2b

1X
nD0

�
�
nC1
2

�2
nŠ

�
�
2a

b

�n
: (124)

Separating the series according to the parity of the index n yields

T2 D
1

2b

"
�

1X
nD0

�
1
2

�
n

nŠ

 
a2

b2

!n
�
2a

b

1X
nD0

.1/2n

nŠ
�
3
2

�
n

 
a2

b2

!n#
: (125)
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The identity [16, 9:121:1]

2F1

�
�n; b

b

ˇ̌̌̌
�z

�
D .1C z/n; (126)

with n D �1
2

gives

�

2b

1X
nD0

�
1
2

�
n

nŠ

 
a2

b2

!n
D
�

2

1
p
b2 � a2

: (127)

The identity

�
a

b2

1X
nD0

.1/2n

nŠ
�
3
2

�
n

�a
b

�2n
D �

1
p
b2 � a2

sin�1
�a
b

�
(128)

comes from the Taylor series
2x sin�1 x
p
1 � x2

D

1X
nD1

22nx2n

n
�
2n

n

� : (129)

(See Theorem 7:6:2 in [20] for a proof). The usual argument now gives

T2 D

1Z
0

e�axK0.bx/ dx D
1

p
b2 � a2

h�
2
� sin�1

�a
b

�i
; (130)

an equivalent form of (121).

Example 7.4. The next example,
1Z
0

x sin.bx/K0.ax/ dx D
�b

2
.a2 C b2/�3=2; (131)

appears as entry 6:691 in [16]. The factor sin bx in integrand is expressed as a series:

sin.bx/ D b x 0F1

 
�

3
2

ˇ̌̌̌
�
b2x2

4

!
(132)

D b�
�
3
2

�X
n2

�n2

�
b2

4

�n2
�
�
n2 C

1
2

�x2n2C1
and the Bessel factor is replaced by its totally-null representation (113)

K0.ax/ D
1

a

X
n1

�n1
�
�
n1 C

1
2

�2
�.�n1/

�
4

a2

�n1
x�2n1�1: (133)

This yields
1Z
0

x sin.bx/K0.ax/ dx D �
�
3

2

� X
n1;n2

�n1;n2
�
�
n1 C

1
2

�2
�
�
n2 C

3
2

�
�.�n1/

4n1�n2b2n2C1

a2n1C1
h2C 2n2 � 2n1i: (134)

These representation produces two solutions S1 and S2, one per free index, that are identical. The method of brackets
rules state that one only should be taken. This is:

S1 D

p
� b

a3

1X
kD0

�
�
k C 3

2

�
.�1/kb2k

kŠ a2k
: (135)

The result now follows from the identity
1X
kD0

�
3
2

�
k

kŠ

�
�
b

a

�k
D 1F0

 
3
2

�

ˇ̌̌̌
�
b

a

!
(136)

and the binomial theorem obtaining

1F0

 
3
2

�

ˇ̌̌̌
x

!
D

1

.1 � x/3=2
: (137)

Brought to you by | Cook Library - Serials
Authenticated

Download Date | 8/13/18 10:29 PM



1200 I. Gonzalez et al.

Example 7.5. The next example in this section evaluates

G.a; b/ D

1Z
0

J0.ax/K0.bx/ dx: (138)

From the representation

J0.ax/ D
X
n1

�n1
a2n1x2n1

22n1�.n1 C 1/
(139)

and the null-series (10) it follows that

G.a; b/ D
X
n1;n2

�n1;n2
a2n122.n2�n1/�2.n2 C

1
2
/

�.n1 C 1/�.�n2/b2n2C1
h2n1 � 2n2i: (140)

This bracket series generates two identical series, so only one is kept to produce

G.a; b/ D
1

2b

X
n

�n
�2.nC 1

2
/

�.nC 1/

 
a2

b2

!n
(141)

D
�

2b
2F1

 
1
2
1
2

1

ˇ̌̌̌
�
a2

b2

!
D
1

b
K
�
ia

b

�
:

Here K.z/ is the elliptic integral of the first kind. Using the identity

K.iz/ D
1

p
z2 C 1

K
�

z
p
z2 C 1

�
(142)

yields

G.a; b/ D
1

p
a2 C b2

K
�

a
p
a2 C b2

�
: (143)

Example 7.6. The next example evaluates

H.a/ D

1Z
0

K20 .ax/ dx: (144)

Naturally H.a/ D H.1/=a, but it is convenient to keep a as a parameter. The problem is generalized to

H1.a; b/ D

1Z
0

K0.ax/K0.bx/ dx; (145)

and H.a/ D H1.a; a/. The evaluation uses the totally divergent series (112)

K0.ax/ D
X
n1

�n1
a2n1�.�n1/

22n1C1
x2n1 (146)

as well as the integral representation (see 8:432:6 [16]) and the corresponding bracket series

K0.bx/ D
1

2

1Z
0

exp

 
�t �

b2x2

4t

!
dt

t
(147)

D

X
n2;n3

�n2;n3
b2n3x2n3

22n3C1
hn2 � n3i:
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Then

H1.a; b/ D
X

n1;n2;n3

�n1;n2;n3
a2n1b2n3�.�n1/

22n1C2n3C2
hn2 � n3i h2n1 C 2n3 C 1i: (148)

The evaluation of this bracket series requires an extra parameter " and to consider

H2.a; b; "/ D
X

n1;n2;n3

�n1;n2;n3
a2n1b2n3�.�n1/

22n1C2n3C2
hn2 � n3 C "i h2n1 C 2n3 C 1i: (149)

Evaluating this brackets series produces three values, one divergent, which is discarded, and two others:

T2 D
1

4a
c"
X
n

�n�.�n � "/�
2."C nC 1

2
/cn (150)

T3 D
1

4a

X
n

�n�.�nC "/�
2.nC 1

2
/cn;

with c D b2=a2. Converting the �-factors into Pochhammer symbols produces

T2 D
1

4a
c"�.�"/�2

�
1
2
C "

�
2F1

 
1
2
C " 1

2
C "

1C "

ˇ̌̌̌
c

!
(151)

T3 D
�

4a
�."/ 2F1

 
1
2
1
2

1 � "

ˇ̌̌̌
c

!
:

This yields

H2.a; b; "/ D
�

4a

"
�."/2F1

 
1
2
1
2

1 � "

ˇ̌̌̌
c

!
� c"

�2.1
2
C "/

" �."/ sin�"2
F1

 
1
2
C " 1

2
C "

1C "

ˇ̌̌̌
c

!#
:

Let c ! 1 .b ! a/ and use Gauss’ formula (31) to obtain

2F1

 
1
2
1
2

1 � "

ˇ̌̌̌
1

!
D
�.1 � "/�.�"/

�2
�
1
2
� "

� and 2F1

 
1
2
C " 1

2
C "

1C "

ˇ̌̌̌
1

!
D
�.1C "/�.�"/

�2
�
1
2

� ;

and this produces

H2.a; a; "/ D
�.�"/2�2

�
"C 1

2

�
�."C 1/

4�a
C
��.1 � "/�.�"/�."/

4a �2
�
1
2
� "

�
D

�

4a

"
�2.�"/�."C 1/�2."C 1

2
/

�2
C
�.1 � "/�.�"/�."/

�2.1
2
� "/

#
:

Expanding H2.a; a; "/ in powers of " gives

H.a; a; "/ D
�2

4a
�
�2

4a
.
 C 4 ln 2/"C o."/: (152)

Letting "! 0 gives
1Z
0

K20 .ax/ dx D
�2

4a
: (153)

Example 7.7. The final example in this section is the general integral

I.a; bI �; �I �/ D

1Z
0

x��1K�.ax/K�.bx/ dx: (154)

The case a D b appears in [18].
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The evaluation uses the integral representation

K�.ax/ D
.ax/�

2�C1

1Z
0

exp

 
�t �

a2x2

4t

!
dt

t�C1
(155)

appearing in [16, 8:432:6]. This produces the bracket series representation

K�.ax/ D
1

2�C1

X
n1;n2

�n1;n2
a2n2C�

22n2
x2n2C�hn1 � n2 � �i: (156)

The second factor uses the totally null representation (10)

K�.bx/ D 2
�
X
n3

�n3
22n3�.n3 C �C

1
2
/�.n3 C

1
2
/

�.�n3/b2n3C�C1
1

x2n3C�C1
: (157)

Replacing in (154) produces the bracket series

I.a; bI �; �I �/ D
X

n1;n2;n3

�n1;n2;n3
a2n2C�2����1C2n3�2n2�.n3 C �C

1
2
/�.n3 C

1
2
/

b2n3C�C1 �.�n3/

� hn1 � n2 � �ih�C � � �C 2n2 � 2n3 � 1i: (158)

The vanishing of the brackets gives the system of equations

n1 � n2 D � (159)

2n2 � 2n3 D �� � � C �C 1:

The matrix of coefficients is of rank 2, so it produces three series as candidates for values of the integral, one per
free index.

Case 1: n1 free. Then n2 D n1 � � and n3 D ������1
2

C n1. This gives

T1 D 2
��3 b

���

a�
�

�
� � � C �

2

�
�

�
� � � � �

2

�
�.�/ 2F1

 
���C�
2

�����
2

1 � �

ˇ̌̌̌
a2

b2

!
:

Case 2: n2 free. Then n1 D n2 C � and n3 D �C����1
2

C n2. This gives

T2 D 2
��3 a�

b�C�
�.��/�

�
�C � C �

2

�
�

�
�C � � �

2

�
�.�/ 2F1

 
�C�C�
2

�C���
2

1C �

ˇ̌̌̌
a2

b2

!
:

Case 3: n3 free. Then n2 D n3 C �����C1
2

and n1 D n3 C ���C�C1
2

. This produces

T3 D 2
��3 a

��C�C1

b�C1

X
n

�n

�.�n/
�

�
�C � � � � 1

2
� n

�
�

�
� � � � � � 1

2
� n

�
�
�
nC �C 1

2

�
�.nC 1

2
/

 
a2

b2

!n
:

This series has the value zero. This proves the next statement:

Proposition 7.8. The integral

I.a; bI �; �I �/ D

1Z
0

x��1K�.ax/K�.bx/ dx (160)

is given by
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I.a; bI �; �I �/ D

2��3
b���

a�
�.�/�

�
� � � C �

2

�
�

�
� � � � �

2

�
2F1

 
���C�
2

�����
2

1 � �

ˇ̌̌̌
a2

b2

!

C 2��3
a�

b�C�
�.��/�

�
�C � C �

2

�
�

�
�C � � �

2

�
2F1

 
�C�C�
2

�C���
2

1C �

ˇ̌̌̌
a2

b2

!
:

Some special cases of this evaluation are interesting in their own right. Consider first the case a D b. Using Gauss’
theorem (31) it follows that

T1 D
2��3 �.�/�

�
�C���
2

�
�
�
�����
2

�
�.1 � �/�.1 � �/

a� �
�
1 � �C�C�

2

�
�
�
1 � �C���

2

� (161)

and

T2 D
2��3 �.��/�

�
�C�C�
2

�
�
�
�C���
2

�
�.� C 1/�.1 � �/

a� �
�
1 � �����

2

�
�
�
1 � ���C�

2

� : (162)

Proposition 7.9. The integral

J.aI �; �I �/ D

1Z
0

x��1K�.ax/K�.ax/ dx (163)

is given by

J.aI �; �I �/ D
2��3 �.�/�

�
�C���
2

�
�
�
�����
2

�
�.1 � �/�.1 � �/

a� �
�
1 � �C�C�

2

�
�
�
1 � �C���

2

� C

2��3 �.��/�
�
�C�C�
2

�
�
�
�C���
2

�
�.� C 1/�.1 � �/

a� �
�
1 � �����

2

�
�
�
1 � ���C�

2

� :

The next special case is to take a D b and � D �. Then

T1 D
2��3

a�

�.�/�
�
�
2

�
�
�
�
2
� �

�
�.1 � �/�.1 � �/

�
�
1 � �

2
� �

�
�
�
1 � �

2

� (164)

and

T2 D
2��3

a�

�.��/�
�
�
2

�
�
�
�
2
C �

�
�.� C 1/�.1 � �/

�
�
1 � �

2
C �

�
�
�
1 � �

2

� : (165)

This proves the next result:

Proposition 7.10. The integral

L.aI �; �/ D

1Z
0

x��1K2�.ax/ dx (166)

is given by

L.aI �; �/ D
2��3

a�

"
�.�/�.1 � �/�

�
�
2
� �

�
�
�
1 � �

2
� �

� C
�.��/�.1C �/�

�
�
2
C �

�
�
�
1 � �

2
C �

� #
:

The last special case is � D 1; that is, the integral

M.a; bI �; �/ D

1Z
0

K�.ax/K�.bx/ dx: (167)
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It is shown that the usual application of the method of brackets yield only divergent series, so a new approach is
required.

The argument begins with converting the brackets series in (158) to

M.a; bI �; �/ D
X

n1;n2;n3

�n1;n2;n3
a2n2C�2����1C2n3�2n2�.n3 C �C

1
2
/�.n3 C

1
2
/

b2n3C�C1 �.�n3/

� hn1 � n2 � �ih� � �C 2n2 � 2n3i: (168)

A routine application of the method of brackets gives three series

T1 D
b��1

4a�
�

�
1 � � C �

2

�
�

�
1 � � � �

2

�
�.�/2F1

 
1��C�
2

1����
2

1 � �

ˇ̌̌̌
a2

b2

!

T2 D
a�

4b�C1
�

�
1C � C �

2

�
�

�
1C � � �

2

�
�.��/2F1

 
1C�C�
2

���C1
2

1C �

ˇ̌̌̌
a2

b2

!
and a totally null series T3. Gauss’ value (31) shows that T1 and T2 diverge when a ! b. Therefore (168) is
replaced by

M.a; bI �; �/ D lim
"!0

X
n1;n2;n3

�n1;n2;n3
a2n2C�2����1C2n3�2n2�.n3 C �C

1
2
/�.n3 C

1
2
/

b2n3C�C1 �.�n3/

� hn1 � n2 � � C "ih� � �C 2n2 � 2n3i: (169)

Proceeding as before produces a null series that is discarded and also

T1 D
a��C2"

4b1��C2"
�.� � "/�

�
1C � � �

2
C "

�
�

�
1 � � � �

2
C "

�
�2F1

 
1��C�
2
C " 1����

2
C "

1 � � C "

ˇ̌̌̌
a2

b2

!
T2 D

a�

4b1C�
�.�� C "/�

�
1C �C �

2

�
�

�
1 � �C �

2

�
�2F1

 
1C���
2

1C�C�
2

1C � � "

ˇ̌̌̌
a2

b2

!
:

In the limit as b ! a, these become

T1 D
�.� � "/�

�
1C���
2
C "

�
�
�
1����
2
C "

�
�.1 � � C "/�.�"/

4a �
�
1����
2

�
�
�
1��C�
2

�
T2 D

�.�� C "/�
�
1C�C�
2

�
�
�
1��C�
2

�
�.1C � � "/�.�"/

4a �
�
1C�C�
2

� "
�
�
�
1C���
2
� "

� :

Passing to the limit as "! 0 gives

1Z
0

K�.ax/K�.ax/ dx D
�2

4a sin��

h
tan

��
2
.�C �/

�
� tan

��
2
.� � �/

�i
: (170)

In the special case � D �, it follows that

1Z
0

K2�.ax/ dx D
�2

4a cos��
; valid for j�j < 1

2
: (171)

This value generalizes (153). It appears in Prudnikov et al. [22] as entries :2:16:28:3 and 2:16:33:2.
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8 An example with an integral producing the Bessel function

The evaluation of integrals in Section 7 contain the Bessel functionK� in the integrand. This section uses the method
developed in the current work to evaluate some entries in [16] where the answer involves K0.

Example 8.1. The first example is entry 6:532:4 in [16]
1Z
0

xJ0.ax/

x2 C b2
dx D K0.ab/: (172)

The analysis begins with the series

J0.ax/ D

1X
nD0

1

nŠ2

 
�
a2x2

4

!n
(173)

D

1X
n1D0

�n1
a2n1

22n1 �.n1 C 1/
x2n1

Rule P2 gives
1

x2 C b2
D

X
n2;n3

�n2;n3x
2n2b2n3h1C n2 C n3i: (174)

Therefore
1Z
0

xJ0.ax/

x2 C b2
dx D

X
n1;n2;n3

�n1;n2;n3
a2n1b2n3

22n1 �.n1 C 1/
h1C n2 C n3ih2C 2n1 C 2n2i: (175)

The method of brackets produces three series as candidates for solutions, one per free index n1; n2; n3:

T1 D
1

2

1X
nD0

�n�.�n/

 
a2b2

4

!n
(176)

T2 D
2

a2b2

1X
nD0

�n
�2.n/

�.�n/

�
4

a2b2

�n
T3 D

1

2

1X
nD0

�n�.�n/

 
a2b2

4

!n
:

The fact that T1 D T3 and using Rule E4 shows that only one of these series has to be counted. Since T1 and T2
are non-classical series of distinct variables, both are representations of the value of the integral. Observe that T2 is
the totally null representation of K0.ab/ given in (11). This confirms (172). The fact that T3 is also a value for the
integral gives another totally divergent representation for K0:

K0.x/ D
2

x2

1X
nD0

�n
�2.nC 1/

�.�n/

�
4

x2

�n
: (177)

To test its validity, the integral in Example 7.1 is evaluated again, this time using (177):
1Z
0

K0.x/dx D

1Z
0

2

x2

X
n

�n
�2.nC 1/

�.�n/
22nx�2n (178)

D

X
n

�n2
2nC1�

2.nC 1/

�.�n/

1Z
0

x�2n�2 dx

D

X
n

�n2
2nC1�

2.nC 1/

�.�n/
h�2n � 1i:

The bracket series is evaluated using Rule E1 to confirm (114).
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Example 8.2. Entry 6:226:2 in [16] is
1Z
0

Ei

 
�
a2

4x

!
e��x dx D �

2

�
K0.a

p
�/: (179)

The evaluation starts with the partially divergent series (50)

Ei

 
�
a2

4x

!
D

1X
n1D0

�n1
a2n1

n122n1

1

xn1
(180)

and this yields
1Z
0

Ei

 
�
a2

4x

!
e��x dx D

X
n1;n2

�n1n2
a2n1�n2

n122n1
hn2 � n1 C 1i: (181)

The method of brackets gives two series. The first one

T1 D
1

�

X
n1

�n1
�.1 � n1/

n122n1
.a2�/n1 (182)

D �
1

�

X
n1

�n1
�.�n1/

22n1
.a2�/n1

D �
2

�
K0.a

p
�/;

using (11). The second series is

T2 D
X
n2

�n2
a2n2C2�n2

.n2 C 1/22.n2C1/
�.�n2 � 1/: (183)

Now shift the index by m D n2 C 1 to obtain

T2 D
X
m

�m�1
a2m�m�1

m22m
�.�m/:

D �
1

�

X
m

�m�.�m/
a2m�m

22m
:

This is the same sum as T1 in the second line of (182). Recall that the summation indices are placed after the
conversion of the indicator �n2 to its expression in terms of the gamma function. According to Rule E4, the sum T2

is discarded. This establishes (179).

9 A new use of the method of brackets

This section introduces a procedure to evaluate integrals of the form

I.a1; a2/ D

1Z
0

f1.a1x/f2.a2x/ dx: (184)

Differentiating with respect to the parameters leads to

a1
@I.a1; a2/

@a1
C a2

@I.a1; a2/

@a2
D

1Z
0

x
d

dx
Œf1.a1x/f2.a2x/� dx: (185)

Integration by parts produces

I.a1; a2/ D xf1.a1x/f2.a2x/
ˇ̌̌1
0
�

�
a1
@I.a1; a2/

@a1
C a2

@I.a1; a2/

@a2

�
: (186)

A direct extension to many parameters leads to the following result.
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Theorem 9.1. Let

I.a1; � � � ; an/ D

1Z
0

nY
jD1

f .ajx/ dx: (187)

Then

I.a1; � � � ; an/ D x

nY
jD1

fj .ajx/
ˇ̌̌1
0
�

nX
jD1

aj
@I.a1; � � � ; an/

@aj
: (188)

Example 9.2. The integral

I.a; b/ D

1Z
0

e�axJ0.bx/ dx (189)

is evaluated first by a direct application of the method of brackets and then using Theorem 9.1.
The bracket series for I.a; b/

I.a; b/ D
X
n1;n2

�n1;n2
an1b2n2

22n2�.n2 C 1/
hn1 C 2n2 C 1i (190)

is obtained directly from (90)
e�ax D

X
n1

�n1a
n1xn1 (191)

and

J0.bx/ D 0F1

 
�

1

ˇ̌̌̌
�
.bx/2

4

!
D

X
n2

�n2
b2n2

�.n2 C 1/22n2
x2n2 : (192)

Solving for n1 in the equation coming from the vanishing of the bracket gives n1 D �2n2 � 1, which yields

T1 D

1X
n2D0

.�1/n2

n2Š

a�2n2�1b2n2

22n2

�.2n2 C 1/

�.n2 C 1/
: (193)

To simplify this sum transform the gamma factors via (26) and use the duplication formula (29) to produce

T1 D
1

a

1X
n2D0

�
1
2

�
n2

n2Š

 
�
b2

a2

!n
D
1

a
1F0

 
1
2

�

ˇ̌̌̌
�
b2

a2

!
: (194)

The identity 1F0

�
c

�

ˇ̌̌̌
z

�
D .1 � z/�c gives T1 D

1
p
a2 C b2

: A direct calculation shows that the series obtained

from solving for n2 yields the same solution, so it is discarded. Therefore

1Z
0

e�axJ0.bx/ dx D
1

p
a2 C b2

: (195)

The evaluation of this integral using Theorem 9.1 begins with checking that the boundary terms vanish. This comes

from the asymptotic behavior J0.x/ � 1 as x ! 0 and J0.x/ �

r
2

�x
cos x as x !1. The term

a
@I.a; b/

@a
D

X
n1;n2

�n1n2
n1a

n1b2n2

22n2�.n2 C 1/
hn1 C 2n2 C 1i: (196)

This generates two series

T1 D
1

b

1X
nD0

.�1/n

nŠ

n�
�
1Cn
2

�
�
�
1�n
2

� �
2a

b

�n
(197)

and

T2 D �
1

a

1X
nD0

.�1/n

nŠ

�.2nC 2/

�.nC 1/

 
b2

4a2

!n
: (198)
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Similarly

b
@I.a; b/

@b
D 2

X
n1;n2

�n1;n2
n2a

n1b2n2

22n2�.n2 C 1/
hn1 C 2n2 C 1i (199)

which yields the two series

QT1 D
2

b

1X
nD0

�n

�
�
nC1
2

�
�
�
�
nC1
2

�
�
�
1�n
2

� �
2a

b

�n
QT2 D

2

a

1X
nD0

2

a

1X
nD0

�n
n�.2nC 1/

�.nC 1/

 
b2

4a2

!n
Since the boundary terms vanish, the relation (186) gives

I.a; b/ D

(
�T1 � QT1; j4a2j < jb2j

�T2 � QT2; jb2j < j4a2j:
(200)

The form T2 C QT2 is simplified by converting them to hypergeometric form to produce

T2 D �
1

a

1X
nD0

.�1/n

nŠ

�.2nC 2/

�.nC 1/

 
b2

4a2

!n
D �

a2

.a2 C b2/3=2
(201)

QT2 D
2

a

1X
nD0

�n
n�.2nC 1/

�.nC 1/

 
b2

4a2

!n
D �

b2

.a2 C b2/3=2
:

Then

I.a; b/ D �T2 � QT2 D
a2

.a2 C b2/3=2
C

b2

.a2 C b2/3=2
D

1
p
a2 C b2

: (202)

This gives

I.a; b/ D

1Z
0

e�axJ0.bx/ dx D
1

p
a2 C b2

: (203)

The option T1 C QT1 gives the same result.

Example 9.3. Entry 6:222 in [16] is

I.a1; a2/ D

1Z
0

Ei.�a1x/Ei.�a2x/ dx (204)

D

�
1

a1
C

1

a2

�
ln.a1 C a2/ �

ln a1
a2
�

ln a2
a1

:

In particular
1Z
0

Ei2.�ax/ dx D
2 ln 2
a

: (205)

The evaluation of this integral by the method of brackets begins with the partially divergent series for Ei.�x/ which
yields (using (14)D (50)):

I.a1; a2/ D
X
n1;n2

�n1;n2
a
n1
1
a
n2
2

n1n2
hn1 C n2 C 1i: (206)

The usual procedure requires the relation n1 C n2 C 1 D 0 and taking n1 as the free parameter gives

I1.a1; a2/ D �
1

a2

1X
n1D0

.�1/n1

n1.n1 C 1/

�
a1

a2

�n1
; (207)
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and when n2 as free parameter one obtains the series

I2.a1; a2/ D �
1

a1

1X
n2D0

.�1/n2

n2.n2 C 1/

�
a2

a1

�n2
: (208)

These two series correspond to different expansions: the first one in x D a1=a2 and the second one in x�1 D a2=a1.
Both series are partially divergent, so the Rule E3 states that these sums must be discarded. The usual method of
brackets fails for this problem.

The solution using Theorem 9.1 is described next. An elementary argument shows that xEi.�x/! 0 as x ! 0

or1. Then (186) becomes

(209)

I.a1; a2/ D �a1
@I

@a1
� a2

@I

@a2

D �

X
n1;n2

�n1;n2
a
n1
1
a
n2
2

n2
hn1 C n2 C 1i �

X
n1;n2

�n1;n2
a
n1
1
a
n2
2

n1
hn1 C n2 C 1i;

� S1 C S2;

using (206) to compute the partial derivatives. The method of brackets gives two series for each of the sums S1 and
S2:

T1;1 D
1

a2

1X
nD0

.�1/n

nC 1

�
a1

a2

�n
(210)

T1;2 D �
1

a1

1X
nD0

.�1/n

n

�
a2

a1

�n
(211)

T2;1 D �
1

a2

1X
nD0

.�1/n

n

�
a1

a2

�n
(212)

T2;2 D
1

a1

1X
nD0

.�1/n

nC 1

�
a2

a1

�n
; (213)

the series T1;1 and T1;2 come from the first sum S1 and T2;1; T2;2 from S2. Rule E3 indicates that the value of the
integral is either

I.a1; a2/ D T1;1 C T2;1 or I.a1; a2/ D T1;2 C T2;2I (214)

the first form is an expression in a1=a2 and the second one in a2=a1.
The series T1;1 is convergent when ja1j < ja2j and it produces the function

f .a1; a2/ D
1

a1
log

�
1C

a1

a2

�
(215)

and T2;2 is also convergent and is gives

g.a1; a2/ D
1

a2
log

�
1C

a2

a1

�
: (216)

Observe that, according to (214) to complete the evaluation of I.a1; a2/, some of the series required are partially
divergent series. The question is how to make sense of these divergent series. The solution proposed here is, for
instance, to interpret T2;1 as a partially divergent series attached to the function g.a1; a2/. Therefore, the sum in
(214), the term T2;1 is replaced by g.a1; a2/ to produce

I.a1; a2/ D f .a1; a2/C g.a1; a2/ (217)

D
1

a1
log

�
1C

a1

a2

�
C

1

a2
log

�
1C

a2

a1

�
;

and this confirms (204). A similar interpretation of T1;2 C T2;2 gives the same result.
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10 Conclusions

The method of brackets consists of a small number of heuristic rules used for the evaluation of definite integrals
on Œ0; C1/. The original formulation of the method applied to functions that admit an expansion of the form
1X
nD0

a.n/x˛nCˇ�1. The results presented here extend this method to functions, like the Bessel functionK� and the

exponential integral Ei, where the expansions have expansions of the form
1X
nD0

�.�n/xn (where all the coefficients

are divergent) or
1X
nD0

1

�.�n/
xn (where all the coefficients vanish). A variety of examples illustrate the validity of

this formal procedure.
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