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Metabolism, Consumption Rates, and Scope for Growth of Porcelain Crab
(Petrolisthes galathinus)

KIMBERLY A. MCGLAUN AND KIM WITHERS

Porcelain crabs Petrolisthes galathinus (Bosc, 1802) can be found at high densities in

oyster reefs. To examine effects of diet on metabolism, crabs (N = 32) were fed

Artemia salina nauplii, mixed microalgae, or algal biofilm extract, or left unfed.

Oxygen consumption, ammonia excretion, food consumption rate, and absorption

efficiency were determined and scope for growth (SFG) was calculated. Oxygen

consumption and food consumption rates were highest in crabs fed Artemia. The

energy gained from mixed microalgae (47 ± 143 J h21) and algal biofilm (265 ±

203 J h21) was less than the energy gained from Artemia (9,963 ± 658 J h21). Energy

expenditures (oxygen consumption and ammonia excretion) suggest that P. galathinus

has a low cost of routine metabolism and is able to consume a broad range of food

resources including microalgae, benthic algae, and zooplankton. Consumption rates

and SFG suggest that zooplankton, when present, are an important and valuable food

source for porcelain crabs.

Suspension-feeding bivalves, crustaceans, and
polychaetes can have profound effects on

ecosystem processes (Grant, 1996; Gili and
Coma, 1998; Prins et al., 1998). Suspension
feeders remove suspended particles, nutrients,
zooplankton, and phytoplankton from the water
column and alter current flow; thus, they also
alter energy flow and are essential energy links
between primary producers and higher trophic
levels (Dame and Patten 1981; Powell 1994;
Riisgard and Larsen 2010). The porcelain crab
Petrolisthes galathinus (Bosc, 1802) is a common
suspension feeder found within oyster reef
communities in the Gulf of Mexico. Porcelain
crabs likely consume algae, zooplankton, detri-
tus, and juvenile invertebrates; however, little is
known about the diet or consumption rates of
Petrolisthes spp. When found at high densities
these crabs may affect food-web dynamics by
consuming microalgae, zooplankton, and algal
biofilms (Hollebone and Hay, 2008).

Studying metabolism provides valuable in-
sights into the dietary needs of organisms. The
energy budget of any animal can be reasonably
measured by assessing oxygen consumption and
ammonia excretion (Gnaiger, 1983). Changes in
metabolic rates are the result of the physiological
energy demands of ingestion, digestion, absorp-
tion, excretion, and growth of new tissues (Jobling
et al., 1993). Scope for growth (SFG) is the energy
available for growth and reproduction after other
energetic costs have been incurred and is based
on the energy budget of an organism (Warren
and Davis, 1967). It is an instantaneous measure
of production that ranges from maximum positive

values under optimum conditions (i.e., adequate
food/nutrition) and declines to negative values
when the organism is severely stressed and
utilizing its body reserves for maintenance (Wid-
dows, 1995). SFG can be used to determine if a
given diet or food source can sustain an organism.
Artemia salina nauplii have been used as a proxy
for naturally occurring zooplankton in research
on feeding behavior and metabolism of anom-
uran crabs (Gonor and Gonor, 1973; Hartman
and Hartman, 1977; Whitman et al., 2001; Barria
and Gonzalez, 2008) as well as in the rearing of
fish, crustaceans, and mollusks (Warren and
Davis, 1967; Webster and Lovell, 1990; Moksnes
et al., 1997; Villanueva et al., 2002). In this
research we report on consumption rates and
metabolism of P. galathinus to assess the poten-
tial energetic requirements of crabs in natural
systems.

METHODS

Experimental organisms.—Crabs were collected
from East Flats, Port Aransas, TX (27u48938.040N;
97u05953.500W) and maintained in 0.5-liter glass
jars with sterilized oyster shells in filtered seawat-
er (0.5 mm) at 25uC and a salinity of 35 practical
salinity units with constant aeration and a photo-
period of 12:12 (day:night) hr.

Artemia nauplii fed to crabs were Great Salt
Lake strain of A. salina hatched for 24 hr. Mixed
microalgae fed to crabs was DT’sH live marine
phytoplankton, containing Nannochloropsis ocu-
lata, Phaeodactylum tricornutum, and Chlorella spp.
with cell sizes of 2–20 mm and a total cell count of
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approximately 2.92 million cells ml21. The
biofilm extract, composed of Enteromorpha spp.,
benthic diatoms, and detritus, was collected from
cement blocks found in ,0.5 m of water in Oso
Bay, Corpus Christi, TX.

Basal metabolism trials.—To examine basal metab-
olism, crabs were maintained unfed in an incubator
for 5 d; then oxygen consumption and ammonia
excretion were measured (N 5 21). Crabs were
separated into three treatment groups: morning
(0700–0900 hr), afternoon (1200–1400 hr), and
evening (1900–2100 hr). Data were collected during
two trials completed 2 wk apart and results were
pooled. Three crabs were excluded from analyses
because they lost chelae, released larvae, or because
of insufficient oxygen consumption data.

Scope for growth trials.—To examine the effect of
diet on SFG, crabs were incubated unfed for 3 d
followed by 4 d of daily feeding (N 5 32). Due to
logistical constraints, four crabs, one per treat-
ment, entered into the experiment each day,
staggering the days in which SFG data were
collected. The treatment diets included 1 ml
of DT phytoplankton, 300 A. salina nauplii in
approximately 10 ml of seawater, 1 g wet weight
of biofilm extract, or filtered seawater as a
control. Four crabs molted, two from Artemia
treatments and two from control, and these crabs
were excluded from statistical analyses.

Oxygen consumption.—To determine energy ex-
pended, oxygen consumption (mmol hr21) was
measured for 15–30 min using a photo-optic
probe (Ocean Optics Inc.) in a static environ-
ment (sealed 35-ml glass jar filled to the top with
seawater filtered to 0.5 mm) at 25uC 6 0.4uC.

Oxygen consumption rates were converted to
energy expenditures using oxycaloric equiva-
lents of 472.64, 439.04, and 428.48 kJ mol21 for
carbohydrates, fats, and proteins, respectively
(Crisp, 1971; Elliott and Davison, 1975). Equiv-
alency values were calculated for each diet on the
basis of the biochemical content (Webster and
Lovell, 1990). The biochemical content of the
biofilm extract could not be calculated so a
generalized oxycaloric value of 450.0 [kJ (mol
oxygen)21] was used (Gnaiger, 1983). Because
crabs starved for short periods of time predom-
inantly use carbohydrate reserves the oxygen
consumption rates of control crabs were con-
verted to energy expenditures using the oxyca-
loric value of 472.64 kJ (mol oxygen)21 (Wallace,
1973; Vinagre and De Silva, 1992).

Ammonium excretion.—Two hours after crabs
were transferred to 35-ml glass jars for oxygen

consumption measurements, a 5-ml water sample
was removed for ammonia (mg l21) determina-
tions. Ammonium excretion rates were converted
to energy expenditures using the factor 0.0832 cal
(mmol ammonium)21 and converted to joules
using the value 4.1840 J cal21 (Elliot and Davison,
1975).

Consumption rates.—On the last day of feeding
consumption rates were calculated. Crabs fed
mixed microalgae or biofilm diets were removed
from jars 1 hr after diet was added, rinsed, and
the remaining water was passed through pre-
weighed filter paper and dried at 50uC. Dry weight
was compared with the average of four controls to
determine the dry weight of mixed microalgae or
biofilm consumed. To calculate the consumption
rate of crabs fed the Artemia nauplii diet, crabs
were removed after 1 hr, and the remaining
Artemia were passed through a sieve (3.0 mm) and
counted. For statistical comparison consumption
rates of Artemia were converted to gram dry weight
using the value 0.00158 mg (individual nauplii)21

(Paffenhofer 1967).

Absorption efficiency (AE).—To determine ash
content, samples of each diet were passed
through 0.45-mm mixed cellulose ester filters,
rinsed with deionized water, dried, and ashed
at 550uC for 3 hr. To determine calories (g dry
weight)21 of diets, samples of each diet were
rinsed with deionized water, dried at 50uC for
4–7 d, and combusted in a ParrH 1640 bomb
calorimeter. Energy absorbed as food was found
using crab consumption rates and the caloric
content of diets on the basis of bomb calorimetry.
AE was calculated on the basis of Conover’s ratio
method (Conover, 1966). AE of crabs fed biofilm
extract were negative, which suggests that ash
content of biofilm was not measured accurately.
AE was compared among diets but was not
applied to calculations of energy absorbed.

Energy budget calculations.—The energy budget or
SFG for aquatic animals, on the basis of work by
Winberg (1960), can be defined as:

C{F~Ab~RzUzP,

where C 5 energy consumed as food; F 5 energy
lost as feces; and P 5 the energy available for
growth and reproduction, i.e., SFG.

The balanced equation can be written as:

P~Ab{ RzUð Þ
where Ab 5 energy absorbed from food; R 5

energy lost as respiration; and U 5 energy lost as
excretion.

2 GULF OF MEXICO SCIENCE, 2012, VOL. 30(1–2)

2

Gulf of Mexico Science, Vol. 30 [2012], No. 1, Art. 1

https://aquila.usm.edu/goms/vol30/iss1/1
DOI: 10.18785/goms.3001.01



Statistical analyses.—Basal oxygen consumption
and ammonia excretion rates were analyzed using
a 2-way analysis of covariance (ANCOVA) with a
covariate of carapace width, fixed main effect
of time (morning, afternoon, evening), random
main effect of reproductive condition (male,
gravid female, nongravid female), and compared
using Tukey–Kramer post hoc tests (N 5 21).

Scope for growth, food consumption, and AE
were compared using a 2-way ANOVA with fixed
main effects of diet (phytoplankton, Artemia,
biofilm, or control) and random main effect of
sex (male or female), and compared using
Tukey’s post hoc tests. SFG, food consumption,
and AE were also analyzed using a 1-way ANOVA
by separating males and females of each diet,
creating eight levels (e.g., female-Artemia, male-
Artemia), and these were compared using linear
contrasts. Oxygen consumption and ammonia
excretion were compared using a 2-way ANCOVA
with a covariate of carapace width, fixed main
effect of diet (phytoplankton, Artemia, biofilm, or
control), and random main effect of sex (male
or female), and compared using Tukey–Kramer
post hoc tests. All statistical analyses were
performed using SASH 9.2 software.

RESULTS

Basal metabolism.—Oxygen consumption and
ammonia excretion were not significantly differ-
ent at different times of day (morning, after-
noon, evening) (ANCOVA F 5 0.42, P 5 0.67, F
5 0.57, P 5 0.58, respectively, N 5 21). Carapace
length, wet weight, and dry weight were highly

significant determinants of oxygen consumption
(ANCOVA F 5 8.18, P 5 0.016, F 5 13.60, P 5

0.0036, F 5 8.32, P 5 0.015, respectively, N 5 21)
and ammonia excretion (ANCOVA F 5 4.68, P 5

0.053, F 5 8.59, P 5 0.014, F 5 5.79, P 5 0.035,
respectively, N 5 21). Oxygen consumption and
ammonia excretion were not significantly differ-
ent among crabs of different sex (ANCOVA F 5

0.25, P 5 0.79, N 5 21) or reproductive
condition (ANCOVA F 5 0.07, P 5 0.93, N 5

21).

Scope for growth.—Oxygen consumption was sig-
nificantly higher in crabs fed Artemia nauplii than
in crabs fed biofilm extract, mixed microalgae, or
control crabs (ANCOVA F 5 3.33, P 5 0.037, N 5

32) (Table 1). Energy content of the diets on the
basis of bomb calorimetry was significantly differ-
ent (ANOVA F 5 517.15, P , 0.001, N 5 27)
(Table 2). The ash content of the diets was
significantly different (ANOVA F 5 4.26, P ,

0.001, N 5 12), whereas the ash content of the
feces was not (ANOVA F 5 3.40, P 5 0.176, N 5

32). Average AE of crabs fed Artemia nauplii and
mixed microalgae was 97.1 6 0.61 and 88.9% 6

4.1% respectively.
Consumption rate was significantly different

among the diets, there were no differences
detected between the sexes, and the interaction
term was significant (ANOVA F 5 404.0, P ,

0.0001, F 5 0.23, P 5 0.6387, F 5 6.50, P 5 0.0022,
respectively, N 5 32). On the basis of Tukey’s
comparisons, consumption rate of Artemia was
significantly higher than in those fed biofilm or
microalgae (P , 0.0001) (Table 2). Consumption

TABLE 1. Scope for growth (SFG) (J), oxygen consumption (mmol h21), and ammonia excretion (mmol h21) of
crabs fed Artemia nauplii, biofilm extract, mixed microalgae, and unfed controls showing mean and standard
deviation (N 5 32). Porcelain crab average carapace width with standard deviation was 8.0 6 1.2 mm in Artemia
treatment, 8.1 6 2.3 mm in biofilm treatment, 8.3 6 1.0 mm in phytoplankton treatment, and 8.7 6 1.2 mm

in control.

Diet SFG (J h21) mean SD Oxygen (mmol h21) mean SD
Ammonia

(mmol h21) mean SD

Artemia nauplii 9,963.1 658.3 4.21 2.03 0.0278 0.0144
Algal biofilm 264.5 202.8 2.48 2.00 0.0270 0.0136
Mixed microalgae 46.69 142.8 3.25 0.92 0.0572 0.0386
Control 21.53 0.44 3.64 1.30 0.0263 0.0153

TABLE 2. Consumption rate (g dry weight hr21), energy content [kJ (g dry weight)21], and ash content (%) of
the Artemia nauplii, biofilm extract, and mixed microalgae showing mean, standard deviation, and sample size.

Diet
Consumption rate

(mg dry weight hr21) mean SD
Energy content [kJ

(mg dry weight)21] mean SD
Ash content (%)

mean SD

Artemia nauplii 459.8 (N 5 7) 28.2 21,737 (N 5 12) 919 8.3 (N 5 5) 0.28
Biofilm extract 54.66 (N 5 9) 36.7 5,104 (N 5 7) 1,745 82.6 (N 5 5) 3.7
Mixed microalgae 0.156 (N 5 9) 0.332 17,491 (N 5 8) 425 25.2 (N 5 5) 6.7
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of mixed microalgae and biofilm were not
significantly different or different from control
(P 5 0.185, P 5 0.997, P 5 0.154, respectively).
When analyzed using a 1-way ANOVA and linear
contrasts, consumption of biofilm was significant-
ly higher in female crabs (F 5 12.62, P 5 0.0016),
consumption of Artemia nauplii was significantly
higher in male crabs (F 5 6.83, P 5 0.0153), and
consumption of biofilm was significantly higher
than mixed microalgae (F 5 4.37, P 5 0.0473).

Absorption effieciency was significantly differ-
ent among diets, between the sexes, and the
interaction term was significant (ANOVA F 5

12.15, P , 0.0001, F 5 5.31, P 5 0.0302, F 5

5.63, P 5 0.0046, respectively, N 5 32). When
analyzed using a 1-way ANOVA and linear
contrasts, AE was not significantly different
between males and females feeding on Artemia
(F 5 0.00, P 5 0.96), was higher in males feeding
on biofilm (F 5 18.82, P 5 0.0002), and was
higher in crabs fed mixed microalgae than in
crabs fed biofilm (F 5 4.99, P 5 0.0351).

Scope for growth was significantly different
among diets, between the sexes, and the inter-
action term was significant (ANOVA F 5 4,509.9,
P , 0.0001, F 5 29.94, P , 0.0001, F 5 43.88,
P , 0.0001, respectively, N 5 32) (Table 1). On
the basis of Tukey’s comparisons, SFG of crabs
fed Artemia was significantly higher than in those
fed biofilm or microalgae (P , 0.0001). SFG of
crabs fed mixed microalgae and biofilm were not
significantly different or different from unfed
control (P 5 0.551, P 5 0.955, P 5 0.339,
respectively).

DISCUSSION

In this study, the low cost of routine metabo-
lism in P. galathinus was sustained by consump-
tion of A. salina nauplii, mixed microalgae, or
algal biofilm. In unfed crabs, starvation did not
significantly alter energy expenditures on the
basis of oxygen consumption and ammonia
excretion. Crabs feeding on Artemia expended
more energy (measured by oxygen consump-
tion), consumed more biomass than crabs
feeding on other diets, and had the highest SFG.

Porcelain crabs, barnacles, calanoid copepods,
and most branchiopods use filter setae to capture
particles (Riisgard and Larsen, 2010). On the
basis of their size and structure, filter setae only
capture particles of certain sizes, shapes, and
surface chemistry (Palmer et al., 2004), making
them more selective than pump systems. This
innate selectivity provides a mechanism by which
organisms can capture food items that contain
more energy and necessary nutrients. When
reared in a laboratory environment larvae of

Petrolisthes spp. are fed A. salina nauplii almost
exclusively (Gore, 1972; Fujita et al., 2002; Kraus
et al., 2004). Pagurus longicarpus, another anom-
uran crab, completed development when fed only
Artemia but did not survive to adult stages when
given only algal food (Roberts, 1974). In these
studies Artemia was used as a proxy for naturally
occurring zooplankton, not just because of their
size and behavior, but also because of their
energetic and nutritional composition.

The structure of porcelain crab filter setae are
suited for capturing both small food items such
as microalgae and larger planktonic food items
such as zooplankton (Hartman, 2003; Hollebone
and Hay, 2008). In this study, Petrolisthes galathi-
nus was able to consume and maintain normal
metabolism on a mixed microalgal diet with cell
sizes of 2–20 mm. They were likely able to
consume microalgae due to the spacing of their
filter setae. The third maxillipeds of Petrolisthes
spp. form a fanlike structure with large setae
forming a framework around which smaller setae
are attached. In a closely related species, P.
cinctipes, the spacing among smaller filter setae
ranged from 3 to 30 mm, depending on the size
of the animal, with an average spacing of 21 mm
in distal regions of setae and 9 mm in proximal
regions of setae (Wicksten, 1973). Spacing
between larger setae is much greater and allows
the capture of larger prey items such as
zooplankton. A common estuarine copepod,
Acartia tonsa, ranges from about 400 to 800 mm
in length (Stottrup et al., 1986). Artemia nauplii,
by comparison, are approximately 400 to 500 mm
in length (Leger et al., 1987).

Both adult zooplankton such as copepods, and
invertebrate larvae such as crustacean nauplii,
vary in size, shape, and behavior (Zaret and
Suffern, 1976; Pangle et al., 2007) and porcelain
crabs should be able to capture and consume
many different types and sizes of zooplankton.
Petrolisthes cinctipes consumed diatoms, ciliated
protozoans, and Artemia nauplii in a laboratory
environment (Wicksten, 1973). Pagurus longicar-
pus was stimulated to feed by the presence of and
able to feed on Artemia nauplii, the first zoea of
Say’s mud crab Dyspanopeus sayi, green crab
Carcinus maenas, long-armed hermit crab Pagurus
longicarpus, marsh grass shrimp Palaemonetes
vulgaris, and the veligers of slipper shell Crepidula
plana (Whitman et al., 2001). Although cope-
pods make up the bulk of zooplankters around
oyster reefs during the day, planktonic crusta-
cean larvae comprised about 5% of the oyster
reef zooplankton community in Maryland (Breit-
burg et al., 1995) and decapod zoea were
numerically important in Virginia (Harding,
2001). The diet of porcelain crabs should
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include any of these zooplankters depending on
the size and abundance in space and time.

Porcelain crabs can be extremely abundant on
oyster reefs and may compete with oysters for
some food resources but not for others. Oysters,
like many bivalves, feed using laterofrontal cirri to
create currents, or a pump system, that directs
food particles to the mouth (Riisgard and Larsen,
2010). Crassostrea virginica is able to consume
suspended particles 1–12 mm in diameter and
optimally consumes those between 3 mm and 4 mm
(Haven and Morales-Alamo, 1970). Particles
between 2 mm and 3 mm in diameter are not
easily captured by C. virginica because this size
closely matches the spacing of laterofrontal cirri
(Haven and Morales-Alamo, 1970). The spacing
of filter setae in Petrolisthes galathinus and other
porcelain crabs is probably similar to that noted in
P. cinctipes (average 21 mm; Wicksten, 1973), and
because it is wider than that of oysters competi-
tion for food resources should be minimal.

Few studies have investigated the trophic
position or diet of porcelain crabs in the natural
environment. As measured by d15N, the trophic
position of Petrolisthes armatus in a Florida oyster
reef was nearer that of other crabs including
shore crab Pachygrapsus transversus and juvenile
mud crabs, demonstrating that porcelain crab
diets are likely different or more varied (or both)
than resident bivalve filter feeders (Yeager and
Layman 2011). The higher d15N value of
Petrolisthes armatus indicated that higher trophic
level prey, such as copepods and invertebrate
larvae, were an important food resource for
these crabs. As this study demonstrated, porce-
lain crabs consume other food resources as well,
such as microalgae and algal biofilms, but these
may only maintain routine metabolism and not
provide for additional energetic costs such as
molting, limb regeneration, and reproduction.
Zooplankton may be important components of
porcelain crab diets because they provide
enough energy to meet the metabolic costs of
growth and reproduction. As a consequence of
their potential reliance on zooplankton, porce-
lain crabs may also influence the populations of
a variety of other invertebrates that inhabit oyster
reefs.
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