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PROJECTION SOLUTIONS OF FROBENIUS-PERRON
OPERATOR EQUATIONS
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ABSTRACT. We construct in this paper the first order and second order piecewise polynomial
finite approximation schemes for the computation of invariant measures of a class of nonsingular
measurable transformations on the unit interval of the real axis. These schemes are based on the
Galerkin’s projection method for L'-spaces and are proved to be convergent for the class of

Frobenius-Perron operators.
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1. INTRODUCTION.

Many problems in physics and engineering are concerned with the mathematical problem of
existence and computation of invariant measures of measurable transformations on measure spaces
[2]. For a class of nonsingular measurable transformations from [0,1] into itself. Lasota and Yorke
[3] established the existence of the invariant measures. Specifically, if S:[0,1]-[0,1] is a piecewise C*
stretching mapping, then the "time average” 1 Y7 =) P*f converges strongly in L'(0,1) to some f*
of bounded variation with Pf* = f* for any density function f € L'(0,1). Here P is the Frobenius-
Perron operator associated with S. In [5], Li and Yorke gave a sufficient condition for the
uniqueness of this invariant density and thus the ergodicity of the mapping.

A straightforward numerical way to calculate the invariant measures can be obtained from the
classical Birkhoff’s Individual Ergodic Theorem which uses the Koopman operator instead of the
Frobenius-Perron operator. By Birkhoff’s theorem, if u is an ergodic invariant probability measure
under S, then for any measurable set A c [0,1], the time average

1 " k
lim 7 ki_jo X4 ($5@)

which measures the ”average time” spent in A under iteration of S, exists and is u(A) for p-almost
all z. Here x4 is the characteristic function of A(=1on 4 and =0 off A). Hence, one might choose
almost any z in [0,1] and calculate the average time of the iterations $*(z) recurring in A to obtain
p(A). However, computer round-off error can completely dominate the calculation and make the
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implementation difficult. A typical example is given in [4]; and for the purpose of overcoming this
difficulty, Li proposed in [4] a rigorous numerical procedure which can be implemented on a
computer with negligible round-off error problem. The piecewise constant approximation is used to
reduce the original infinite-dimensional fixed point problem to the fixed point problems of
stochastic matrices, thus solving a conjecture of Ulam’s [8].

The numerical procedure proposed by Li has two features. The first one is that it actually
belongs to the category of Galerkin’s projection method, although originally it was obtained by the
probability analysis. The second one is that it uses a sequence of finite rank Markov operators to
approximate the Frobenius-Perron operator. Since Frobenius-Perron operators are also Markov
operators, this kind of approach is natural from the viewpoint of both theory and practice. In this
paper, we propose the first order and second order piecewise polynomial approximation schemes for
the computation of fixed points of Frobenius-Perron operators, based on the Galerkin’s projection
method. The numerical experiments of Kohda and Murao [1] based on a general piecewise
polynomial Galerkin approximation scheme show that the first order and second order piecewise
polynomial approximation methods are much more efficient than the piecewise constant
approximation in [4]. But in order to prove the convergence of their methods, the boundedness as
well as the uniqueness of the invariant density are assumed which makes the convergence analysis
much easier. In [1] the convergence theorem is stated and its proof is based on the variation
analysis of best piecewise polynomial approximations to functions of bounded variation under the
L*norm along with the fact that every orthogonal projection in a Hilbert space has the operator
norm 1. Without the assumption of boundedness of invariant densities, we show in this paper with
different approach that our scheme is convergent in L', which is not a Hilbert space, for the class of
nonsingular measurable transformations satisfying the condition of the Lasota-Yorke theorem. The
method of finite Markov approximations will be developed in further studies.

The paper is organized as follows. In Section 2, we outline some background material.
Sections 3 and 4 are devoted to the first order and second order piecewise polynomial projection
approximation methods and their convergence analysis, respectively.

2. FROBENIUS-PERRON OPERATORS AND PROJECTION METHOD.

Let I=[0,1] and S be a transformation from I into itself. For A c[0,1], we write §~ (4! for
{z:S(z) € A}. The Lebesgue measure on [0,1] will be denoted by m. Denote by L'(0,1) the space of
all integrable functions defined on [0,1] with respect to the Lebesgue measure m. L!(0,1) is a Banach
space with norm || f|| = f§|f(z)|dz. Let S:[0,1}-[0,1] be a nonsingular measurable transformation,
i.e., for any measurable subset A of [0,1] with m(4) = 0, we have m(S ~1(4)) = 0.

The operators Pg:L!(0,1)—L(0,1) defined by

[ (pshiauz= [ s, sz

is called the Frobenius-Perron operator associated with S. If there is no ambiguity, we shall write P
for Pg. By Radon-Nikodym Theorem, the Frobenius-Perron operator is well defined when S is
nonsingular [2]. For fe L'(0,1), the measure u(4)= py(4) = J 4 f(z)dz is invariant under S if and
only if Pgf=f. Here the invariance of measure u (under §) means u(S~1(A)) = p(A) for every
measurable set A. Thus, to calculate the invariant measure for S, we may calculate instead the

fixed point of the Frobenius-Perron operator. More precisely, we need fe L'(0,1) which satisfies

Pgf=f.
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We list some basic properties of Frobenius-Perron operator Pg without proof. For more
detailed discussion of Pg, see [2].

(1) Ps is a Markov operator, i.e.,, Pg is linear and maps (positive) density functions to
(positive) density functions. Thus || Pg|| =1.

(2) For the n-th iterate S", Pgn = (Pg)™.

We give here a brief description of Galerkin’s projection method in Banach spaces (see [6] for
more details). Let X be a Banach space. Suppose M and N are both closed subspaces of X. If
X=M+N and MNN ={0}, then we say X is a direct sum of M and N and M and N are
complementary to each other. In this case, we may define a linear operator Q: X— X as follows,

Qr=uifz=u+v,ue M,veN.

This operator is continuous and satisfies Q*=Q. We call Q the projection of X onto M along N.
Now, let X and Y be two Banach spaces, T: X—Y be a bounded linear operator from X to Y,
and ye Y. We want to solve the operator equation

Tz=y

The general idea of projection method is as follows. Choose two sequences of finite-dimensional
subspaces X, and Y, of X and Y, respectively. Let {Q,} be a sequence of projections from ¥ to Y.
In X, we want to find z(™ such that Q. (T —y) =0, or

QnTz(") =Q,v-

If we choose a basis of X, and a basis of Y, then the above approximate operator equation of finite
rank can be written as a system of algebraic equations. Thus we can use the usual numerical
methods to solve the linear equation and obtain the approximate solutions to the original problem.
This numerical procedure is referred to as the projection method. In particular, if X =Y and if we
choose X, =Y, and the same basis in Y, as in X, then the corresponding projection method is
called the Galerkin’s method.

3. PIECEWISE LINEAR PROJECTION APPROXIMATION OF FROBENIUS-PERRON
OPERATOR.

A transformation S:[0,1]-[0,1] will be called piecewise €2, if there exists a partition
0=ay<a; < :--<a,=1 of the unit interval such that for each integer k =1,...,r, the restriction S,
of S on the open interval (a,_,,q;) is a C?-function which can be extended to the closed interval
[a¢_1,a;) as a C?-function. S need not be continuous at the point q,.

Assume 5:{0,1]-{0,1] satisfies the condition of Lasota-Yorke theorem. That is, S is piecewise C?
satisfying inf | S'(z)| > 1. In this section, we look for the approximate solutions of Frobenius-Perron
operator equation Pgf = f in the space of piecewise linear functions.

Divide I =[0,1] into n subintervals I, I,,..I,. Fori=1,..,n, let I, =[z;_,,z;] and 1, = xp,/m(1,)-
Denote by A, the 2n-dimensional subspace of L!(0,1) spanned by the basis {1,z1,}?_,, ie.,
A, C L'(0,1) is the set of all functions which are linear on each subinterval I;.

Define Q,:L(0,1)—A,, by requiring that for i = 1,...,n,

<f-@Quf,1,> =0
and

<f-Q.f,z1,> =0.
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Here for g € L(0,1) and h € L*(0,1) = [L}(0,1)]*, < g,h > = [} g(z)h(z)dz. The following lemma shows
that these requirements uniquely defines Q, and implies that Q, is a projection from L(0,1) to A,
along 1A, ={geL'(0,1): <g,h> =0 for all heA,}. Because of the similarity in the "orthogonality
condition” with the L2?-space case, we may call Q,:L!(0,1)—A, the orthogonal projection, even
though its norm may not be 1.

LEMMA 3.1. Let z,=(z,_,+z,)/2i=1,..,n. For any fe€ L'(0,1), we have

Q.f= 2(c+dz)1
i=1

where for i = 1,...,n,

{C.=f1 f(’-‘)dz‘wh (z-2,)f(z)dz (1)

zjl (1’ :l)f(z)dz

m(I;)
PROOF. Let Q.f= ¥ P_y(c,+d.z) 1;, then
<Quf, ;> =¢;<1,, ;> +d, <=1, 1;> ——(7_)c'+’_nmd'
<Q.f, z1;> =¢; <1, z1,> +d; < z1, z1,>

Z; z +z,z; l+z, 1
“mr) ot 3m(1,) dy

From the condition of the orthogonal projection, we have

1 z;
{mﬁl.’) | m(l) ._m(lll) f[ f(z)dz o
m:;.') c.+z +r;,'n(11;‘. 1q, = (I);, zf(z)dz.

The equation (2) has a unique solution

c; =]I (z)d:-——z fl (z—%,)f(z)d=z
{ m(I)) (Q.ED.)

d; —(—I)f I1(z-2)f(z)dz.

The next lemma establishes the uniform boundedness of the sequence Q,..
LEMMA 3.2. Forall n, ||Q,] <2.
PROOF. Given n and f € L(0,1),

n
1001 = [Jl@u@Nde= [ 3 16+ ool

- 1
=‘.§1/15 m‘ﬁ-‘-d‘:ldl.

By (1), on the subinterval I,, Q,.f only depends on the value of f on I,, Hence it is enough to
estimate one of ﬁf ,‘Ic‘+d.x |dz. Without loss of generality, assume d; #0. For simplicity, let
I=I,=[ab), =%, c=c, d=d, and f be defined on I. Let p(z) = (c +dz)/m(I).
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First of all, let us assume f >0. If » >0, then from the first equality of (2),

/llp(x)ldz.':/’ pla)iz = L /: (c +dz)dz

2
=m_b_) - [:2“1‘(1) [(c + db)? = (c + da)?]

= gml(—l) [2cdm(I) + d*m(I)- 28] = ¢ + dE

= [ s@az= [ 151

If ¢ # 0, then from the fact that ¢ is the best approximation to f among all linear functions on [q,]
under L*-norm if f € L?0,1), we see that ¢ cannot be non-positive. Therefore ¢ must have a zero
z= —5 in (a,6). We assume ¢(b) > 0 and g(a) < 0. The other case can be treated similarly. Thus we

have
[ 1e@1dz =} c-a)lp@] +E-21s0)]
=116 +9e()) + (a+ (@)l
and,
pac o D S@Mz | (1)
d-12f; z-%)f(xydz ' 2
wac o MM f@Mz ()
d-12[; z-D)f(z)dz 2 "
o0 =ds e+ =dol [ feusr by [ - a1,
o0 = b crda) = ([ foda- b [ e Dip(ada)
Hence,

m(I)*f; f(z)dz (I)
/’|¢(z)|dz=%{( 12f; (= I::f(zdz mT)

6 -
iy € [, stexz ot JRGIO™

m(I)?*f; f(z)dz  m(I)
MSUACE o

mlTs (/1 f(z)dz~;;?—i5 /I (z - 2)f(z)dz)}

m(D){f; f(z)dz])*
YT, = #)f(z)dz T/ (z-2)f(z)dz

m(I)[J; f(z)dz]?
<127, = ijf(zjd:+% / [ J@)=
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Note that z = —56 (a,b), we have

(1P S(e)de
< IO, e-Df()dz
It follows that

m(IP?[; f(z)dz . m(I)
12]; (z-5)f(z)ydz <* =72
Therefore

/1 le(z) | dz <} /1 f(z)dz +3 /' f(z)d:=2/1 f(z)dz.

For general fe L'(I), write f=f* —f~ where f+ =maz{f,0} and f~ =maz{-f,0}, and we
have

[, 1w@dz= [ 1@1az= [ 105* -ar1as
< [ 10r%1dzs [ Qs 1

52/’f+dz+2/’f_dz=2/1 | fldz

where Q: L'(I)—Span{l,z} is the above mentioned orthogonal projection.
From the above estimate, we obtain

n
lewsi = [, @@= 3 1, wdrylectdietde
i= ' :

L 1
< 2 | f(z)|dz =2 [f)|dz=2]|FIl,
l';l /l. /0
(Q.ED.)
LEMMA 3.3. When mesh (A,) = maz{m(I;):1 <i < n}—0,Q,f—f for all f € L(0,1).
PROOF. '

ie,foralln,||Q,| <2
Given fe€L'0,1) and e>0, there exists a continuous function ¢ such that
lIf-gll <e. Now
n
1Qus—sgll = ) / 1 1(Qu9)¥) - 9(y) | dy
i=1 '
=3 1 d d
—.‘;1 /,ilm(c.“" .'!I)—ﬂ(v)l y
w 1 12%; N
=l§l /I;Im(l.) ./Il g(Z)dz_m(Ii)a /'l (z—z.‘)g(’:)dz
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< Z":l /thlIJ /,‘, g(x)dr-y(v)ldv

+ Z / Im(l )3 (/ (2 z.)g(z)dx)(y :.)

n
<2 /., m—(‘,g(/,‘ly(z)—g(y)wz)dy

1

Y s [ -z [ 1y-sa

Since ¢ is uniformly continuous on [0,1), when mesh (4,) is sufficiently small, for any
z,y€l,i=1,..,n, we have |g(z)-g(y)| <e. Applying Hélder’s inequality, we get

n
Quo-ysll £ L. (1) %
| Qug -9l ‘gl /,‘ mry ™) gy

For n sufficiently large, (f 1, o(z)?dz)/? < 755,1' =1,...,n, hence,

n
Quo—9ll <§+% '21 m(I)?<s+5=c.

Together with Lemma 3.2, for n sufficiently large,

NQuf=fll S 1Quf~Quall + IQue—gll + g7l
L2 f-gll +e+ I f-gll <4e.
This proves lim,_ Q.f = f. (QEED)
The following result is the key to our convergence analysis.
LEMMA 3.4. For any f € L!(0,1) of bounded variation and for all n
1 1
H Q.f<13 ¥ £

where v‘l) f is the variation of f on [0,1] (for the definition of variation, see [7]).
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PROOF. By definition, Q,f = ¥ "'_(c, +d;z)1,, where {c,.d,} are given by (1). Since Q,.f is
piecewise linear, its variation is given by

1 w 1
XQ'J = ,-;11"'_(13' (c;+dz,)—(c;+dz,_y)]

n=l ct+d'zl Ci+l+d‘+lz‘

= B AT LY
n 41 d dt+1
'E_:IIJHZ m(l) m(1,+,)+(m(1) "'('.+1))

LIRS >}

i=1

1
m(l) / fz)dz = m(I; ;1) /’-’+1 f(z)dz

123
+Ti'l), (o= Sz - (_1)5 / (z— 2 )f(z)dz

12 12
+(—,’); (- z.)f(z)dz——(,i? [1;,, -5 0fexz

Z|d|+

(z)dz — ‘1 f(z)dz

1
mT; 1)

12(2, ., ~=;) i
+ﬁ— "+1(z—zi+l)f(z)dz

12(z; —

)
Za [ e sareae

S TIES o

i=1

.
m(I) / f(z)dz — I:’+1) /Ii+l f(z)dz

m(l +l) / (z- z.+1)f(:c)dz+———§/ (z— z')f(z)dzl

From the definition of d; we have

VQ,J< 2|a|+2

1
"‘(1) / H(=)dz - Ii+1) ./Is'+l (=)=

1
m(I) / )z~ I.'+1) i f(z)d=
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It is easy to see that the middle summation of the above inequality is not greater than v}f (for a

proof, see [4]). Hence,

vo,.f<22|d|+vf
i=1

Now we estimate Y 7_,|d,|. Let F (z)= fg'_, f(t)dt, then the formula of integration by parts
for the Stieljes-Lebesgue integral [6] gives

d, = (1—1“’), (z-2,)f(z)dz = 71_)5 1, (2= 2)dF (@)

(1) [(z ,)F; (z)l, / I, F,(z)d(z-z,)]

=12 |m(1)
_m[ Fyz,)- / F(:)dz]

m(”/ f(t)dt - —,(1) (/2._1f(t)dt>dx

=6 [#1,) / I, f(t)dt—zl—' / / a, f(t)dtdzJ

where Q, = {(z,1):2,_, <z <z, z,_, <t<z} is a triangular region in the (z,t)-plane and A4, = Im(I,)?
is the area of Q;. With the same reason described in [4], we obtain
1

6V f
0

zldl_ez’mu)/ f(t)ydt - A// f(t)dtdz|<

Therefore,

\:{Q,.f < 13\3{. (Q.ED.;

Let P, =Q, 0P| a, where Pg| a, is the restriction of P on A, then P, :A,—A, is linear. We
want to find the fixed points of P, in A,. For this purpose, we first investigate the representation
of P, under the basis {1,,z1;}7_,.

LEMMA 3.5. Fori=1,..,n,

Pl = ic](l I+ Zd,(l )21,

] =
n n
P(a1) = Y i1, + Y dy=1)z1,,
i=1 i=1
where

m(§~YI;)nI,) 12 .
) =T = [ 1, =P

d;(1) = 1, )2_/’;,‘ (z - z,)(P1,)(z)dz,
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c (1) = / (P(z1,))(z)dz — 122, / (z - z,)(P(z1;))(z)dz
F} ' lJ ' m IJ F] i ’

d(z1,) = m_(1127 / 1 (2= E,)P1))()dz.

PROOF. By definition, P,1,=Q, o Pgl,, P,(z1,) = Q, o Pg(z1,). From the definition of

s-! 1
Ps,flJ(Psl.)(Z)d.l‘ = i——w Combined with Lemma 3.1, we have the result. (Q.E.D.)

LEMMA 3.6. P, hgla'nontrivial fixed point £, in A,,.

PROOF. Let C, =(c},) =(c,(1,)), Cy=(c} =(c,(z1,)), D, =1(d},)=(d,(1,)), D,=(d})=(d,(z1,)),
where ¢ (1,), dj(1), c,(z1,) and d,(z1) are as in Lemma 3.5. Then the function
fa@)= X0 1el,+ L0 _dzl, is a fixed point of P, if and only if the column vector
(€yeeesCprdyy-yd,)T is a fixed point of the matrix

- c, C
po=| v C7
D, D,
We first prove that the row vector I =(1,...1,%,,..., £,) satisfies { = IP,. In fact, from the first equality
of (2),

n . n n
jz=)l<c,~(1.-)+:,d,(x.-» = ,;1 [ 1, (Prexz = jgl [s-1u,) Lexe

n m(S-YI,)n1,)
=j§1 "'(’.J) =t

n ‘n
3 (e)(zl) +3dz1) = 3 / ; (P(z1,))(z)dz
i=1 ji=1 J

S 1
= ‘Zl /s‘ Wy zl,(z)dz = /0 z1,(z)dz

J=

2_,2
Ti —Z%i-1

=ty [1, o=y Bt =

Hence the matrix P, has eigenvalue 1 and it follows that P u=pu has a nontrivial solution.

In [3], Lasota and Yorke prove that, if $:[0,1]-[0,1] is a piecewise C2-function satisfying
M =inf|S| >2, then for any fe L'(0,1) of bounded variation, VJPgsf <ecl| f|l +BVEf with >0
and g =4 <1. We shall call this inequality the Lasota-Yorke inequality. With this result, we can
prove the following

LEMMA 3.7. Suppose 5:[0,1]-[0,1] is piecewise C? and M =inf|S’| >26. Then the sequence
{vif,} is bounded with f, the fixed points of P, satisfying || f,|| =1.

PROOF. Since f, is piecewise linear, it has bounded variation. From the Lasota-Yorke
inequality, Pf, is a function of bounded variation. From the same inequality and the fact that
fo=P.fn=Q, o Pf,, using Lemma 3.4, we obtain

fa=

o<~
oL

Quo P13y PL <13l full 48 1,)

1 2 1
=13a+130Y f, = 13a+]§\0/f,,.
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By assumption, M > 26. therefore for all n

vf,,_l 26/M<°° (Q.E.D.)

Now we can prove our convergence theorem for the first-order piecewise polynomial Galerkin
approximation scheme for Frobenius-Perron operator equations.

THEOREM 3.1. Suppose S:[0,1)—[0,1] is piecewise C* and M =inf|S | >26. Then for any n,
P, has a fixed point f, with || f,]l =1 in A, and when mesh (A, )—0, there exists a subsequence
{ fa, } C {f,} such that £, , converges to a fixed point of Pg.

PROOF. By Lemma 3.7 and the Helly Theorem [7], there is a subsequence {f, } C {f,} which
converges to some f € L!(0,1). Now '

NPsF=£U < NS =Fo Il + 1, = Qn © Psa I
+ ||Q,.'°Psf...-0,.i°Psf|| + ||Q..‘°Psf-Psf||-

Since { |} Q,_‘ o Pg|l} is uniformly bounded and Qn., ° Psf,,' =fa» Lemma 3.3 implies that the right
hand side of the above inequality approaches zero as i—co. Thus Pgf = f. (Q.E.D.)

COROLLARY 3.1. Suppose S:[0,1]-[0,1] is piecewise C2 and M =inf|S | > 1, then a sequence
of functions can be constructed from piecewise linear functions which converge to a fixed point of
Pg.

PROOF. Choose k>0 such that M* > 26. Let o =S*. Then P,(y) has a fixed point £ of unit
length in A,,. Define

5=t f: Py,

where f”., is a convergent subsequence of {f,} from the above theorem. Then g¢; converges, by
Theorem 3.1, to

lk—l
=1 > (Ps) S,
i=1

where £(¥) is a fixed point of ¢ = S*. This g is a fixed point of Pg. In fact, since (Ps)"f(") =P
fW) P, f@)_fW)

Pgg= i{PsfM +eo 4 (P ) =g, (QED.)
4. PIECEWISE QUADRATIC PROJECTION APPROXIMATION OF FROBENIUS-PERRON

OPERATOR.

In this section, we shall generalize the piecewise linear approximation of the previous section to
the piecewise quadratic one, that is, we look for the approximate solutions of Frobenius-Perron
operator  equation in the space of piecewise quadratic functions. Let
zo=0<z;<---<z,_,<z,=1 be a finite partition of the interval [0,1] as before. = For
Ziz3 7% Let mesh (A,) = maz; m(I,) and A, = span{1,,z1,,2*1,)7_ ; Where
1; _m xr; A, € LY(0,1) is a subspace of dimension 3n.

Deﬁne the projection Q,:L'(0,1)—A,, by the orthogonal conditions, for i = 1,...,n

i=1,. ,n,I =[z;_1z,).% =

(£-Qu1)=0.(f - Qufiz1) = 0,(f - Qu1.2%1,) = .
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Let Q.f = z;‘=l(°1+d1’+31’2)11' We show that {c,d,e,}]., are uniquely determined by the
above conditions.

For i = 1,...,n, straightforward calculation gives
zl +z,z._1 +:?-l
(@usi1)= "_‘m(z o '(1 o+ Im(l,)

z, +zltt—]+z?—l 5.(’»?"’1?-1)

<anv 31;) = mz:;.)"l + 3m(].) + 2"'(1-) i

2 2 2 (P2 2
z,+z.z._1+z,_l zl(:l +zt—l)4

(Qutia?1,) = 22 te 4 ST L,

+m( +z3z, _ 1+ 2222 ad e,
By the orthogonal condition, we have the following equations

c,+id, +%(:t? +z,z,_, +z?_ 1€, = f,if(z)dz

e, +3al toz, 42l ) 43l +2lo) = [ 2f(2)de

X ©))
el 4zz, el e, +F @ et ), +
§i+ade,_ +alzd_ +oad_ 4+l )e, = I, 2*f(z)dz.
Eliminate ¢, from the above system, we have
(1), +gm(1 )5 e, = [ (2 - £,)f(2)d=
I E,d; + Em(1,) 422 + Tzz, _ +422 _ e, = (4)
[172% @)z~ Yzl + 2,2,y +20_ 1)) f(2)dz.
The solutions are given by
o= 311 f(e)dz —— - ),f, zf(x)dz - '( ; S f(e)s +
%{2:, +zz,_4]f 1..(1‘ —%;,)f(z)dz
183,
d,= m"f f(z)dz + ﬁf,‘ f(z)dz - (5)
m(I )4zlfl (l - :u)zf(z)dz
@ = gl = 20" = g1 ) (a)e

LEMMA 4.1. ||Q, | <62 for all n.

PROOF. The value of Q,f in the subinterval I, depends only on the value of f on I,. So it is
enough to estimate the integral [, |(Q.f)(z)|dz=. Let I=1I,I=lab]z= “T“’ and let
¢(z)=ﬁ(c+d:+ezz) be the orthogonal };rojection of f to Span{l;,z1;,z%1;}. First of all, assume
f>0. We consider different cases.
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(i) ¢>0. Then from the first equality of (3),
/llp(z)|d: = /' p(z)dz:ﬁ /’ (c +dz + ex?)dz
(1) [cz+-z +-23]" —c+d:+§ (a® +ab + b%)e
= ./l f(z)dz = /l|f(z)|dz.

(i) ¢ #0. Then y has distinct zeros on the real axis. Without loss of generality, we may
assume e > 0. Consider different distribution of the zeros. Let ¢, and ¢, be zeros of ¢ with ¢; < (.
Firstly, assume ¢, € (a,b) and ¢, € (a,b). Then ¢, +¢; = —%,Cl (=% and

/lltp(z)ldx:m(ll)[/il (c+dz +ex?)dz — /2 (c +dz + ex?)dz

+ /:2 (c+dz+czz)dz]
='—n—ll—)-{[cz+ T +—.z'3:t [cz+§z + }
[cz+izz+§z;t}

= [ -a+ et -+ 500 - o)

+tg G-+ 4d -+ - @)
=[c+dz+§(a’+ab+b?)]

2

= [ f(ape —3(—‘2(—1)—[c+g(—%)+§(-%)‘-%]
= [, rtows-2ar D e &

N RS I

. - _‘/ 2 _ _ /12 _
Slnce (l‘—’ d d 4ec and (.2 - d+ ed 4ec’ C_

< e®m(1)3. So,

3
Hence (d? - 4ec)?

(2 Cl d2 — 4 1 (d2 - 4cc)3/2 1 Cam(1)3 1
w3 cmD 3k Smd sl =3mDh

From the last equality of (5), it is easy to see that

=5em(1)2 = / (z - 2)*f(z)dz -5 / f(z)dz

i1y
<85 [, i sexiz=s [ | s

= 10/1 f(z)dz.
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Therefore,

/[ le(z)ldz < /’ j(z)dz+10/l f(z)dz:ll/, f(z)dz = ll/l | f(z)|dz.

Secondly, assume there is only one zero of ¢ in (a,b), say ¢, € (a,b) and ¢, ¢ (a,b). In this case,

/l |go(z)|dz——l—j[/ Y (c+dz+ex?)dz+ /:] (c+dz+ezz)dz]

( ) {[C(Cl —a)+ ‘((l a®)+ %((:l‘ - “3)]

+letér -+ et -+ gt -]}

N

= ':l("l;' [c +g((1 +a)+§(¢}+a+ a’)]

_- Cx

m

[c + 4G+ D+ + b+

1
3
3]

_I; [c +g((l +a)+§(¢F+(a+ 02)]
b—
+m—(1(—)‘ [c +9(¢, +0) +§(¢ +c,b+62)]

Kt a5 o)

=[c+id+§(az+ab+b2)]

2b
(m(f)* [e+5c+0)+5(¢E+¢0+87)]

(Cl

/ J@)dz+ =y [‘H’i""'f(l*“c(l +§¢bC1 +—eb2]

2((1 b) 11

/ f(z)dz + [3( e} +d; + )+ Heb - d)¢,

+io+ % +40 +1)
/ f(z)dz +2(C‘( )b)[ bz+§db+-d(,+—eb<1 +§c]

/ f(z)dz + «’ Tl 1';) [266? + 3db + d(, + 2ebC, + 4]

(Cl ) [2(:(, +dGy +c) +2e(b2 — (2)

/ f(z)dz+
+2d(b—¢y) +d(b+¢;) + 2eb(y + 2¢]

[2e(1;2 ~¢3)+d(b— ;) +2(db + eb(y +¢)]

/ f(z)dx+
-/, f(z)d:+3 775 26067~ D+ 5 - )+ 206 - €)ety +4)]

/ fleyz -G i 1) " e(b 4+ €) 4 d + 2ecy +4)]

(b-¢)’
= / . f(z)dz - 3m(}) [4e(¢, - ) + 3(2¢b + d)}
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From (5) we have

3606 _ =2 __30b
2eb+d =" (1)4/’ (z—-%)"f(z)dz W/l f(z)dz

+-12 / | @)z + 182 / | @)z~ 3602 / , (z - 5)*f(z)dz

m(I)* m(I)? m(I)t
_ 180 a2 12 s
= D) /1 (z-%)*f(z)dz m(I)’/l f(z)dz (0} /’ f(z)dz

12 18%
+-—;m“) ! zf(:)dz+——-im(;’) /’ f(z)dz
_ _180 9
=) (z- z)’f(z)dz—W/ (b—z)f(z)dz—m/l f(z)dz.

Hence,

- 2
/ lp(z) | dz = / f(z)dz +§¢ (_b'_nTSIlT)_ (bm((l.l))

180 .
[W [, @-2rs@uz- s JRGEE™

2
< / . f(z)d=+§em(1)3 + Fl(l_) / , (b=¢y) f(z)dz +9 / , f(z)dz

< [l+4-10+12+9]/1f(z)dz=62[’ f(z)dz
=sz/1 | £(z) | dz.

Therefore for £>0, ||¢|l <62]|fll. For general fe L!(0,1), consider f+ and f~, respectively, the
same inequality can be achieved. (Q.E.D.)
LEMMA 4.2. For any f € L'(0,1), if mesh (A,)—0, then

Q.f—f under the L! —norm.

PROOF. First assume feL%0,1)c L!(0,1). From the way b"f is " defined, obviously
Hf-Q.flz=min{||f-gll;;9€A,} where | .||, is the I*norm. Hence, when mesh
(A,)—0, || f - Q,f Il ;—0, and the Cauchy inequality ||Q.f~fI| < |Q.f —fI|; gives [|Q.f || —0.

Now for f € L(0,1) and ¢ > 0, there exists g € L?(0,1) such that || f-g|| <e. From

"an_f" S "an_Qng" + "Qng"y" + "y_f"

<62 f-gll + 11Quell + lg= 11l

and ||Q,9- gl -0 we obtain ||Q.f-f||—0. (Q.E.D.)
LEMMA 4.3. If f € L'(0,1) is of bounded variation, then for all n, V3Q,f <121 V}f.
PROOF. Since Q,f is piecewise quadratic,

Q.f =

oL
O(r—-

n
E(c +d;z +¢;2%)]1,

n
—_-‘ZIWII—J/Iild.--i-%.zldz
=
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cl+dl:l+clrl2 _ Cit1 +d.+]z'+el+lz.z
() o)

c, Cit1 d, 441 .
m(I,) '"(l:+1) m(l,) m(I, )™

€, €41 2
+<m(1') - ""(I.+1))z'

1
= d, +2 d
i;l m(lu) /ll ' ' F |dz

n—1 3
[122,+lx+3:‘+1z.- 12z, (z+§5,+1)

m(1+l) / Iipa

i=1

+ 1527 f(z)dz

_#I.)‘;/I' [125,: +3z,z, _, 12z, (z +%i,)+ 15:.2] f(z)dz

(6)
+m]'. 1 [360"5' +1-60 22, 1 +3, $15) - 1302?]
(=%, 41)*f(z)dz

ol )5/ [360: 5, - 60 (22 + 2,2, _,) - 18027] (z - 2, f(z)dx

+§(m(z)/ ez "”"’)
m

= Z ﬁ d+2czl+z
i=1 )

i=1

it 14 (e
m([ )2/ (z— z.)f(z)di’*"w/ (z- z,) f(z)dz

] DGR TR s E oy e

“m(I, P

3 1
"2 "‘(1:+1)./’o'+1 f(z)dz}

Let Q= {(z,t):z€l,,z;_,<t<z},V,={(z,t,z):iz€lz,_,<t<z,z,_,<z<t}. Again, using the
integration by parts formula for functions of bounded variation yields

+ r—z F4 2}_
i 1 G = o [ e
1
—2A(9.+1)//“-+1 fitydudt,

iy [ 1, @ =0sexe =~ [ [ sioatas,
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T i 1, @ = e [ e
_m‘%m//‘,'_l f(t)dtdzr
+m / / / v,_, f(s)dzdidz,

ﬁ/ i, =2 ey =gbs [ etz -grles [ [ saas

+37(‘75 / / / v, f(a)dsdtds,

where A(Q,) = jm(I;)? is the area of @, and V(V,) = lm(1,)? is the volume of V,. Substituting into (6),

we have

n

1
o= 5, s, e

n—1
6 3
+,-§1 m(1.+1)/’i+1 !(z)d:—A(Q,,,,l)//".-.,,] f(t)dtdz

'%9') / / o f(t)dtdz+2":(51‘) / 1, f(@)de
_#&)/ /n, f(t)dtdz+#3')/ / /V. f(s)dsdtdz
~al +1)/ i1 (z)dz+A(Q )// f(t)dtdz

V(V. + 1)/ / ./ fla)dsdtdz + 2m(I )/ f(z)dz

3
“om(I 1)/’o+1 f(z)dz

(7
n

1
- d. ;
-iz:l '"(Ii)/’.‘ |d; +2¢,z|dz

n-—1

+ Z m(I, )/ f(z)dz — 2m(I 1)/ Liys f(z)dz
12 .
+»4(9.‘+1)//“i+1 f(t)dldz_m/ /n,. f(t)dtdz

+V(V) / / / f(.)dsdtdz-v(vm) / / / f(s)dsdtdz

S
- d, +2ez|d
z:l "‘(li)/’.‘ 1d,+2ez|dz

n—1
+ 3'.;1 lﬁ / 1, f(@)dz~ m_(11_+,‘) / 1;,, f@)d

n—1
+ 6:’;1 lm—(’,-—) / 1, f(@)dz - fa.) / / o, f(t)dtdz

+12Z A(ﬂ.+1)// iyy J(Ddtdz - A(Q)// f(t)ydtdz




482 J. DING AND T.T. LI

#1030 i / / / v, fepsdtdz

__—V(Vt“)///".u f(s)dsdtdz
n

.
Sigl M(I.)/'. |d, + 2,z | dz

1 1 1 1
+3Vvf+6VSfi+12V 10V
0’ Of 0!+ Of

n
= 1 1
=2 i [, 14+ 2ozl de 311

Let’s estimate the first term of (7). For i=1,.. ,n,m(, )I, |d, +2e,z | dz is the variation of Q,f on I,.
For simplicity, we omit the subscript Let o(z)= T(c +dz +ez?),I =[a,b]. Without loss of
generality, assume e >0. Then (= -4 is the minimal point of ¢ and ¢( 2:) m:” (c—;—) is the
minimal value of p. If a < ¢ <b, then

ye= ﬁ (¢(a) + (b) - 2¢(¢))

2
:mb (c+da+¢az+c+db+cb2-2c+%)

~—

ﬁ [d(a +b) +e(a® +b%) + ‘2‘—:]

~

=[ - 2e((a+b) + e(a® +b?) + 2¢¢?] /m(I)
= e [2¢3 — 2¢(a + b) + a® + 4] /m(I)

= ¢ [(a— )% +2ab ~ 2¢(a + ) + 2¢%] /m(I)

Wll_) [em(I)? + 2e(a = ()(b - ()] < em(I)

_(5_[ i / (z-2)2f(z)dz — / f(z)dzJ

530';%/1 f(:)dz——A—%T)//n f(t)dtdz +

<90V f.
<90yf

V(2V)//,/V f(s)dsdtdz

If ¢ ¢ (a,b), then

—_1 -
Yo =i le@=p®)| = Zdrldb—a)+ et ~a?)|

= |d+22| =;1(2I—)|/'(:—§)f(z)dz

56'53—5/1 f(z)dz—ﬁ//n f(t)dtdz

<6Vf<0Vf.
S6yf<90ys

Substituting into (7), we have
1 1
gQ,,fsso'Z yr+sty =121y s (Q.ED.)
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LEMMA 4.4. Let P, =Q,oPg| a, where Pg is the Frobenius-Perron operator associated with
5:(0,1]-{0,1]. Then P, has a nontrivial fixed point in A,,.

PROOF. Denote by P, the representations of P,:A,—A, under the basis {1;,21,,z1,}?_,. Let
¢=(L 2,91 L339, - - -1 L, E,,§,) Where §; = {z? + z;z;_, +2}_,). Then fori=1,..,n,

- n
€Pa)aii—1)41= .):l(c:'(li)+i,~d,-(l.)+a,-e,<1.~))
] =

n

= 3 [1Pstdene = [ psiems

i=1
1
= /ol‘(z)dt =1,

n
(Padgis-1)42 = .Zl("'i(‘?-') +2;d (1)) +3je,(21,))
J =
n
= jz=:l / 1 (Ps(z1))(z)dz = / ;(Ps(zl,.))(z)dz
= /‘zli(z)dz =1,
1]

n
CPo)s, = Y (c)(2*1) +2,d,(2%1,)) + §je,(z%1,))
i=1

n
= Y [ (Pstdz = [ (Ps(z1))2)z
j'—"l 7 0
1
=/ 2?1 (z)dz = §,.
1]

That is, ¢ is a left eigenvector of the matrix P, corresponding to the eigenvalue 1. Therefore, there

is a nonzero ¢ € ®%" such that P,c =c. Thus P, has a nonzero fixed point in A,. (Q.E.D.)
THEOREM 4.1. Let $:[0,1]-{0,1] be piecewise C? and M =inf|S | >242. Let {f,} be a

sequence of fixed points of P, in A, with || f,|| =1. Then there exists a subsequence {f, } C {J,}

convergent to a fixed point of Pg. l
PROOF. By the Lasota-Yorke inequality in the previous section, we have for any n

1 1

1
¥fn=YPufn=YQuPsf,<121Y Psf,

o<~

1 1
<t2t{al £l +)?7\6/,,)=121a+ﬂ\6f,.

with g = %’- < 1. Hence

[T

fn511—2_17‘f< + oo.

From the Helly theorem there is a subsequence {fa}cifa} which converges to some f € L}(0,1).
From
WPsf—fll < Wf=Ffnll + 1 fn,—QnoPsSall
+ " Qniopsfn‘—Qn.OPSf "

+ 1QaoPsf = Psf |

it is obvious that Pgf = f. (Q.E.D.)
The proof of the following corollary is the same as that of Corollary 3.1.
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COROLLARY 4.1. Let 5:[0.1]—[0.1] be piecewise C? and inf|S| >1. Then, a sequence of
functions can be constructed from piecewise quadratic functions which converge to a nontrivial
fixed point of Pg.

5. CONCLUSIONS.

In this paper, the piecewise linear and piecewise quadratic polynomial projection methods are
proposed for the computation of invariant densities of the Frobenius-Perron operator. The
convergence of the methods is proved for a class of measurable nonsingular transformations of the
unit interval into itself which satisfy the condition of the Lasota-Yorke theorem. Our proof is based
on the following observation: The projections Q,:L(0,1)—L(0,1) defined in the previous sections
satisfy

1) 1Q.ll M, M is a constant.

(2) Q.f—f strongly for any f € L'(0,1).

(3) viQ.f<Cviffor any f € L'(0,1) of bounded variation, where C is a constant.

(4) Q,oP has a nontrivial fixed point £, for each n.

In general, the projection method for the Frobenius-Perron operator equation Pf—f=0 is
convergent if the "discretization” operators Q,, satisfy the above four requirements, as the following
theorem shows.

THEOREM 5.1. Suppose the sequence of operators Q,, satisfy the conditions (1) through (4)
above. Then a sequence of approximate functions can be constructed which converge to a
nontrivial fixed point of Pg when S:[0,1]-[0,1] is piecewise C? and inf | S| > 1.

The proof of this theorem follows exactly the same line of arguments in Theorem 3.1 and
Theorem 4.1, in which M =2, C =13, and M =62, C = 121, respectively.

Based on the convergence analysis of the piecewise linear and piecewise quadratic polynomial
approximation methods, we believe that for general higher order piecewise polynomial projection
method, the convergence can also be established, although it will be more tedious and complicated.

It is important to estimate the convergence rate for a convergent numerical method. The
further research will be focused on this aspect for our projection methods for Frobenius-Perron
operator equation or more general Markov operator equation. For solving honcompact ope: ator
equations in nonreflexive Banach spaces, this field is not fully developed, although is essent:al to

physical sciences.
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