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ABSTRACT. We construct in this paper the first order and second order piecewise polynomial

finite approximation schemes for the computation of invariant measures of a class of nonsingular

measurable transformations on the unit interval of the real axis. These schemes are based on the

Galerkin’s projection method for L-spaces and are proved to be convergent for the class of

Frobenius-Perron operators.

KEY WORDS AND PHRASES. Projection method, Frobenius-Perron operator.
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1. INTRODUCTION.
Many problems in physics and engineering are concerned with the mathematical problem of

existence and computation of invariant measures of measurable transformations on measure spaces

[2]. For a class of nonsingular measurable transformations from [0,11 into itself. Lasota and Yorkc

[3] established the existence of the invariant measures. Specifically, if $: [0,11-[0,1] is a piecewise C

stretching mapping, then the "time average" - P! converges strongly in LI(0,1) to some I*
of bounded variation with P’*= ’* for any density function f LI(0,1). Here P is the Frobenius-

Perron operator associated with S. In [5], Li and Yorke gave a sufficient condition for the

uniqueness of this invariant density and thus the ergodicity of the mapping.
A straightforward numerical way to calculate the invariant measures can be obtained from the

classical Birkhoff’s. Individual Ergodic Theorem which uses the Koopman operator instead of the

Frobenius-Perron operator. By Birkhoff’s theorem, if is an ergodic invariant probability measure

under $, then for any measurable set A [0,1], the time average

n-

n-oolirn E XA (S(z)),
k=0

which measures the "average time" spent in A under iteration of S, exists and is #(A) for /-almost
all z. Here XA is the characteristic function of A( on A and 0 off A). Hence, one might choose

almost any z in [0,1] and calculate the average time of the iterations S(z) recurring in A to obtain

(A). However, computer round-off error can completely dominate the calculation and make the
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implementation difficult. A typical example is given in [4]; and for the purpose of overcoming this

difficulty, Li proposed in [4] a rigorous numerical procedure which can be implemented on a

computer with negligible round-off error problem. The piecewise constant approximation is used to

reduce the original infinite-dimensional fixed point problem to the fixed point problems of

stochastic matrices, thus solving a conjecture of Ulam’s [8].
The numerical procedure proposed by Li has two features. The first one is that it actually

belongs to the category of Galerkin’s projection method, although originally it was obtained by the

probability analysis. The second one is that it uses a sequence of finite rank Markov operators to

approximate the Frobenius-Perron operator. Since Frobenius-Perron operators are also Markov

operators, this kind of approach is natural from the viewpoint of both theory and practice. In this

paper, we propose the first order and second order piecewise polynomial approximation schemes for

the computation of fixed points of Frobenius-Perron operators, based on the Galerkin’s projection

method. The numerical experiments of Kohda and Murao [1] based on a general piecewise

polynomial Galerkin approximation scheme show that the first order and second order piecewise

polynomial approximation methods are much more efficient than the piecewise constant

approximation in [4]. But in order to prove the convergence of their methods, the boundedness as

well as the uniqueness of the invariant density are assumed which makes the convergence analysis

much easier. In [1] the convergence theorem is stated and its proof is based on the variation

analysis of best piecewise polynomial approximations to functions of bounded variation under the

L2-norm along with the fact that every orthogonal projection in a Hilbert space has the operator
norm 1. Without the assumption of boundedness of invariant densities, we show in this paper with

different approach that our scheme is convergent in L1, which is not a Hilbert space, for the class of

nonsingular measurable transformations satisfying the condition of the Lasota-Yorke theorem. The

method of finite Markov approximations will be developed in further studies.

The paper is organized as follows. In Section 2, we outline some background material.

Sections 3 and 4 are devoted to the first order and second order piecewise polynomial project.ion

approximation methods and their convergence analysis, respectively.
2. FROBENIUS-PERRON OPERATORS AND PROJECTION METHOD.

Let I =[0,1] and S be a transformation from I into itself. For A C[0,1], we write S-I(A! for

{z:$(z) E A}. The Lebesgue measure on [0,1] will be denoted by m. Denote by LI(0,1) the spat,, of

all integrable functions defined on [0,1] with respect to the Lebesgue measure m. L(0,1) is a Banach

spze with norm I f[f(z)[dz. Let S: [0,1]-,[0,1] be a nonsingular measurable transformation,

i.e., for any measurable subset A of [0,1] with re(A) 0, we have m(S-I(A))=0.
The operators Ps: L(0,1)-,L(0,1) defined by

is called the Frobenius-Perron operator associated with $. If there is no ambiguity, we shall write P

for Ps" By Ron-Nikodym Theorem, the Frobenius-Perron operator is well defined when S is

nonsingular [2]. For l E L(0,1), the measure t(A)_= tf(A) J’a f(z)dz is invariant under $ if and

only if Psi I- Here the invariance of measure t (under S) means t(5’-l(A))= t(A) for every

measurable set A. Thus, to calculate the invariant measure for S, we may calculate instead the

fixed point of the Frobenius-Perron operator. More precisely, we need f LI(0,1) which satisfies

Psf f"
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We list some basic properties of Frobenius-Perron operator Ps without proof. For more

detailed discussion of Ps, see [2].
(1) Ps is a Markov operator, i.e., Ps is linear and maps (positive) density functions to

(positive) density functions. Thus Ps 1.

(2) For the n-th iterate Sn, Ps, (Ps)""
We give here a brief description of Galerkin’s projection method in Banach spaces (see [6] for

more details). Let X be a Banach space. Suppose M and Iv are both closed subspaces of X. If
X M + lV and M f3N {0}, then we say X is a direct sum of M and IV and M and IV are

complementary to each other. In this case, we may define a linear operator Q: x-x as follows,

Qz u if r u+v,u M, vq N.

This operator is continuous and satisfies 0 O. We call 0 the projection of X onto M along IV.

Now, let X and Y be two Banach spaces, T:X.--,Y be a bounded linear operator from X to Y,
and y Y. We want to solve the operator equation

Tz=y

The general idea of projection method is as follows. Choose two sequences of finite-dimensional

subspaces X,, and Y,, of x and Y, respectively. Let {0,,} be a sequence of projections from Y to Y,,.
In x,, we want to find z(") such that Q,(Tz(") )= 0, or

OaTx(n) QnY.

If we choose a basis of X. and a basis of Y,, then the above approximate operator equation of finite

rank can be written as a system of algebraic equations. Thus we can use the usual numerical

methods to solve the linear equation and obtain the approximate solutions to the original problem.
This numerical procedure is referred to as the projection method. In particular, if X Y and if we

choose x,, Y,, and the same basis in Y,, as in x,, then the corresponding projection method is

called the Galerkin’s method.

3. PIECEWISE LINEAR PROJECTION APPROXIMATION OF FROBENIUS-PERRON
OPERATOR.
A transformation $: [0,1][0,1] will be called piecewise C, if there exists a partition

0 ao < a < < a of the unit interval such that for each integer k r, the restriction

of $ on the open interval (%_ 1,%) is a C-function which can be extended to the closed interval

[%_ 1,at] as a C-function. S need not be continuous at the point a.
Assume ,q: [0,1]-,[0,1] satisfies the condition of Lasota-Yorke theorem. That is, ,q is piecewise C

satisfying inllS’(x) > 1. In this section, we look for the approximate solutions of Frobenius-Perron

operator equation Psi ! in the space of piecewise linear functions.

Divide I =[0,1] into n subintervals 11, I I,,. For i= n, let I =[::i_l,zd and
Denote by A,, the 2n-dimensional subspace of LI(0,1) spanned by the basis {li, zli}=l, i.e.,

A,, L(0,1) is the set of all functions which are linear on each subinterval li.
Define Q,,: LI(0,1)--,A,, by requiring that for n,

< f- Qnl, 1, > 0

and

< I Q,,I, zl, > 0.
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Here for g LI(0,1) and h L(0,1)= [L1(0,1)]*, < g,h > f g(z)h(z)dz. The following lemma shows

that these requirements uniquely defines Q. and implies that Q. is a projection from L1(0,1) to A.
along +/- A. {g L1(0,1): < g,h > 0 for all h A.}. Because of the similarity in the "orthogonality

condition" with the L2-space case, we may call .:Li(0,1)A. the orthogonal projection, even

though its norm may not be 1.

LEMMA 3.1. Let , =(x,_ +,)/2,i= n. For any l L](0,1), we have

Q-f E (c, + d,z)l,
i=1

where for n,

fl, f(z)dz- 12i
re(l,)2 f (z- ii)f(z)dz

12
m(li)2 fl, (x

(1)

PROOF. Let Q.I .= i(c, + d,z) li, then

< Q.f, > c < li, > + d, < zli, > /1rot.i)ci + ’re(l,)d*

< Qn.f, zli > ci < li, zli > + di < zli, zl >

", + mT.r,+ d,.

From the condition of the orthogonal projection, we have

(2)

The equation (2) has a unique solution

12,
ci II+ f(x)dX-m(li)2 fl+ (z-

di= 12
,,,or) Iq(’- ’)I(:)d:-

(Q.E.D.)

The next lemma establishes the uniform boundedness of the sequence Q,.
LEMMA 3.2. For all., Q. < 2.

PROOF. Given n and/" L(0,1),

Q.! (Q,,.f)(x) dx I(,:, +
o i=1

/+q m---(+)Ic,’l"d,’zl d’"
i=I

By (1), on the subinterval I,, Qaf only depends on the value of f on Ii. Hence it is enough to

estimate one of m-))’zl ci+d,zld:r. Without loss of generality, assume di # 0. For simplicity, let

I I [a,b], :i, c % d d and f be defined on I. Let p(z) (c + dz)/m(1).
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First of all, let us assume l _> 0. If so _> 0, then from the first equality of (2),

f, I (z)ld =/, so(z)dz 1 / (c + dz)dz

(c / dz) I2d 2din(l) [(c + db) (c + da)2]

[2cdm(l) + d2m(1) 2] c +d2din(l)

/I f(z)dz-- /i ,f(z) ldz.

If so : 0, then from .the fact that so is the best approximation to I among all linear functions on [a,b]

under LLnorm if l E L(0,1), we see that so cannot be non-positive. Therefore so must have a zero

z - in (a,b). We assume so(b) > 0 and so(a) < 0. The other case can be treated similarly. Thus we

have

Iso(z) ldz=1/2[(z-a)lso(a)l +(b-z)lso(b)l]

[(b + )so(b) + (a + )so(a)],

m(l)2fl f(z)dz m(I)
b+ 12fi (z- )f(z)dz + 2

m(1)2l .f(x)dx m(1)
a + 121 ( )I(x)dx 2

so(b) 1 (c + db) 1 / f(z)dz +6 / (z )f(z)dz],

so(b)

Hence,

m(I)2fl f(z)dz re(l)Iso(z)Idz--1/2 1( 12./.1 (z Y.)f(z)dz/I

.re(i)(1 / f(z)dz + 6 / I
(z )f(z)dz)

m(I):f f(z)dz m(1)+ 12fl (z- )f(z)dz-T

re(l)(1/ f(z)dz-6 / I
(z )/(z)dz)}

m(l)[]l f(z)dz] 3 / (z- )f(z)dz
12Ii (z Ye)f(z)dz +

m(I)[fI f(z)dz]- 12fl (z- )/(z)dz +’ /I f(z)dz.
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Note that - E (a,b), we have

It follows that

a < - m(l)2fl f(z)dz
< b.

12fl (z- .)f(z)dz

Therefore

m(1)2f f(z)dz re(l)
1211 (z- .)f(z)d;r. < --a T"

have

For general ! E LI(1), write f =f+-f- where f+ =maz{f,0} and f--maz{-f,O}, and we

/I /(z)ldz =/ IQfldz---/z IQf+-Qf-ldz

<_ /. IQf+ ldz+ /z IQf- ldz

<2/ f+d+Zf f-dz=2f Ifldz

where Q:(l)Span(1,} he ve mentioned orthogoM projection.
From the ave estimate, we obtn

/’QnI
o

I(Qnf)(z)l dz I, m---(,) ci + dir. dr.
i=1

z, If(z)ldz=2 If(z)ld=211fll,

i.e., for n, Q, 2. (Q.E.D.)
LEMMA 3.3. en mesh (A) maz{m(li):l }--O,QII for I LI(0,1)
PROOF. Given /Ll(0,1) d >0, there ests a continuous fction g such that

f- < e. Now

n/Q- ] (Q.g)(y)-g(y)ldy
i=1

En / llim___i) (ci+diY)_g(y)[dy
i=1

12i (zrn(ii)3 / I,
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i=1

/ 12 /+ ,i,(t,P(=1

471

Since is uniformly continuous on [0,1], when mesh (A.) is sufficiently small, for any

z,y 6. Ivi n, we have Ig(z)-a(p)l < . Applying H61der’s inequality, we get

+ 12 (z_i)Zdz /re(l,)3 I,

[/li 9(z)Zdz] 11 "/I, IP-ildP

[/li9(z)2dz] 1/2

For n sufficiently large, (It, 9(z)dz)1/ < -3,i n, hence,

Together with Lemma 3.2, for n sufficiently large,

II QJ- f _< Oaf- Qng + Qn9- g + II 9- l II
_<211f-gll ++ II/-gll

This proves limn_..ooOnf f. (Q.E.D.)
The following result is the key to our convergence analysis.

LEMMA 3.4. For any f G LI(0, I) of bounded variation and for all n

vQnf < 13 f,
0 0

where v if is the variation of f on [0,1] (for the definition of variation, see [7]).
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PROOF. By definition, Q.f ,n=t(c,+diz)lo where {c,,d,} are given by (1). Since Q.f is

piecewise linear, its variation is given by

vQnf- [(ci+d,z,)-(ci+d,z, 1)1
0 i=

n-I c, + d,z, c, + + d, + lZi

n n--I

i=1 i=1

c c, +1 d(.rn_O di.+.l_ ,
n n-1

i=1 i=1
/ f(z)dZ_m(l 1"--- / li f(z)dzI, + +1

m(I+1) q+
12. / (z-(z i + )f(z)dz m(li)3

12zi / (z_i)f(z)dz 12z, /+m(Ii)a li m(li+)3 li+ (z- + t)f(z)dz

n n--1

i=1 i=1
/ f(z)dz- 1. / f(z)dzq ,-(+) z,+x

12(. + 1.- zi) / (z i + 1)f(z)dz+
m(Ii+l)3 Ii+1

+ m(li)3 / Ii

n n--1

i=1 i=1 f f(z)dz / f(z)dz

, /m(li + 1)2 I,+ (z- i + l)f()dz+ /I (z- i)f(z)dz

From the definition of d we have

vQ.f_< Idol +0 i=1 i=1
](z)dz /m(Zi+a) z+l

n-1

n n-1
_< Id, + .)’
i=1 =1

f(z)dz /m(li + 1) li +

+ .]’ Id, I.
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It is easy to see that the middle summation of the above inequality is not greater than v 0l (for a

proof, see [4]). Hence,

VQnf _<2 Id.I 4- 1Vf.
0 =1 0

Now we estimate ,"_ [d, [. Let F,(z) f.,_ lf(t)dt, then the formula of integration by parts
for the Stieljes-Lebesgue integral [6] gives

m(li)2 I,

12[ ’ -/ F,(z)d(z ,,)],() (- ,)F() .,_ ,

where l’t, {(z,t):zi_ _< z _< ri, r,_, _< < z} is a triangular region in the (:,t)-plane and A, 1/2re(l,)
is the area of ni. With the same reason described in [4], we obtain

rl I’1

i=1 i=1

Therefore,

1
V Q,f < 13 9 f. (Q.E.D.
0 0

Let Pn QnP$IAn, where PsIAn is the restriction of PS on An, then Pn:An-An is linear. We
want to find the fixed points of P. in A.. For this purpose, we first investigate the representation
of P. under the basis {li, zli}’= 1"

LEMMA 3.5. For i=1 n,

where

P,1, .Z c./(li)lj+ d./(1,)zl.
1=1 j=l

P.(zli) c(zli)I, + d(zli)zl,.
j-1 j--1

12j
(- )(Pl(z)z,(G) J5

dj(li) m(112)2/I (z-
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12

PROOF. By definition, P,1, Q, Psl,,P,(zl,)= Q, Ps(l,). From the definition of

Ps, II(esl,)(z)dz
m(S l(i) n i,)

re(l,)
Combined with Lemma 3.1, we have the result. (Q.E.D.)

LEMMA 3.6. P, h a nontriviM fixed point I, in A,.
PROOF. t C {c,) {%(1,)), C (c, (cs(zl,)), D1 (d,) (d,(1,)), D2 {d,) (d(xl,)),

where %(1,), d(1,), %(zl,) and d(l,) e in Lemma 3.5. Then the function

I,()= =:,l,+=d:l, is a fixed int of P, if d only if the column vector

(c,...,cwd d,)T is a fixed point of the matrix

We first prove that the row vector (1 1, ,) satisfies I/’,. In fact, from the first equality
of (2),

j=l j=l
(P1,)(z)dz- J= /s (I) 1,(z)dx

m(s z(!) n i,)
I,

E (c(zli) + Ycidj(zl,)
j---1 j=l

"/ /’S ’{ zl,(z)dz= zl,(x)dz
j=l

Is) 0

d
i, .(i,) 2

Hence the matrix P. h eigenvMue d it follows that .= h a nontriviM soluhon.

(Q.E.D.)
[3], Lota d Yorke prove that, if :[0,1][0,1] is a piecewise C2-function satisfying

M in] > 2, then for y I e L(0,1) of bounded viation, vPsl a + B v with > 0

d B < 1. We shMl cM1 this inequMity the Lota-Yorke inequMity. With this result, we c

prove the following
LEMMA 3.7. Supse S: [0,1][0,1] is piecewise C2 d MnlJJ > 26. Then the suence

vI} is ded th I the fixed ints of P satisf#ng I, 1.

PROOF. Since I is piecewi line, it h unded viation. From the Lota-Yorke

inequMity, Pl, is a function of bounded viation. From the se inequMity d the fact that

P,l Q P/, using Lemma 3.4, we obtain

Vfn= IvQr, Pfn<131vpfn < 13(11/.11o o o o

13 + 133 vl fn 13+-fw0 0
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By assumption, M > 26, therefore for all n

13cv y, < < oo. (Q.E.D.)o -2/

Now we can prove our convergence theorem for the first-order piecewise polynomial Galerkin

approximation scheme for Frobenius-Perron operator equations.

THEOREM 3.1. Suppose S:[0,1]--[0,1] is piecewise C and M =inflS’l > 26. Then for any n,

P, has a fixed point f, with f, in A, and when mesh (A,)-0, there exists a subsequence

{f,,} {f,} such that f, converges to a fixed point of Ps.
PROOF. By Lemma 3.7 and the Helly Theorem [7], there is a subsequence {f,,} c {f,} which

converges to some ! L(0,1). Now

Psf f S f f., + f.,- Q., Psf.,
+ Q., Psf., Q., Psf + Q., o Psf Psf II-

Since }1Q"i Ps is uniformly bounded and Q"i o PSfn, fn,, Lemma 3.3 implies that the right
hand side of the above inequality approaches zero as i-.oo. Thus Ps! I. (Q.E.D.)

COROLLARY 3.1. Suppose $: [0,1]-[0,1] is piecewise C and M =inYlS’l > 1, then a sequence

of functions can be constructed from piecewise linear functions which converge to a fixed point of

PROOF. Choose t > 0 such that Mt > 26. Let 0 St. Then P,(,) has a fixed point y{*) of unit

length in A,. Define

lk-1, - ., (Ps)%),
]=0

where f"i is a convergent subsequence of {f,} from the above theorem. Then 9i converges, bv

Theorem 3.1, to

1%1(ps)Jf()

where f(’) is a fixed point of Sk. This g is a fixed point of Ps. In fact, since (Ps)kf()-
f() P f() f(),

PSg {Psf() +’’" + (Ps)/=/()} 9. (Q.E.D.)

4. PIECEWISE QUADRATIC PROJECTION APPROXIMATION OF FROBENIUS-PERRON
OPERATOR.
In this section, we shall generalize the piecewise linear approximation of the previous section to

the piecewise quadratic one, that is, we look for the approximate solutions of Frobenius-Perron

operator equation in the space of piecewise quadratic functions. Let

z0=0<z <.--<z,_<z,,=l be a finite partition of the interval [0,1] as before. For
1,...,n,I [zi ,zi],i zi- + zi

2 Let mesh (A,) ,naz m(li) and A, span{li, zli, zali}= where

Xli. A C L1(0,1) is a subspace of dimension 3n.

Define the projection Q,: L(0,1)-.A, by the orthogonal conditions, for

<f Q.f, 1i> O, <f Q.f, zl,> o, <f .f, z21i> O.
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Let Q,I= yy=,(%+d,z+%z2)lj. We show that {c,d,,e}’]= are uniquely determined by the

above conditions.

For n, straightforward calculation gives

z + z,z, + z,
3re(l,) -le"

<Qnf, x21,> x, + xtx, + lc, + ,(, + ::2
,.(,) )d,

5m(l,)(x
By the orthogonal condition, we have the following equations

(3)

Eliminate c, from the above system, we have

(4)

The solutions are given by

.2 12i 3zixic flif(z)dx-m(i,)2fii:f(x)dz- re(It) flif(x)dx /.

60
re(I,)41.z, + i,_ 1]/I/(= i)f(=)d

d, 12 r td= 18}
+=(4)I,f(=)d=-m([i)2I’

360 t ’z-,)f(z)dz
m(Ii)4 ’lit

180e, (ii)4y,[(- i) -(Ii)e]]()d.

(5)

LEMMA 4.1. Q. _< 62 for all n.

PROOF. The value of Qn.f in the subinterval I, depends only on the value of / on I,. So it is

enough to estimate the integral fiii(Q,f)(z)lda:. Let I li, l [a,b],ff: a__b and let

(z)= (-)c+d:+ez) be the orthogonal projection of f to Span{li, zli, z211}. First of all, assume

f >_ 0. We consider different cases.
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(i) p _> 0. Then from the first equality of (3),

f IP(z) ldz= f (x)dz- f (c4-dz4-ez2)dz
J JJ

[cz+z e_b

--m--- +z la=c+d,+(a2+ab+b2)e

/ Y6r)dz= / I.V(:)ld.

(ii) 0. Then p has distinct zeros on the real axis. Without loss of generality, we may

assume > 0. Consider different distribution of the zeros. Let 1 and 2 be zeros of , with 1 < 2"
Firstly, assume (1 (a,b) and 2 - (a,b). Then ( +(2 --,d 1 "2 , and

--0

3

Hence (d2-4ec)

From the last equality of (5), it is easy to see that

10 / f(z)dr.
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Therefore,

Secondly, assume there is only one zero of p in (a,b), say ( q (a,b) and (2 $ (a,b). In this case,

/ Ip(z)ldz= [/cl /1(c+dz+ez2)dz+ (c+dz+ez)dz

+ c((-)+((-)+g((-3)

6+ +b+ )

+
m(1)

l()a + () + +



SOLUTIONS OF FROBENIUS-PERRON OPERATOR EQUATIONS 479

From (5) we have

Hence,

/ I(x) ldz’- / f(z)dz+(b-(l)3 (b-(l)Z
,-() ,()

12 f (b-x)l()dm(l)3180 (z )2](z)dz-m-
9

m(l)/ f(z)dz]
/ f (b-Q) l(z)dz+9f l()dz< /(z)dz+-em(l) +

_<[1+4"10-1-12+9]/I .f(x)dz-62/ f(z)dz

=62/ f() d.

Therefore for I > 0, , < 6 f II. For general f LI(0,1), consider f+ and f-, respectively, th,,

same inequality can be achieved. (Q.E.D.)
LEMMA 4.2. For any I e/;(0,1), if mesh (An)-*0 then

QJ’I under the L norm.

PROOF. First assume ! Lz(O,I) CLx(O, 1). From the way QJ is "defined, obviously

f Qnf [[ rain{ f [[ 2: g An} where [[ [[ is the L2-norm. Hence, when mesh

(An)’0, l--n! [[ Z-.0, and the Cauchy inequality Qnf- l [[ < Qnf f z gives [[ Qnf [[-,0.
Now for ! LI(0,1) and > 0, there exists L2(0,1) such that f g [[ < e. From

II Qnf f < Qnf Qng II + Qng g + II g !_
62 f g + Qng + g f II

and II Qng -,0 we obtain Qnf f II-0. (Q.E.D.)
LEMMA 4.3 If f LI(o, 1) is of bounded variation, then for all n, v Qnf <- 121 v f.
PROOF. Since Qnf is piecewise quadratic,

Qn.f _, (ci + d,z +
i=-1

n

i__ l(l)/li [di+ 2e’zldz
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n-I c, + d,z, + e,,
re(l,)

, [d,+2e,zldz

n-1

+ ?,) re(t, + ) ’

n-1

/m(/, + ) ,+

(z , +

ti m(l,+) ,+

m n--1= m----(i) di + 2e,z + E
i=1 i=1

e / ( ,)/()d
m(l + 1) li +

+(4)2 , .,(,)3 ,

f30
) , (-+)/()d+m(l+ +1

31/ f(z)dz[-m(,+) ;i+

Let fli {(z,t):t e l’,,z_ _< _< z},V, {(z,t,r):z l,z,_ <_ < z,z,_ _< z _< t}.
integration by parts formula for functions of bounded variation yields

(6)

Again, using the
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( i:’ + ):l()d 4re(l, + l)m(l,+) ,+

-2A(a,+) l(t)dtdz

re(l,)3 I, 4re(Is) I, 2A(.,) O, f(t)dtdz

+ VV,)/ / / V, f(s)dsdtdz’

where A(,)= m(I) is the ea of fl, d v(V,)= m(l,)3 is the volume of v,. Substituting into (6),
we have

.
/vQnf Ido+2e,zldz

0 i=1 I,

n-1
6 / f(z)dz 3 // f(t)dtdzre(l, + 1) li + +

3 f(t)dtdz + 15 f(z)dz

15 f(t)dtdz + 10

15 f(z)dz + A(’, 1) fl, f(t)dtdz2rn(li+l) Ii +1 + +

V(V + 1) v, +

3/ y(z)dzl-2m(li+ 1) 1,+1

li di + 2eiz dr,

n-1
9 / f(z)dz- 3 / f(z)dzI 2m(I+1) Ii+l

18 f(t)dtdz
++a,:, ,,//o,+,

f s)dsdtdz

li [d,+2eiz [dz

1/ f(x)dzre(I, + 1) li +

i= A(fi+l) ni+l

(7)
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i=1

f(s)dsdtd=

<-
i=I

+ 31V f "l’61V f "l 12vlf-l" 101Vf
0 0 0 0

i=] i 0

Let’s estimatethe first term of (7). For i= n,-)fi, In, + 2e,rldr is the variation of Qnf on I,.
For simplicity, we omit the subscript. Let o(z) m--/) + dz + ez2),l In, hi. Without loss of

generality, assume > 0. Then 4= - is the minimal point of o and o (_)=1 (c-)is the

minimal value of 0. If a < ( < b, then

[- :z<(,, + b) + (,, + bb + 2<]/,()
[2( 2((a -t- b) -I- a -t- 2] Ira(l)

[(. b) -I- 2ab 2((a -I- b) -I- 2(2] Ira(Jr)

--m----

-< 3 ImO/t f(=)d-A-/ /. f(t)dtd=+ V---V)/ / Iv f(s)dsdtdz[

If (a,b), then

<6vf <90
I f

Substituting into (7), we have

V nf < 0-. V f 4-31 1V f 121 V f.
0 i--’l I, 0 0

(Q.E.D.)
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LEMMA 4.4. Let P, Q,oPs[ A,, where Ps is the Frobenius-Perron operator associated with

S: [0,1]-,[0,1]. Then P, has a nontrivial fixed point in A,.
PROOF. Denote by/’, the representations of P:A-A under the basis (li, zl,,z21,}= l- Let

( (1,fl,l,l,f,2, ,l,fn,. where i Z_l .....(X + ZiZ- + ). Then for

(,):, (%(zZli) + jdj(z21i) + yey(z21i))

/:(Ps(zl))(=)dr=
j=l 0

JO li(z)dz .
That is, ( is a left eigenvector of the matrix 1’ corresponding to the eigenvalue 1. Therefore, there

is a nonzero c such that/’c c. Thus F has a nonzero fixed point in A,. (Q.E.D.
THEOREM 4.1. Let 8:[0,1]--,[0,1] be piecewise C and M-inflSl >242. Let {f} b- a

sequence of fixed points of P in A with fn I. Then there exists a subsequence
convergent to a fixed point of Ps.

PROOF. By the Lasota-Yorke inequality in the previous section, we have for any n

f. P.f. 1V Q.oPsf. < 121 V P
0 0

0

with - < 1. Hence

121V fn < < +0o.
0 -l-

From the Helly theorem there is a subsequence {f.} C {I.} which converges to some f e/;1(0,1).
From

Psf- f <- f- fn + fni-QniPsfn
/ QniPsfn Qn,Psf
+ il Q.oPf-f

it is obvious that Ps! I. (Q.E.D.)
The proof of the’following corollary is the same as that of Corollary 3.1.
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COROLLARY 4.1. Let S:[O, 1]--[O, 1] be piecewise C and inliS’l > 1. Then, a sequence of

functions can be constructed from piecewise quadratic functions which converge to a nontrivial

fixed point of ,as
5. CONCLUSIONS.

In this paper, the piecewise linear and piecewise quadratic polynomial projection methods are

proposed for the computation of invariant densities of the Frobenius-Perron operator. The

convergence of the methods is proved for a class of measurable nonsingular transformations of the

unit interval into itself which satisfy the condition of the Lasota-Yorke theorem. Our proof is based

on the following observation: The projections Qn:L(O, 1)-,LI(O, 1) defined in the previous sections

satisfy

(1) Qn <_ M, M is a constant.

(2) QnI-I strongly for any I e Ll(0,1).
(3) 0Q,J _< evil for any I L(0,1) of bounded variation, where C is a constant.

(4) QnoP has a nontrivial fixed point In for each n.

In general, the projection method for the Frobenius-Perron operator equation PI-I =0 is

convergent if the "discretization" operators Qn satisfy the above four requirements, as the following

theorem shows.

THEOREM 5.1. Suppose the sequence of operators Qn satisfy the conditions (1) through (4)
above. Then a sequence of approximate functions can be constructed which converge to a

nontrivial fixed point of Ps when S: [0,1]-,[0,1] is piecewise C and in/I S" > 1.

The proof of this theorem follows exactly the same line of arguments in Theorem 3.1 and

Theorem 4.1, in which M 2, C 13, and M 62, C 121, respectively.

Based on the convergence analysis of the piecewise linear and piecewise quadratic polynomial

approximation methods, we believe that for general higher order piecewise polynomial projection

method, the convergence can also be established, although it will be more tedious and complicated.

It is important to estimate the convergence rate for a convergent numerical method. The

further research will be focused on this aspect for our projection methods for Frobenius-P,’rron

operator equation or more general Markov operator equation. For solving noncompact op,’: ator

equations in nonreflexive Banach spaces, this field is not fully developed, although is essentt.l t()

physical sciences.
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