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ERROR ANALYSIS OF AN HDG METHOD FOR A

DISTRIBUTED OPTIMAL CONTROL PROBLEM

HUIQING ZHU AND FATIH CELIKER

Abstract. In this paper, we present a priori error analysis of a hybridizable

discontinuous Galerkin (HDG) method for a distributed optimal control prob-
lem governed by diffusion equations. The error estimates are established based

on the projection-based approach recently used to analyze these methods for

the diffusion equation. We proved that for approximations of degree k on con-
forming meshes, the orders of convergence of the approximation to fluxes and

scalar variables are k + 1 when the local stabilization parameter is suitably

chosen.

1. Introduction

Optimal control problems governed by partial differential equations arise in
many scientific and engineering computing problems such as aerodynamics [10, 23],
medicine [1, 14], and mathematical finance [2, 9], to name but a few. The math-
ematical foundations for problems of this type were set down by J.L. Lions in
the 1960s [16]. In the past few decades, there has been a considerable amount of
work concentrating on numerical solutions of optimal control problems [8, 21, 24].
Among different numerical methods, finite element approximation of optimal con-
trol problems have been extensively studied. Some a priori and a posteriori error
analysis can be found in [5, 11, 12, 19, 24] and references cited therein. Recently,
discontinuous Galerkin methods have also been applied for a few optimal control
problems [15, 20, 25, 26].

Hybridizable discontinuous Galerkin (HDG) methods were proposed by Cock-
burn et al. in [6] as an improvement of traditional discontinuous Galerkin methods.
The main advantage of these methods is that the only globally coupled degrees of
freedom are the ones on the element boundaries, which substantially reduces the
computational cost. HDG methods also produce optimal approximations not only
to the potential but also to the flux for elliptic problems [7]. Furthermore, HDG
methods have many other desirable properties such as ability to handle complex ge-
ometries and high order approximations, stability and low dispersion for discretiza-
tions of hyperbolic systems, simple imposition of boundary conditions. They also
have superconvergence properties, which in turn delivers efficient postprocessing
techniques.

In this paper, instead of aiming for maximal generality, we will concentrate on
a specific HDG method for optimal control problems governed by a model elliptic
partial differential equation. We consider this as a stepping stone towards devising
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2 H. ZHU AND F. CELIKER

HDG methods for more complicated optimal control problems. We also intend to
use this for exploring potential advantages of HDG methods when applied to prob-
lems of this class. Our major motivation for applying HDG methods to these prob-
lems is the established fact that they have superior stability and convergence prop-
erties for many classical partial differential equations such as convection-diffusion-
reaction problems, elasticity problems, Stokes and Navier-Stokes equations, to name
a few. Since many optimal control problems are governed by similar partial differ-
ential equations, our expectation is that desirable properties of HDG methods will
also carry over to these optimal control problems. The main result of this paper
actually proves, at least for this simple case, that this hope is not in vain, indicating
that the same will potentially hold for more complicated problems.

Next, we describe the optimal control problem for which we will devise and
analyze an HDG method. Let Ω be a Lipschitz polyhedral domain in Rn with
n ≥ 2. Given f, ỹ ∈ L2(Ω) and g ∈ H3/2(∂Ω) we let

J(y∗, u∗) :=
1

2
‖y∗ − ỹ ‖2 +

α

2
‖u∗‖2

and

(y, u) = arg min J(y∗, u∗) (1.1)

for all (y∗, u∗) ∈ Y × U subject to

−∇ · (a∇y∗) = f + u∗ in Ω,

y∗ = g on ∂Ω,
(1.2)

where Y := {w ∈ H1(Ω) | w = g on ∂Ω}, U := L2(Ω). Furthermore, a > 0 and
α > 0 are given diffusion and regularization parameters, respectively. We denote
by ‖ · ‖ the usual L2 norm on Ω.

To define the HDG approximation of the optimal control problem (1.1)–(1.2),
we need a weak formulation for the state equation (1.2). We denote the L2-inner
products on L2(D) and L2(∂D) by (v, w)D and 〈v, w〉∂D, respectively, where D is
an arbitrary subdomain of Ω. We will drop the subscript if D = Ω. With this
notation the standard weak formulation for the state equation reads as follows:
given f ∈ L2(Ω), find y∗(u∗) ∈ Y such that

(a∇y∗,∇w) = (f + u∗, w), ∀ w ∈W := H1
0 (Ω). (1.3)

It is well known that the theory in [17](Sec. II.1) guarantees the existence of a
unique solution (y, u) ∈ H1(Ω)× L2(Ω) of (1.1) and (1.3).

The state y and the control u solve the optimal control problem (1.1) and (1.3)
if and only if there exists an adjoint z ∈ H1

0 (Ω) such that y, u, z satisfy the state
equation

(a∇y,∇w1) = (f + u,w1), ∀ w1 ∈W, (1.4a)

the adjoint equation,

(a∇z,∇w2) = (ỹ − y, w2), ∀ w2 ∈W, (1.4b)

and the gradient equation,

(αu− z, r) = 0, ∀ r ∈ L2(Ω). (1.4c)
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Since (1.4c) is merely an algebraic equation and W ⊂ L2(Ω), it is possible to
eliminate u from these equations by setting u = βz where β := α−1 and rewriting
(1.4a) and (1.4b) in the equivalent form

(a∇y,∇w1) = (f + βz,w1), ∀ w1 ∈W, (1.5a)

(a∇z,∇w2) = (ỹ − y, w2), ∀ w2 ∈W. (1.5b)

The main goal of this paper is to devise and prove a priori error estimates for an
HDG method for (1.5).

The rest of the paper is organized as follows: In Sec. 2, we introduce the HDG
formulation. In Sec. 3, we present the error estimates of the HDG discretization,
namely, the main result of this paper. A detailed proof of the main result will be
given in Sec. 4. We end by some concluding remarks in Sec. 5.

2. HDG formulation

Let Ωh be a regular partitioning of Ω and K be an element in Ωh. We denote
the diameter of K by hK and set h = maxK∈Ωh hK . We further denote by Eh and
E◦h boundaries and interior boundaries of Ωh, respectively. We will work in the
following finite element spaces

V h := {v ∈H1(Ωh) | v|K ∈ Pk(K), ∀ K ∈ Ωh},
Wh := {w ∈ L2(Ωh) | w|K ∈ Pk(K), ∀ K ∈ Ωh},
Mh := {µ ∈ L2(Eh) | µ|e ∈ Pk(e), ∀ e ∈ E◦h ; µ|e = 0, ∀ e ∈ Eh ∩ ∂Ω}.

Here, Pk(K) and Pk(e) are spaces of polynomial of total degree at most k ≥ 0
on K and on e, respectively. The space of vector valued polynomial functions is
Pk(K) := [Pk(K)]

n
.

An intermediate step for defining the HDG approximation of (1.5) is writing the
strong form of the system (1.5) as the following first-order system of differential
equations. The state equation and the gradient equation

cp +∇y = 0 in Ω, (2.1a)

∇ · p− βz = f in Ω, (2.1b)

y = g on ∂Ω, (2.1c)

and the adjoint equation

cr +∇z = 0 in Ω, (2.1d)

∇ · r + y = ỹ in Ω, (2.1e)

z = 0 on ∂Ω, (2.1f)

where c := a−1. Notice that we have introduced two more unknowns, p and r, into
the system. Furthermore, we will introduce two more in the following step. This
proliferation of unknowns, however, will be greatly compensated for through the
hybridization process in which we eliminate all the internal degrees of freedom.

Remark 2.1. Note that the strong form of (1.4c), namely,

αu− z = 0 in Ω (2.2)
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is imbedded in (2.1b). We will thus resort to a slight abuse of notation as we
mention u as part of the solution of the governing equation (2.1) since once z is
obtained, one can easily recover u from (2.2).

The HDG method seeks an approximation (ph, yh, ŷh, rh, zh, ẑh) to the exact
solution (p, y, y|Eh , r, z, z|Eh) of (2.1) in the space V h×Wh×Mh×V h×Wh×Mh

such that

(cph,v1) − (yh,∇ · v1) + 〈ŷh,v1 · n〉 = 0, (2.3a)

−(ph,∇w1)− (βzh, w1) + 〈p̂h · n, w1〉 = (f, w1), (2.3b)

for all (v1, w1) in V h ×Wh

(c rh,v2) − (zh,∇ · v2) + 〈ẑh,v2 · n〉 = 0, (2.3c)

−(rh,∇w2) + (yh, w2) + 〈r̂h · n, w2〉 = (ỹ, w2), (2.3d)

for all (v2, w2) in V h ×Wh, and

〈p̂h · n, µ1〉 = 0, (2.3e)

〈r̂h · n, µ2〉 = 0, (2.3f)

for all (µ1, µ2) in Mh×Mh. Recall that, for a vector-valued function v and a scalar
function w defined on Ωh

〈v · n, w〉 = 〈v · n, w〉∂Ωh =
∑
K∈Ωh

〈v · n, w〉∂K

where n appearing in the boundary integrals inside the summation denotes the unit
outward normal vector to the boundary of the element K. The numerical traces on
∂Ωh are defined as

p̂h = ph + σ(yh − ŷh)n,

r̂h = rh + σ(zh − ẑh)n,
(2.4)

where σ is a nonnegative stabilization function defined on ∂Ωh, which we assume to
be constant on each face of the triangulation. Observe that p̂h and r̂h are possibly
double-valued on E◦h . For example, when evaluating (2.3e),

〈p̂h · n, µ1〉 =
∑
K∈Ωh

〈p̂h · n, µ1〉∂K =
∑
K∈Ωh

〈ph · n + σ(yh − ŷh), µ1〉∂K

the values of ph and yh from within the element K are used inside the summation,
and n is the unit outward normal vector to ∂K as above. Note, however, that ŷh
(as well as ẑh) is single-valued on Eh.

Denoting the L2-orthogonal projection onto Mh by PM , the boundary condition
(2.1c) is enforced weakly by requiring that

ŷh = PMg on ∂Ω,

and the boundary condition (2.1f) is similarly enforced by requiring that

ẑh = 0 on ∂Ω.

This completes the definition of the HDG methods that we will consider in this
paper.
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Remark 2.2. In the spirit of Remark 2.1, the HDG formulation (2.3) also defines
an approximation uh ∈Wh to u such that

αuh − zh = 0 in Ωh,

or in its weak from

(αuh − zh, w) = 0 ∀ w ∈Wh. (2.5)

We will thus consider (2.5) as part of the HDG formulation (2.3). Notwithstanding
the fact that when implementing these methods one would not include (2.5) as part
of the system of equations but rather recover uh from zh, we will state and prove
error estimates on uh under the premises detailed above.

The formulation (2.3) together with (2.4) is sufficient for the error analysis that
will be carried out in Sec. 4. However, we would like to elucidate on a point that
has been mentioned earlier, namely, efficient implementation of these methods. To
this end, we have to define four local solvers. The reason why they are called local
is that they are defined on a single element K in Ωh and hence their computational
cost is very low and it is extremely parallelizable. The first local solver is the
mapping

ŷ 7→ (P ŷ, Yŷ,Rŷ, Zŷ) ∈ Pk(K)× Pk(K)×Pk(K)× Pk(K)

such that

(cP ŷ,v1)K − (Yŷ,∇ · v1)K + 〈ŷ,v1 · n〉∂K = 0, (2.6a)

−(P ŷ,∇w1)K − (βZŷ, w1)K + 〈P̂ ŷ · n, w1〉∂K = 0, (2.6b)

(cRŷ,v2)K − (Zŷ,∇ · v2)K = 0, (2.6c)

−(Rŷ,∇w2)K + (Yŷ, w2)K + 〈R̂ŷ · n, w2〉∂K = 0, (2.6d)

for all (v1, w1), (v2, w2) ∈ Pk(K)× Pk(K). Here,

P̂ ŷ = P ŷ + σ(Yŷ − ŷ)n,

R̂ŷ = Rŷ + σ(Zŷ)n.
(2.7)

Note that (2.6) is nothing but the restriction to the element K of (2.3a)–(2.3d)
with ŷh = ŷ, ẑh = 0, f = 0, and ỹ = 0. The definition of the numerical traces (2.7)
is also in agreement with (2.4). In this sense, this local solver picks up information
that is relevant only to ŷh. Analogously, the second local solver is be designed to
pick up information relevant to ẑh. Thus, it is the mapping

ẑ 7→ (P ẑ, Yẑ,Rẑ, Zẑ) ∈ Pk(K)× Pk(K)×Pk(K)× Pk(K)

such that

(cP ẑ,v1)K − (Yẑ,∇ · v1)K = 0, (2.8a)

−(P ẑ,∇w1)K − (βZẑ, w1)K + 〈P̂ ẑ · n, w1〉∂K = 0, (2.8b)

(cRẑ,v2)K − (Zẑ,∇ · v2)K + 〈ẑ,v1 · n〉∂K = 0, (2.8c)

−(Rẑ,∇w2)K + (Yẑ, w2)K + 〈R̂ẑ · n, w2〉∂K = 0, (2.8d)

for all (v1, w1), (v2, w2) ∈ Pk(K)× Pk(K). Here,

P̂ ẑ = P ẑ + σ(Yẑ)n,

R̂ẑ = Rẑ + σ(Zẑ − ẑ)n.
(2.9)
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The remaining two local solvers are also defined in the same spirit, that is, to pick
up information relevant to f and ỹ, respectively. The third one is the mapping

f 7→ (P f , Yf ,Rf , Zf ) ∈ Pk(K)× Pk(K)×Pk(K)× Pk(K)

such that

(cP f ,v1)K − (Yf ,∇ · v1)K = 0, (2.10a)

−(P f ,∇w1)K − (βZf , w1)K + 〈P̂ f · n, w1〉∂K = f, (2.10b)

(cRf ,v2)K − (Zf ,∇ · v2)K = 0, (2.10c)

−(Rf ,∇w2)K + (Yf , w2)K + 〈R̂f · n, w2〉∂K = 0, (2.10d)

for all (v1, w1), (v2, w2) ∈ Pk(K)× Pk(K). Here,

P̂ f = P f + σ(Yf )n,

R̂f = Rf + σ(Zf )n.
(2.11)

The fourth local solver is the mapping

ỹ 7→ (P ỹ, Yỹ,Rỹ, Zỹ) ∈ Pk(K)× Pk(K)×Pk(K)× Pk(K)

such that

(cP ỹ,v1)K − (Yỹ,∇ · v1)K = 0, (2.12a)

−(P ỹ,∇w1)K − (βZỹ, w1)K + 〈P̂ ỹ · n, w1〉∂K = 0, (2.12b)

(cRỹ,v2)K − (Zỹ,∇ · v2)K = 0, (2.12c)

−(Rỹ,∇w2)K + (Yỹ, w2)K + 〈R̂ỹ · n, w2〉∂K = ỹ, (2.12d)

for all (v1, w1), (v2, w2) ∈ Pk(K)× Pk(K). Here,

P̂ ỹ = P ỹ + σ(Yỹ)n,

R̂ỹ = Rỹ + σ(Zỹ)n.
(2.13)

The hybridization process is then as follows. We first solve (2.3e)–(2.3f) for
the unknowns ŷh and ẑh. Note that this system of equations is the only global
system of equations that needs to be solved and it involves degrees of freedom only
on element faces and is independent of all internal degrees of freedom1. We then
recover the remaining unknowns (internal degrees of freedom) in a postprocessing
step by setting

ph = P ŷh + P ẑh + P f + P ỹ, (2.14a)

yh = Yŷh + Yẑh + Yf + Yỹ, (2.14b)

rh = Rŷh + Rẑh + Rf + Rỹ, (2.14c)

zh = Zŷh + Zẑh + Zf + Zỹ. (2.14d)

Observe that this last step can be achieved in an element-by-element fashion and
hence its computational cost is negligible.

1This is due to the fact that, by (2.14), all internal degrees of freedom appearing in (2.3e) and
(2.3f) can be expressed in terms of the given data (f and ỹ) and the unknowns ŷh and ẑh.
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3. The Main Result

We begin with introducing the projection operator

Πh(q, ψ) := (ΠV q,ΠWψ)

defined in [7] which will be instrumental in our proof. Here ΠV q and ΠWψ denote
components of the projection of q and ψ into V h and Wh, respectively. The value of
the projection on each simplex K is determined by requiring that the components
satisfy the equations

(ΠV q,v)K = (q,v)K ∀ v ∈ Pk−1(K), (3.1a)

(ΠWψ,w)K = (ψ,w)K ∀ w ∈ Pk−1(K), (3.1b)

〈ΠV q · n + σΠWψ, µ〉F = 〈q · n + σψ, µ〉F ∀ µ ∈ Pk(F ), (3.1c)

for all faces F of the simplex K.
We will also need the standard L2-orthogonal projection onto Wh which will

be denoted by Pk, and the L2-orthogonal projection PM onto Mh. Since σ is a
piecewise constant on ∂Ωh, we have that

〈σ(PMψ − ψ), µ〉 = 0, ∀ µ ∈Mh.

We will repeatedly use this fact without explicit mention. We define norms ‖ · ‖c
and ‖ · ‖h as

‖q‖2c := 〈cq, q〉, ‖ψ‖2h := 〈hKψ,ψ〉. (3.2)

We are now ready to state our main result. Its proof will be given in the following
section.

Theorem 3.1. Let y, u, z ∈ Hk+2(Ω) and p, r ∈ Hk+2(Ω) be the solution of the
optimal control system (2.1) and (2.2). Let (ph, yh, ŷh, rh, zh, ẑh) be the solution
obtained by the HDG method (2.3) and uh be defined by (2.5). Then there is a
constant C independent of y, u, and z such that

√
α‖p− ph‖c + ‖r − rh‖c ≤ C (η1 + η2) ,
√
α‖y − yh‖+ ‖z − zh‖ ≤ C (h∗η1 + η2) ,

‖u− uh‖ ≤ ‖Pku− u‖+ C (h∗η1 + η2) ,

‖(p− p̂h) · n‖h + ‖(r − r̂h) · n‖h ≤ ϑ1 + C (η1 + η2) ,

‖y − ŷh‖h + ‖z − ẑh‖h ≤ ϑ2 + C(
√
h∗η1 + η2),

where h∗ = hmin(k,1) and

η1 :=
√
α‖p−ΠV p‖c + ‖r −ΠV r‖c,

η2 := ‖y −ΠW y‖+ ‖z −ΠW z‖,
ϑ1 := ‖(p− PMp) · n‖h + ‖(r − PMr) · n‖h,
ϑ2 := ‖y − PMy‖h + ‖z − PMz‖h.

Remark 3.2. Based on Theorem 3.1 and Lemma 4.1, we can determine orders of
convergence of the approximations to both fluxes and scalar variables if the value of
parameter σ is given. For instance, the orders of convergence of the approximation
to fluxes and scalar variables are k+1 when σ equals a constant that is independent
of h. These rates of convergence are in agreement with the ones established in [7]
for HDG methods for diffusion equations.
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4. Proof of Theorem 3.1

In this section, we present a detailed proof of Theorem 3.1. We will proceed
in several steps. We begin in Sec. 4.1 with stating a proposition that provides
the approximation properties of the projection (3.1). In Sec. 4.2 we show that
the estimate of the numerical flux depends on the interpolation error of the flux
variable and the error of the scalar variable. In Sec. 4.3 we present the estimate of
the scalar variable. Consequently, estimates of Theorem 3.1 follow from the triangle
inequality and Lemma 4.6 which provides estimates of the projections of the errors.

4.1. The projection error estimates. The following lemma was established in
Theorem 2.1 of [7] and provides the approximation properties of the projection
operator (3.1).

Lemma 4.1. Suppose that k ≥ 0, σ|∂K is nonnegative and σmax
K := maxσ|∂K > 0.

For given functions q ∈H`q+1(K) and ψ ∈ H`ψ+1(K), we define ΠV q and ΠWψ
by the system (3.1), which is uniquely solvable for ΠV q and ΠWψ. Furthermore,
there is a constant C independent of K and σ such that

‖ΠV q − q‖K ≤ Ch
`q+1
K |q|H`q+1(K) + Ch

`ψ+1
K σ∗K |ψ|H`ψ+1(K)

,

‖ΠWψ − ψ‖K ≤ Ch
`ψ+1
K |ψ|

H`ψ+1(K)
+ C

h
`q+1
K

σmax
K

|∇ · q|H`q (K),

for `ψ, `q in [0, k]. Here σ∗K := maxσ∂K\F∗ , where F ∗ is a face of K at which
σ|∂K is maximum.

4.2. Flux error estimates. Let us introduce the following notation to denote
various errors of approximation. Set

ep = p− ph, ey = y − yh, eŷ = y − ŷh, eu = u− uh,

εph = ΠV p− ph, εyh = ΠW y − yh, εŷh = PMy − ŷh, εuh = Pku− uh.

We denote er, ez, eẑ, εrh, εzh, and εẑh in a similar way.
From (2.2) and (2.5), it is straightforward to verify that

(αeu − ez, w) = 0, ∀ w ∈Wh. (4.1)

The following lemma is in the spirit of Lemma 3.2 of [7].

Lemma 4.2. The following two identities hold

(cεph, ε
p
h) + 〈σ(εyh − ε

ŷ
h), (εyh − ε

ŷ
h)〉 = (c(ΠV p− p), εph) + (βez, εyh), (4.2a)

(cεrh, ε
r
h) + 〈σ(εzh − εẑh), (εzh − εẑh)〉 = (c(ΠV r − r), εrh)− (ey, εzh). (4.2b)

Proof. It is straightforward to verify that the projections of the errors satisfy

(cεph,v)− (εyh,∇ · v) + 〈εŷh,v · n〉∂Ωh\∂Ω = (c(ΠV p− p),v), (4.3a)

− (εph,∇w) + 〈ε̂1
h · n, w〉 = (βez, w), (4.3b)

〈ε̂1
h · n, µ〉∂Ωh\∂Ω = 0, (4.3c)
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and

(cεrh,v)− (εzh,∇ · v) + 〈εẑh,v · n〉∂Ωh\∂Ω = (c(ΠV r − r),v), (4.4a)

− (εph,∇w) + 〈ε̂2
h · n, w〉 = −(ey, w), (4.4b)

〈ε̂2
h · n, µ〉∂Ωh\∂Ω = 0, (4.4c)

for all (v, w, µ) ∈ V h ×Wh ×Mh, where

ε̂1
h · n = εph · n + σ(εyh − ε

ŷh) = PM (p · n)− p̂h · n on ∂Ωh \ ∂Ω,

ε̂2
h · n = εrh · n + σ(εzh − εẑh) = PM (r · n)− r̂h · n on ∂Ωh \ ∂Ω.

(4.5)

Taking v = εph, w = εyh, and µ = −εŷh in (4.3) and adding all equations together,
we obtain (4.2a) after an integration by parts. The identity (4.2b) can be proved
in a similar way. �

Lemma 4.3. We have

α‖εph‖
2
c + ‖εrh‖2c + Ξ ≤ C

(√
α‖p−ΠV p‖+ ‖r −ΠV r‖

) (√
α‖εph‖c + ‖εrh‖c

)
+ C (‖y −ΠW y‖+ ‖z −ΠW z‖) (‖εyh‖+ ‖εzh‖)

(4.6)
and

‖PM (p ·n)− p̂h ·n‖h + ‖PM (r ·n)− r̂h ·n‖h ≤ C1,σ

(
α‖εph‖

2
c + ‖εrh‖2c + Ξ

)
(4.7)

where

Ξ := α〈σ(εyh − ε
ŷ
h), (εyh − ε

ŷ
h)〉+ 〈σ(εzh − εẑh), (εzh − εẑh)〉,

C1,σ :=
C

α
max{1, hKσmax

K : K ∈ Ωh},

for some constant C.

Proof. Notice that

(βez, εyh) = (β(z −ΠW z), ε
y
h) + (βεz, εyh) ,

− (ey, εzh) = − (y −ΠW y, ε
z
h)− (εyh, ε

z
h) .

Substituting these identities into (4.2a) and (4.2b) and adding them together, we
get

α (cεph, ε
p
h) + (cεrh, ε

r
h) + Ξ = α (c(ΠV p− p), εph) + (c(ΠV r − r), εrh)

− (y −ΠW y, ε
y
h) + (z −ΠW z, ε

y
h).

(4.8)

Applying Cauchy-Schwarz inequality to (4.8) yields (4.6).
To prove (4.7), we apply the trace inequality to equation (4.5), which leads to

‖PM (p · n)− p̂h · n‖2h ≤ ‖ε
p
h · n‖

2
h + ‖σ(εyh − ε

ŷ
h)‖2h

≤ C‖εph‖
2
c + max

K∈Ωh
(hKσ

max
K )〈σ(εyh − ε

ŷ
h), (εyh − ε

ŷ
h)〉

≤ C1,σ

(
α‖εph‖

2
c + α〈σ(εyh − ε

ŷ
h), (εyh − ε

ŷ
h)〉
)
.

This completes the proof. �



10 H. ZHU AND F. CELIKER

4.3. Estimates of scalar variables. Consider the dual system:

cΦ +∇Ψ = 0, in Ω, (4.9a)

∇ ·Φ + ψ = Θ1, in Ω, (4.9b)

Ψ = 0, on ∂Ω, (4.9c)

cΦr +∇Ψz = 0, in Ω, (4.9d)

∇ ·Φr −Ψ = Θ2, in Ω, (4.9e)

Ψz = 0, on ∂Ω, (4.9f)

αψ −Ψz = 0, in Ω. (4.9g)

This system is equivalent to the optimal control problem:

min
ψ,Ψ

1

2
‖Ψ + Θ2‖2 +

α

2
‖ψ‖2, (4.10)

subject to
−∇ · (a∇Ψ) = Θ1 − ψ in Ω,

Ψ = 0 on ∂Ω.
(4.11)

Let Ψ0 be the solution of state equation (4.11) with ψ = 0 and let ψ, Ψ, Ψz, be
the optimal control, the state, and the adjoint, respectively. Then, from (4.10), we
get

1

2
‖Ψ + Θ2‖2 +

α

2
‖ψ‖2 ≤ 1

2
‖Ψ0 + Θ2‖2, (4.12)

which implies
‖ψ‖ ≤ C (‖Ψ0‖+ ‖Θ2‖) . (4.13)

We assume that the boundary value problem (4.11) admits the regularity esti-
mate

‖Ψ‖H2 + ‖Φ‖H1 ≤ C‖Θ1 − ψ‖ ≤ C(‖Θ1‖+ ‖ψ‖). (4.14)

This is well known to hold in several cases, for instance, if c = 1 and Ω is a convex
polygon [13]. Consequently, when ψ = 0 one has

‖Ψ0‖H2 ≤ C‖Θ1‖. (4.15)

Substituting (4.13) and (4.15) into (4.14) gives rise to the inequality

‖Ψ‖H2 + ‖Φ‖H1 ≤ C (‖Θ1‖+ ‖Θ2‖) . (4.16)

Similarly, we can prove the regularity estimate

‖Ψz‖H2 + ‖Φr‖H1 ≤ C (‖Θ1‖+ ‖Θ2‖) . (4.17)

Recall that we have been tacitly assuming that (p, y) is in the domain of Πh. By
(4.16) and (4.17), (Φ,Ψ) and (Φr,Ψz) are also regular enough to apply Πh.

Next, we are going to estimate εyh and εzh. We start by listing two Lemmas
that will be used in the proof of Lemma 4.6. The first lemma presents a weak
commutativity property of operator Πh.

Lemma 4.4. (Proposition 2.1, [7]) For any ω ∈Wh and any (Φ,Ψ) in the domain
of Πh, we have

(ω,∇ ·Φ)K = (ω,∇ ·ΠV Φ)K + 〈ω, σ(ΠWΨ−Ψ)〉∂K ,

for any K ∈ Th.
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Lemma 4.5. Suppose that r, s, t are three nonnegative real numbers. If r2 ≤
rs+ t2, then r ≤ s+ t.

Proof. We will prove that if r > s + t then r2 > rs + t2. If r > s + t then
r2 > (s + t)r = rs + rt since r is nonnegative. Also r > s + t implies that r > t
since s is nonnegative. Thus, r2 > rs+ t · t = rs+ t2. �

Lemma 4.6. Under the assumption of Theorem 3.1, there exist a constant C that
is dependent of a and α, such that

√
α‖εph‖c + ‖εrh‖c + Ξ

1
2 ≤ C (η1 + η2) , (4.18a)

√
α‖εyh‖+ ‖εzh‖ ≤ C (h∗η1 + η2) , (4.18b)

‖u− uh‖ ≤ ‖Pku− u‖+ C (h∗η1 + η2) , (4.18c)

‖εŷh‖h + ‖εẑh‖h ≤ C(
√
h∗η1 + η2), (4.18d)

where h∗ = hmin(k,1) and

η1 =
√
α‖p−ΠV p‖c + ‖r −ΠV r‖c,

η2 = ‖y −ΠW y‖+ ‖z −ΠW z‖.

Proof. We will use the technique of Lemma 4.1 of [7] in the estimate of (εyh, ε
y
h) and

(εzh, ε
z
h). Setting Θ1 = εyh in (4.9b), we obatin

(εyh, ε
y
h) = (εyh,∇ ·Φ) + (εyh, ψ)

= (εyh,∇ ·Φ) + (εyh, βΨz) (By 4.9g)

= (εyh,∇ ·ΠV Φ) + 〈εyh, σ(ΠWΨ−Ψ)〉∂Ωh\∂Ω + (εyh, βΨz) (By Lemma 4.4)

= (cεph,ΠV Φ) + 〈εŷh,ΠV Φ · n〉∂Ωh\∂Ω − (c(ΠV p− p),ΠV Φ)

+ 〈εyh, σ(ΠWΨ−Ψ)〉∂Ωh\∂Ω + (εyh, βΨz) (By 4.3a)

= (c(p− ph),ΠV Φ) + 〈εŷh, (ΠV Φ−Φ) · n〉∂Ωh\∂Ω

+ 〈εyh, σ(ΠWΨ−Ψ)〉∂Ωh\∂Ω + (εyh, βΨz) ,

by the continuity of Φ · n. Then

(εyh, ε
y
h) = (c(p− ph),ΠV Φ) + 〈εyh − ε

ŷ
h, σ(ΠWΨ−Ψ)〉∂Ωh\∂Ω + (εyh, βΨz) (By 3.1c)

= (c(p− ph),ΠV Φ) + 〈σ(εyh − ε
ŷ
h),ΠWΨ〉∂Ωh\∂Ω

+ 〈σ(εyh − ε
ŷ
h), PMΨ〉∂Ωh\∂Ω + (εyh, βΨz)

= (c(p− ph),ΠV Φ) + 〈σ(εyh − ε
ŷ
h),ΠWΨ〉∂Ωh\∂Ω

+ 〈εph · n, PMΨ〉∂Ωh\∂Ω + (εyh, βΨz) (By 3.1c)

= (c(p− ph),ΠV Φ)− (∇ · εph,ΠWΨ) + (βez,ΠWΨ)

+ 〈εph · n,Ψ〉∂Ωh\∂Ω + (εyh, βΨz) (By 4.3b)

= (c(p− ph),ΠV Φ)− (∇ · εph,Ψ) + 〈εph · n,Ψ〉∂Ωh\∂Ω

+ (βez,ΠWΨ) + (εyh, βΨz) (By 3.1b)

= (c(p− ph),ΠV Φ) + (εph,∇Ψ) + (βez,ΠWΨ) + (εyh, βΨz) .
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Moreover, we have

(εyh, ε
y
h) = (c(p− ph),ΠV Φ−Φ) + (p− ph, cΦ) + (ΠV p− p,∇Ψ)

+ (p− ph,∇Ψ) + (βez,ΠWΨ) + (εyh, βΨz)

= (c(p− ph),ΠV Φ−Φ) + (ΠV p− p,∇Ψ)

+ (βez,ΠWΨ) + (εyh, βΨz) . (By 4.9a)

Applying (3.1a) again brings the above expression into the form

(εyh, ε
y
h) = J1 + (βez,ΠWΨ) + (βεyh,ΠWΨz) + (βεyh,Ψ

z −ΠWΨz) , (4.19)

where

J1 = (c(p−ΠV p),ΠV Φ−Φ) + (cεph,ΠV Φ−Φ) + (p−ΠV p,∇Ψ−∇Ψh) ,

for any Ψh,Ψ
z
h ∈Wh.

Similarly, one has

(εzh, ε
z
h) = (εzh,∇ ·Φ

r)− (εzh,Ψ)

= J2 − (ey,ΠWΨz)− (εzh,ΠWΨ)− (εzh,Ψ−ΠWΨ)

= J2 − (εyh,ΠWΨz)− (y −ΠW y,ΠWΨz)

− (ez,ΠWΨ)− ((z −ΠW z),ΠWΨ)− (εzh,Ψ−ΠWΨ) ,

(4.20)

where

J2 = (c(r −ΠV r),ΠV Φr −Φr) + (cεrh,ΠV Φr −Φr) + (r −ΠV r,∇Ψz −∇Ψz
h) ,

for any Ψh,Ψ
z
h ∈Wh.

Multiplying (4.20) by α, adding it to (4.19), and setting w = ΠWΨ in (4.1), we
obtain

α (εyh, ε
y
h) + (εzh, ε

z
h) = αJ1 + J2 + (εyh,Ψ

z −ΠWΨz)− (y −ΠW y,ΠWΨz)

− ((z −ΠW z),ΠWΨ)− (εzh,Ψ−ΠWΨ) .

It follows from Cauchy-Schwarz inequality and Lemma 4.1 that

α‖εyh‖
2 + ‖εzh‖2 ≤ Cζ (h∗ (η1 + θ1) + η2 + h∗θ2) ,

where
ζ :=

√
α‖Φ‖H1 +

√
α‖Ψ‖H1 + ‖Φr‖H1 + ‖Ψz‖H1 ,

θ1 :=
√
α‖εph‖c + ‖εrh‖c,

θ2 :=
√
α‖εyh‖+ ‖εzh‖.

If h is sufficiently small, it follows from (4.16) and (4.17) with Θ1 = εyh and
Θ2 = εzh that

√
α‖εyh‖+ ‖εzh‖ ≤ C1h

∗ (η1 + θ1) + C2η2, (4.21)

for some constants C1 and C2. Substituting (4.21) into (4.6) we obtain

θ2
1 + Ξ = α‖εph‖

2
c + ‖εrh‖2c + Ξ ≤ C

[
η1θ1 + h∗η2 (η1 + θ1) + η2

2

]
≤ C1η1θ1 + C2

(
h∗η2η1 + η2

2

)
+

1

2
θ2

1,

≤ C1η1θ1 + C2

(
h∗η2

1 + η2
2

)
+

1

2
θ2

1.
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Moving the term 1
2θ

2
1 of the above inequality from the right side to the left side and

applying Lemma 4.5, we obtain

θ1 + Ξ
1
2 ≤ C (η1 + η2) .

This completes the proof of (4.18a). The estimate (4.18b) is established by substi-
tuting the above inequality into (4.21).

To estimate eu, we note that

‖εuh‖2 = (εuh, ε
u
h) = (Pku− u, εuh) + (eu, εuh)

= (Pku− u, εuh) + (βez, εuh)

≤ (‖Pku− u‖+ β‖ez‖) ‖εuh‖,

by the equation (4.1). Then, using (4.18b) we get that

‖eu‖ ≤ ‖Pku− u‖+ ‖εuh‖
≤ ‖Pku− u‖+ β‖z −ΠW z‖+ C (h∗η1 + η2)

≤ ‖Pku− u‖+ C (h∗η1 + η2) .

The estimate of εŷh follows from the same local argument used in [3] to obtain a
similar estimate for the BDM method. Indeed, when k ≥ 1, we can select a function

r ∈ Pk(K) such that r · n = εŷh on ∂K and ‖r‖K ≤ Ch
1
2

K‖ε
ŷ
h‖∂K . Using hKr as

the test function in (4.3), and applying an inverse inequality, we obtain

hK‖εŷh‖
2
∂K = hK(c(ΠV p− p), r)− hK (cεph, r) + hK (εyh,∇ · r)

≤ ChK‖r‖K (‖ΠV p− p‖K + ‖εph‖K) + C‖r‖K‖εyh‖K

≤ C
[
hK (‖ΠV p− p‖K + ‖εph‖K)

2
+ ‖εyh‖

2
K

]
+

1

2
hK‖εŷh‖

2
∂K .

Canceling the term 1
2hK‖ε

ŷ
h‖2∂K yields

h
1/2
K ‖ε

ŷ
h‖∂K ≤ C

(
h

1/2
K ‖ΠV p− p‖K + h

1/2
K ‖ε

p
h‖K + ‖εyh‖K

)
.

Applying (4.18a) and (4.18b), we get the last inequality of the theorem. This
completes the proof. �

5. Conclusion

In this paper, we derived a priori error estimates of an HDG method for an
optimal control problem governed by a second order elliptic partial differential e-
quation. Optimal orders of convergence can be obtained for suitably chosen values
of the parameter σ. This is the first stepping stone for devising HDG methods for
more general optimal control problems. The next natural step is to study HDG
methods for optimal control problems governed by convection-dominated PDEs,
which is the subject of ongoing work. Implementing these methods and validat-
ing our theoretical estimates are also under investigation and will be published
elsewhere.
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