# Using Kappenman's Model to Compare the Relative Fishing Power of 42-Foot Shrimp Trawls and 65-Foot Fish Trawls During Summer and Fall in the Western and North-Central Gulf of Mexico 

Rex C. Herron<br>National Marine Fisheries Service<br>L. Nelson May Jr.<br>National Marine Fisheries Service

DOI: 10.18785/goms.2902.01
Follow this and additional works at: https://aquila.usm.edu/goms

## Recommended Citation

Herron, R. C. and L. May Jr. 2011. Using Kappenman's Model to Compare the Relative Fishing Power of 42-Foot Shrimp Trawls and 65-Foot Fish Trawls During Summer and Fall in the Western and North-Central Gulf of Mexico. Gulf of Mexico Science 29 (2). Retrieved from https://aquila.usm.edu/goms/vol29/iss2/1

# Using Kappenman's Model to Compare the Relative Fishing Power of 42Foot Shrimp Trawls and 65-Foot Fish Trawls During Summer and Fall in the Western and North-Central Gulf of Mexico 

Rex C. Herron and L. Nelson May, Jr.


#### Abstract

Kappenman's fishing power correction (FPC) model was used to compare the fishing efficiency between a $42-\mathrm{ft}$ shrimp trawl and a $65-\mathrm{ft}$ fish trawl towed simultaneously at 985 stations by the National Oceanic and Atmospheric Administration ship Oregon II in the western and north-central Gulf of Mexico. The shrimp trawl was consistently more efficient, both summer and fall, and regardless of whether using no. $/ \mathrm{hr}$ or $\mathrm{kg} / \mathrm{hr}$ to calculate the FPC factors, for four species of fish, three species of crustaceans, and paper scallops. During summer, the shrimp trawl was more efficient, when using FPC factors calculated using no./hr as the catch per unit of effort (CPUE), at catching 13 of the 42 species of fish, 11 of the 12 species of crustaceans, and paper scallops. It was more efficient at catching 18 of the 42 species of fish, 10 of the 12 species of crustaceans, and paper scallops when FPC factors were calculated using kg / hr as the CPUE. In the fall, the shrimp trawl was more efficient, when using no. $/ \mathrm{hr}$ or $\mathrm{kg} / \mathrm{hr}$ as the CPUE, at catching five species of fish, three species of crustaceans, and paper scallops. Fishing power correction factors were then compared between summer and fall seasons for 42 species of fish and 16 species of invertebrates. During summer, FPC values ranged from a low of 0.15 for Gulf menhaden to 4.94 for shoal flounder; fall FPC values ranged from 0.05 for yellow box crab to 2.52 for broad-striped anchovy. With the exception of three species, when using number of individuals caught per hour as the CPUE, all FPC factors were significantly different between summer and fall catches.


## Introduction

Abundance estimates of fish stocks are based on catch-per-unit-of-effort (CPUE) data using standard vessels, fishing gear, and techniques. Fishing gear and vessels change over time, causing difficulties in determining characteristics of species composition of the communities, characteristic species of the assemblages, and characteristics of a particular species between different vessels and gears (Wantiez, 1996). A standardized CPUE is accomplished by calibrating the fishing powers exerted by different vessels, gears, and/or vessel and gear combinations using several methods for determining fishing power correction (FPC) factors (Gulland, 1956; Beverton and Holt, 1957; Robson, 1966; Fanning, 1985).

Kappenman (1992) developed a fishing power correction estimator based on the ratio of scale parameters of the distributions of two positive random variables (CPUE). Kappenman stated that, because estimates of abundance are sensitive to the estimate of the FPC used, a good estimate of the FPC is critical, and he argued that his FPC estimator provided a good, robust estimator. He recommended that it be used specifically in cases where a vessel's CPUE data were to be adjusted by multiplying them by an
estimate of the FPC and that the specified vessel need not be the least efficient one. The Kappenman FPC estimator assumes that the two CPUE variables have unknown but identical distributions, except possibly for the values of the scale parameters of the distributions.

Munro (1998) suggested using mean square error (MSE) as a measure of error between the estimator of mean CPUE and the true CPUE. If applying the fishing power correction factor reduces MSE, then the decision is made to use the FPC transformed catch rates as abundance estimators.

Adjusting data from multiple surveys and combining the CPUE data can result in significant changes in estimates of relative abundance of a species (von Szalay, 2003). Von Szalay and Brown (2001) applied the MSE decision rule in a study to decide whether to transform CPUE catch rates and found three significantly different length-based FPC values for three size classes of walleye pollock (Theragra chalcogramma). Von Szalay (2003) integrated data from separate surveys using Kappenman's model-derived FPC to adjust CPUE data, and the resulting relative abundance estimate was $22 \%$ higher than using only National Marine Fisheries Service (NMFS) survey data. The following year, estimates of abundance were $82 \%$ higher when combining
survey data. Brown and Zenger (1998) also noted differences in size selectivity of FPC values for some species.

NMFS surveys are designed to account for many species simultaneously rather than being stratified to account for density variations of a single species. Resulting yield estimates can result in less precision for an individual species than if a stratified sampling design was used specifically for that species. Combining data from multiple surveys with different vessel/gear combinations can result in reducing the variance of the yield estimates for a particular species of interest.

The objectives of this study were to use Kappenman's model to examine the differences in fishing power between a $42-\mathrm{ft}$ shrimp trawl (ST) and a 65 -ft fish trawl (FT) in order to determine both the suitability of applying the FPC to the CPUE data and to determine whether seasonal-based, species-specific differences in CPUE FPC factors are significant. The two trawls were towed side-by-side off the National Oceanic and Atmospheric Administration (NOAA) ship Oregon II (O-II). Only species of fishes and invertebrates in which the CPUE was nonzero in both nets simultaneously were selected for analyses, resulting in a total of 58 species of fishes and invertebrates considered in this study.

## Methods and Materials

In 1972 the NMFS Mississippi Laboratory initiated a resource survey program for collection, management, and dissemination of fishery independent data for determining the abundance and distribution of the multispecies demersal fishery resources in the Gulf of Mexico. These surveys are referred to as groundfish surveys. The data were primarily collected by the O-II between $88^{\circ} 00^{\prime \prime}$ west longitude to the U.S.-Mexico border, and in depths from the 5 fathom (fm) isobath seaward to the 60 fm isobath. Summer groundfish surveys are conducted each year in June and July, and fall surveys are conducted in Oct. and Nov. Stations are randomly selected prior to the cruise using a stratified random design with NMFS shrimp statistical subareas (Patella, 1975), depth zones, and day-night (diel) as strata. Tows are usually made perpendicular to the depth contours, although tows at steep bottom profiles are made at an angle to minimize significant depth changes. Samples are acquired with a $42-\mathrm{ft}$ shrimp trawl (Fig. 1) towed at a speed of approximately 3 knots. The duration of the tow is determined by the change in bottom depth and can range from 5 to 55 min . Multiple tows
are sometimes required at a station when the change in bottom slope is gradual. The tows are ended with a 5 -min pulse in the vessel's speed to flush the catch to the cod end of the net.

NMFS also does other types of surveys using other nets, longlines, cameras, etc. With new ships under construction and new surveys under consideration, other size nets are being considered for deployment that might be more efficient for sampling other fish species and/or at greater depths. One net under consideration for new surveys is a 65 -ft fish trawl (Fig. 2). Prior to deploying a different vessel or net, the gear is calibrated with the $42-\mathrm{ft}$ shrimp trawl so that catches of species caught in both nets can be merged to learn more about a species' range and density. Extensive data have been collected with the $65-\mathrm{ft}$ fish trawl to calibrate it with the $42-\mathrm{ft}$ shrimp trawl prior to deploying it on any new surveys.

The $O$-II acquired over 1,000 paired trawl samples during seven summer groundfish cruises from 1987 through 1993 and six fall groundfish cruises from 1987 through 1992 at randomly selected stations to conduct a gear intercalibration study. The $42-\mathrm{ft}$ shrimp trawl was towed from an outrigger (usually on the port side), while the 65 -ft fish trawl was towed simultaneously from an outrigger on the starboard side of the vessel. Which side of the vessel a net was on and the depth and direction of tow were not important variables because the bottom terrain of the Gulf of Mexico shelf in the study area is relatively flat. Both nets were deployed and retrieved simultaneously. The CPUE data were to be used to determine whether fishing power corrections were needed between the two separate nets.

Data from 985 stations were selected for further analyses after some stations were deleted for reasons related to net and gear performance, e.g., torn or lost nets, or trawl doors failing to separate. Data were used from a total of 516 stations from summer cruises and 469 stations from fall cruises. Organisms captured in the nets were identified, sorted, enumerated, and weighed, and length-frequency measurements were collected for a subsample of individuals from all species. Catches were standardized to 1 hr so that all catches for the purpose of this analysis were expressed as number of individuals per hour (no./hr) and kilograms per hour (kg/ $\mathrm{hr})$. Depending on the species and season, the number of data pairs available in which the CPUE of the species of interest was nonzero in both nets simultaneously ranged from 3 to 322.

A total of 42 species of fish and 16 species of invertebrates were selected for further analyses. These CPUE data were examined using Kappen-


Fig. 1. Diagram of NOAA Fisheries' (NMFS) 42 -ft shrimp trawl used in the comparative tow project.
man's fishing power correction factor model. Kappenman's model was used because it is robust, because paired trawl samples are not required, because it is the method currently used by the NMFS Alaska Fisheries Science Center, and because it is less sensitive to infrequent large catches (Munro and Hoff, 1995). Although paired tows are not required by the Kappenman model, only paired tows were used in this study. Paired tows in which either net had a zero catch for a particular species were deleted from the analyses because Kappenman's model does not support zeros (Wilderbuer et al., 1998; Troncoso and Paz, 2003; Troncoso, 2004) and the CPUE values are required to be positive random variables (von Szalay and Brown, 2001).

The same approach was used in this study that was used by von Szalay and Brown (2001). Variances and root mean square errors (RMS) were estimated by using the original data sets to bootstrap 1,000 new data sets and calculating FPC factors for all data sets, for all species, for both summer and fall. A root mean square error
was used instead of mean square error simply because it was more convenient. This is a valid approach because the RMS is the square root of the absolute value of the MSE. Each data set for each species for each season was resampled with replacement (Troncoso and Paz, 2003) to create the 1,000 new data sets and to calculate the subsequent $1,000 \mathrm{FPC}$ factors for all species for each season. The 1,000 FPC factors were averaged and compared for each species by season using analysis of variance (ANOVA).

Kappenman's model-derived FPC was then applied to the 65 -ft fish trawl CPUE values, and the RMS was compared between preapplied $65-\mathrm{ft}$ fish trawl CPUE values and the postapplied $65-\mathrm{ft}$ fish trawl CPUE values. FPC values were calculated for CPUE data from the $42-\mathrm{ft}$ shrimp trawl (the standard for this study) and the $65-\mathrm{ft}$ fish trawl. The $65-\mathrm{ft}$ trawl CPUE data were then multiplied by the derived FPC. If the RMS was reduced after applying the FPC to the fish trawl CPUE from the RMS calculated from the original $65-\mathrm{ft}$ trawl CPUE data, then the decision was


Fig. 2. Diagram of NOAA Fisheries (NMFS) 65-ft fish trawl used in the comparative tow project.
made to use the derived FPC to transform the data.

## Results

Longspine porgy were caught simultaneously in both trawls more often ( 571 of the 985 paired tows) (Table 1) than any other species, followed by brown shrimp ( 525 of the 985 paired tows) and inshore lizardfish ( 475 pairs). The yellow box crab was caught the fewest number of times simultaneously in both nets ( 15 of 985 paired tows), followed by planehead filefish (21 pairs) and bigeye scad (21 pairs). In the summer surveys, longspine porgy were also the most often caught simultaneously in both nets (322), followed by Gulf butterfish (252 pairs), and brown shrimp (278 pairs). Mexican flounder was caught the least often in both nets simultaneously in the summer surveys ( 6 pairs), followed by bigeye scad (6 pairs) and sash flounder (8 pairs).

In the fall, however, Atlantic croaker was caught the most often in both nets simultaneously (272), and yellow box crab was caught the least often (3 times) in both nets.

The mean CPUE (with no zero catches used in the calculations) declined in the fall, when expressed as both no. $/ \mathrm{hr}$ and $\mathrm{kg} / \mathrm{hr}$, for 16 species ( 10 fish, 3 crustaceans, and 3 other invertebrates) (Table 1). They both increased in the fall for 13 species ( 11 fish and 2 crustaceans). For 13 species ( 8 fish, 4 crustaceans, and paper scallops), the mean CPUE went down in the fall for both catch rates in the shrimp net but up in the fall for both catch rates in the fish trawl. For five species of fish, mean catch rates went down in the fall for no. $/ \mathrm{hr}$ in both nets, but up in both nets for $\mathrm{kg} / \mathrm{hr}$, suggesting an overall size increase for these species. For the remaining nine species of fish and two species of crustaceans, mean catch rates varied with no discernable pattern.

There was variation in species-specific FPC values depending on whether no./ hr or $\mathrm{kg} / \mathrm{hr}$ was used for the CPUE (Table 2). However, FPC values tended to reflect each other in terms of increasing or decreasing values. A linear regression analysis of the 58 summer FPC factors (no./ hr ) against the summer FPC factors ( $\mathrm{kg} / \mathrm{hr}$ ) resulted in an $r^{2}$ of 0.8973 and a slope of 0.7938 ( $F=489.2010, P<0.01$ ). A linear regression of the 58 fall FPC values (no./hr) on fall FPC values ( $\mathrm{kg} / \mathrm{hr}$ ) resulted in an $r^{2}$ of 0.9102 and a slope of $1.0052(F=567.5499, P<0.01)$.

In summer, the FPC factors ranged from 4.94 (shoal flounder, no./hr) to a low of 0.15 for Gulf menhaden when using no. $/ \mathrm{hr}$ (Table 2). The 42-ft shrimp trawl was more efficient, when using FPC factors calculated using no./ hr as the CPUE, at catching 13 of 42 species of fish, 11 of the 12 species of crustaceans, and paper scallops. It was more efficient at catching 18 of the 42 species of fish, 10 of the 12 species of crustaceans, and paper scallops when FPC factors were calculated using $\mathrm{kg} / \mathrm{hr}$ as the CPUE. The shrimp trawl was more efficient at catching Atlantic bumper when using $\mathrm{kg} / \mathrm{hr}$ to calculate the FPC (1.01), but less efficient when using no./hr to calculate the FPC (0.27). The same pattern was observed for lane snapper, bigeye scad, sash flounder, and southern codling. The shrimp trawl was more efficient at catching lesser rock shrimp when using no./hr to calculate the FPC (1.13) but less efficient when using $\mathrm{kg} / \mathrm{hr}$ to calculate the FPC (0.79).

In the fall, FPC values ranged from a high of 2.52 for broad-striped anchovy when calculated using no./hr to a low of 0.05 for yellow box crab when using no./hr. The shrimp trawl was more efficient, when using no./hr as the CPUE, at catching five species of fish, three species of crustaceans, and paper scallops. When using kg/ hr as the CPUE for calculating the FPC, the shrimp trawl was also more efficient at catching five species of fish, three species of crustaceans, and paper scallops. It was more efficient at catching blackear bass when using no./hr, but less efficient when using $\mathrm{kg} / \mathrm{hr}$, and less efficient at catching sash flounder when using no./hr but more efficient when using $\mathrm{kg} / \mathrm{hr}$ as the CPUE. It was more efficient at catching the crustaceans and paper scallops regardless of whether using no. /hr or kg/hr.

Bootstrapped FPC data sets were used to compare summer and fall data sets. The FPC values calculated from no./hr CPUE data were not significantly different for Atlantic brief squid, red snapper, and shortwing searobin. All other FPC values, from both no./ hr and $\mathrm{kg} / \mathrm{hr}$ CPUE data sets, were highly significantly different between summer and fall (ANOVA, $P<0.02$ ).

The shrimp trawl was consistently more efficient, both in summer and fall and regardless of whether using no. $/ \mathrm{hr}$ or $\mathrm{kg} / \mathrm{hr}$ to calculate the FPC factors, for four species of fish (broadstriped anchovy, Atlantic midshipman, shortbeard cusk-eel, and Brazilian lizardfish), three species of crustaceans (brown shrimp, white shrimp, and brown rock shrimp), and paper scallops.

The calculated FPC factors tended to be lower in the fall than in the summer when using no./ hr as the CPUE. The FPC was lower in the fall for 32 of the 40 species of fish under consideration, 11 of the 12 species of crustaceans, and paper scallops. It remained unchanged for three fish species, one crustacean species, and Atlantic brief squid. The FPC value increased in the fall for only five species of fish and longfin inshore and arrow squids. The pattern was similar when using $\mathrm{kg} / \mathrm{hr}$ to calculate FPC values. Again, 32 species of fish, 11 species of crustaceans, and one species of other invertebrates had FPC values lower in the fall than in summer.

During summer, the RMS decision rule resulted in the decision to transform the fish trawl no. $/ \mathrm{hr}$ CPUE data for 30 of the 42 species of fish (Table 3). When the decision rule was applied to crustaceans and other invertebrates, the decision was made to transform both no. $/ \mathrm{hr}$ and $\mathrm{kg} / \mathrm{hr}$ CPUE data for all 11 species of crustaceans and four of the five species of other invertebrates; the exception was paper scallop, which required no transformation on either CPUE data set. When using $\mathrm{kg} / \mathrm{hr}$ as the CPUE and applying the decision rule, the decision was made to transform only 25 of the 42 fish CPUE data sets. The decision to transform the fish trawl CPUE data changed for five species: Atlantic bumper, lane snapper, bigeye scad, sash flounder, and southern codling. The results for these five species changed from requiring a transformation of the no./hr CPUE data to not requiring a transformation of the $\mathrm{kg} / \mathrm{hr}$ CPUE data.

In the fall, the RMS decision rule resulted in the decision to transform the fish trawl no. $/ \mathrm{hr}$ CPUE data for 37 of the 42 species of fish (Table 3), but this number changed to 38 when using $\mathrm{kg} / \mathrm{hr}$ as the CPUE. The results were reversed from deciding to transform $\mathrm{kg} / \mathrm{hr}$ CPUE data to not transforming no./hr CPUE data for blackear bass. The rule resulted in the decision to transform both no./ hr and $\mathrm{kg} / \mathrm{hr}$ CPUE data for all nine species of crustaceans and three of the five species of other invertebrates. There were no reverses in the RMS rule decision for any of the invertebrates regardless of the CPUE used to calculate the FPC.
Table 1. Scientific and common names of species considered in this analysis, the number of times they were captured simultaneously in both nets, and mean catch per unit

| Species | Common name | Summer |  |  |  |  | Fall |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $n$ | ST (no./hr) | FT (no./hr) | ST (kg/hr) | FT (kg/hr) | n | ST (no./hr) | FT (no./hr) | ST (kg/hr) | FT (kg/hr) |
| Fishes |  |  |  |  |  |  |  |  |  |  |  |
| Anchoa hepsetus | Broad-striped anchovy | 83 | 502.86 | 293.94 | 3.63 | 3.12 | 81 | 31.30 | 14.06 | 0.44 | 0.16 |
| Centropristis philadelphica | Rock sea bass | 133 | 20.83 | 15.01 | 0.84 | 0.78 | 175 | 52.24 | 60.00 | 2.27 | 2.93 |
| Chloroscombrus chrysurus | Atlantic bumper | 152 | 738.22 | 1,957.29 | 8.52 | 64.27 | 230 | 452.11 | 1,603.71 | 6.73 | 44.30 |
| Cynoscion arenarius | Sand seatrout | 75 | 108.49 | 96.43 | 5.42 | 7.09 | 178 | 61.92 | 96.61 | 6.59 | 8.92 |
| Cynoscion nothus | Silver seatrout | 58 | 115.92 | 225.78 | 5.90 | 11.38 | 92 | 62.44 | 2,116.18 | 2.87 | 5.57 |
| Diplectrum bivittatum | Dwarf sand perch | 113 | 17.38 | 28.28 | 0.44 | 0.27 | 123 | 15.91 | 18.06 | 0.28 | 0.39 |
| Harengula jaguana | Scaled herring | 100 | 104.44 | 273.20 | 2.65 | 7.20 | 89 | 141.26 | 178.82 | 3.50 | 5.84 |
| Lagodon rhomboides | Pinfish | 84 | 34.46 | 92.48 | 1.40 | 4.86 | 184 | 56.72 | 1,766.97 | 3.37 | 7.62 |
| Leiostomus xanthurus | Spot croaker | 65 | 275.52 | 276.71 | 16.97 | 19.28 | 200 | 176.29 | 247.71 | 18.85 | 30.71 |
| Lutjanus campechanus | Northern red snapper | 77 | 19.20 | 36.59 | 1.37 | 2.61 | 145 | 20.57 | 30.04 | 1.09 | 2.94 |
| Micropogonias undulatus | Atlantic croaker | 149 | 2,175.51 | 2,641.11 | 47.48 | 62.24 | 272 | 1,480.99 | 660.26 | 26.09 | 33.80 |
| Peprilus burti | Gulf butterfish | 252 | 352.77 | 476.96 | 9.38 | 16.62 | 190 | 158.57 | 531.55 | 10.15 | 36.64 |
| Porichthys plectrodon | Atlantic midshipman | 78 | 19.23 | 18.87 | 0.46 | 0.48 | 62 | 18.13 | 16.29 | 0.34 | 0.34 |
| Prionotus longispinosus | Bigeye searobin | 119 | 209.08 | 280.28 | 1.67 | 1.87 | 117 | 50.44 | 107.44 | 1.78 | 4.22 |
| Prionotus paralatus | Mexican searobin | 86 | 2,660.90 | 73.44 | 0.91 | 1.31 | 65 | 100.34 | 131.30 | 2.03 | 2.87 |
| Prionotus stearnsi | Shortwing searobin | 106 | 43.73 | 60.46 | 0.43 | 0.61 | 55 | 75.26 | 78.52 | 0.89 | 0.96 |
| Pristipomoides aquilonaris | Wenchman | 132 | 40.96 | 69.25 | 2.03 | 3.64 | 63 | 68.52 | 93.59 | 2.73 | 5.40 |
| Serranus atrobranchus | Blackear seabass | 76 | 28.64 | 22.61 | 0.51 | 0.40 | 103 | 42.48 | 36.22 | 0.52 | 0.52 |
| Sphoeroides parvus | Least puffer | 56 | 19.43 | 29.13 | 0.20 | 0.25 | 82 | 51.80 | 71.38 | 0.33 | 0.51 |
| Stenotomus caprinus | Longspine porgy | 322 | 1,373.80 | 1,971.28 | 8.88 | 17.42 | 249 | 371.90 | 917.68 | 13.24 | 32.66 |
| Synodus foetens | Inshore lizardfish | 206 | 26.67 | 33.18 | 2.17 | 2.08 | 269 | 29.75 | 49.29 | 3.22 | 4.77 |
| Trachurus lathami | Rough scad | 183 | 230.59 | 238.53 | 3.83 | 4.03 | 146 | 136.68 | 239.84 | 3.78 | 7.06 |
| Trichiurus lepturus | Largehead hairtail | 75 | 82.92 | 311.47 | 4.14 | 14.20 | 71 | 122.83 | 193.60 | 6.54 | 17.64 |
| Upeneus parvus | Dwarf goatfish | 126 | 42.07 | 58.32 | 0.93 | 1.50 | 85 | 33.90 | 79.49 | 0.93 | 2.58 |
| Brevoortia patronus | Gulf menhaden | 15 | 53.30 | 799.51 | 3.57 | 45.52 | 48 | 7.13 | 30.90 | 0.90 | 2.46 |
| Cyclopsetta chittendeni | Mexican flounder | 6 | 15.01 | 7.17 | 2.06 | 0.46 | 21 | 10.13 | 14.02 | 0.96 | 1.94 |
| Etropus crossotus | Fringed flounder | 43 | 96.36 | 29.99 | 1.31 | 0.62 | 44 | 32.78 | 49.69 | 0.53 | 0.75 |
| Etrumeus teres | Round herring | 75 | 202.87 | 383.29 | 1.52 | 3.46 | 31 | 161.32 | 81.10 | 3.28 | 1.32 |
| Halieutichthys aculeatus | Pancake batfish | 20 | 66.09 | 17.67 | 0.44 | 0.17 | 37 | 38.63 | 54.20 | 0.39 | 0.60 |
| Lagocephalus laevigatus | Smooth puffer | 20 | 15.24 | 16.82 | 0.18 | 0.57 | 21 | 5.94 | 7.47 | 0.35 | 0.88 |
| Lepophidium brevibarbe | Shortbeard cusk-eel | 19 | 23.23 | 10.32 | 1.12 | 0.50 | 28 | 37.51 | 31.52 | 1.46 | 1.22 |
| Lutjanus synagris | Lane snapper | 10 | 7.35 | 7.98 | 0.75 | 0.78 | 33 | 3.29 | 3.98 | 0.27 | 0.28 |

Table 1. Continued

| Species | Common name | Summer |  |  |  |  | Fall |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $n$ | ST (no./hr) | FT (no./hr) | ST (kg/hr) | FT (kg/hr) | n | ST (no./hr) | FT (no./hr) | ST (kg/hr) | FT (kg/hr) |
| Monacanthus hispidus | Planehead filefish | 14 | 11.86 | 12.75 | 0.40 | 0.47 | 7 | 3.74 | 7.22 | 0.16 | 0.38 |
| Peprilus alepidotus | Harvestfish | 29 | 10,824.41 | 79.86 | 0.51 | 1.85 | 45 | 2.97 | 7.52 | 0.08 | 0.51 |
| Rhizoprionodon terraenovae | Atlantic sharpnose shark | 18 | 14.40 | 25.41 | 4.37 | 8.03 | 24 | 1.90 | 4.26 | 2.48 | 8.18 |
| Saurida brasiliensis | Brazilian lizardfish | 102 | 10.76 | 10.41 | 0.10 | 0.08 | 29 | 9.05 | 5.20 | 0.05 | 0.04 |
| Selar crumenophthalmus | Bigeye scad | 6 | 9.61 | 12.11 | 1.30 | 0.73 | 15 | 4.81 | 25.88 | 0.57 | 3.14 |
| Selene setapinnis | Atlantic moonfish | 30 | 18.95 | 28.25 | 1.09 | 1.50 | 31 | 2.45 | 10.36 | 0.21 | 0.98 |
| Syacium gunteri | Shoal flounder | 19 | 74.38 | 13.83 | 1.37 | 0.38 | 24 | 27.57 | 42.39 | 0.83 | 0.94 |
| Synodus poeyi | Offshore lizardfish | 16 | 18.54 | 10.47 | 0.16 | 0.08 | 17 | 14.59 | 10.07 | 0.17 | 0.14 |
| Trichopsetta ventralis | Sash flounder | 8 | 19.70 | 7.54 | 0.61 | 0.19 | 26 | 27.33 | 24.77 | 0.76 | 0.74 |
| Urophycis floridana | Southern codling | 34 | 16.66 | 14.68 | 0.86 | 0.91 | 7 | 6.96 | 13.08 | 0.88 | 1.70 |
| Crustaceans |  |  |  |  |  |  |  |  |  |  |  |
| Callinectes similis | Lesser blue crab | 228 | 410.27 | 402.20 | 5.38 | 4.60 | 183 | 108.11 | 266.54 | 2.26 | 5.61 |
| Farfantepenaeus aztecus | Brown shrimp | 278 | 313.09 | 183.32 | 3.95 | 2.37 | 247 | 20.94 | 18.81 | 0.56 | 0.44 |
| Litopenaeus setiferus | White shrimp | 105 | 48.25 | 45.28 | 1.75 | 1.68 | 147 | 91.32 | 96.15 | 1.77 | 1.78 |
| Portunus spinicarpus | Longspine swimming crab | 85 | 187.89 | 122.02 | 1.12 | 0.89 | 57 | 537.85 | 517.82 | 4.25 | 3.99 |
| Portunus gibbesii | Iridescent swimming crab | 57 | 70.77 | 99.68 | 0.33 | 0.46 | 111 | 75.18 | 120.27 | 0.47 | 0.76 |
| Sicyonia brevirostris | Brown rock shrimp | 98 | 303.37 | 105.75 | 2.99 | 1.12 | 68 | 155.99 | 142.64 | 2.44 | 2.30 |
| Farfantepenaeus duorarum | Pink shrimp | 55 | 68.25 | 42.78 | 1.24 | 1.01 | 45 | 4.96 | 5.70 | 0.14 | 0.15 |
| Squilla empusa | Mantis shrimp | 46 | 142.00 | 171.63 | 1.05 | 1.09 | 26 | 70.04 | 77.17 | 0.74 | 0.73 |
| Sicyonia dorsalis | Lesser rock shrimp | 36 | 73.82 | 146.78 | 0.16 | 0.32 | 20 | 57.24 | 69.57 | 0.43 | 0.55 |
| Portunus spinimanus | Blotched swimming crab | 27 | 33.39 | 42.91 | 0.66 | 0.60 | 18 | 8.33 | 14.63 | 0.14 | 0.25 |
| Callinectes sapidus | Blue crab | 31 | 107.98 | 16.41 | 2.44 | 1.10 | 5 | 14.83 | 27.43 | 0.62 | 4.16 |
| Calappa sulcata | Yellow box crab | 12 | 6.44 | 7.17 | 0.81 | 1.06 | 3 | 2.26 | 16.48 | 0.21 | 4.17 |
| Other invertebrates |  |  |  |  |  |  |  |  |  |  |  |
| Loligo pealei | Longfin inshore squid | 129 | 159.90 | 188.26 | 2.73 | 3.50 | 91 | 59.02 | 43.02 | 1.07 | 1.23 |
| Lolliguncula brevis | Atlantic brief squid | 83 | 235.94 | 287.55 | 1.77 | 2.56 | 70 | 54.85 | 73.15 | 0.58 | 0.88 |
| Loligo pleii | Arrow squid | 161 | 244.80 | 332.33 | 4.65 | 7.28 | 33 | 79.67 | 62.60 | 0.78 | 1.03 |
| Amusium papyraceum | Paper scallop | 27 | 122.29 | 20.97 | 1.38 | 0.28 | 28 | 55.80 | 39.76 | 0.81 | 0.44 |

## Gulf of Mexico Science, Vol. 29 [2011], No. 2, Art. 1

Table 2. Fishing power correction factors calculated using Kappenman's model for both summer and fall and for both no. $/ \mathrm{hr}$ and $\mathrm{kg} / \mathrm{hr}$ CPUE data.

| Common name | Summer FPC (no./hr) | Summer FPC (kg/hr) | Fall FPC (no./hr) | Fall FPC (kg/hr) |
| :---: | :---: | :---: | :---: | :---: |
| Fishes |  |  |  |  |
| Broad-striped anchovy | 1.17 | 1.07 | 2.52 | 2.43 |
| Rock sea bass | 1.14 | 1.09 | 0.73 | 0.71 |
| Atlantic bumper | 0.27 | 1.01 | 0.26 | 0.23 |
| Sand seatrout | 0.65 | 0.58 | 0.56 | 0.57 |
| Silver seatrout | 0.53 | 0.54 | 0.47 | 0.52 |
| Dwarf sand perch | 1.78 | 1.64 | 0.90 | 0.78 |
| Scaled herring | 0.29 | 0.33 | 0.51 | 0.49 |
| Pinfish | 0.59 | 0.53 | 0.49 | 0.49 |
| Spot croaker | 0.76 | 0.72 | 0.58 | 0.58 |
| Northern red snapper | 0.67 | 0.69 | 0.67 | 0.62 |
| Atlantic croaker | 0.84 | 0.87 | 0.66 | 0.68 |
| Gulf butterfish | 0.58 | 0.57 | 0.41 | 0.39 |
| Atlantic midshipman | 1.23 | 1.14 | 1.16 | 1.04 |
| Bigeye searobin | 0.78 | 0.83 | 0.44 | 0.45 |
| Mexican searobin | 0.93 | 0.81 | 0.55 | 0.54 |
| Shortwing searobin | 0.75 | 0.69 | 0.75 | 0.85 |
| Wenchman | 0.60 | 0.52 | 0.56 | 0.49 |
| Blackear seabass | 1.32 | 1.07 | 1.04 | 0.88 |
| Least puffer | 0.78 | 0.80 | 0.71 | 0.69 |
| Longspine porgy | 0.73 | 0.69 | 0.46 | 0.45 |
| Inshore lizardfish | 1.11 | 1.17 | 0.58 | 0.64 |
| Rough scad | 0.79 | 0.75 | 0.59 | 0.58 |
| Largehead hairtail | 0.38 | 0.39 | 0.47 | 0.44 |
| Dwarf goatfish | 0.87 | 0.69 | 0.37 | 0.39 |
| Gulf menhaden | 0.15 | 0.19 | 0.39 | 0.47 |
| Mexican flounder | 2.10 | 1.22 | 0.62 | 0.61 |
| Fringed flounder | 2.31 | 2.19 | 0.72 | 0.71 |
| Round herring | 0.71 | 0.70 | 0.74 | 0.76 |
| Pancake batfish | 1.52 | 1.67 | 0.65 | 0.53 |
| Smooth puffer | 0.79 | 0.62 | 0.81 | 0.98 |
| Shortbeard cusk-eel | 2.30 | 2.30 | 1.35 | 1.19 |
| Lane snapper | 0.90 | 1.09 | 0.70 | 0.70 |
| Planehead filefish | 0.74 | 0.77 | 0.54 | 0.59 |
| Harvestfish | 0.57 | 0.47 | 0.57 | 0.52 |
| Atlantic sharpnose shark | 0.71 | 0.65 | 0.59 | 0.48 |
| Brazilian lizardfish | 1.04 | 1.05 | 1.23 | 1.24 |
| Bigeye scad | 0.91 | 1.65 | 0.28 | 0.29 |
| Atlantic moonfish | 0.91 | 0.97 | 0.48 | 0.57 |
| Shoal flounder | 4.94 | 3.91 | 0.55 | 0.57 |
| Offshore lizardfish | 1.08 | 1.29 | 0.78 | 0.80 |
| Sash flounder | 0.99 | 1.67 | 0.92 | 1.19 |
| Southern codling | 0.94 | 1.10 | 0.75 | 0.55 |
| Crustaceans |  |  |  |  |
| Lesser blue crab | 1.21 | 1.36 | 0.46 | 0.49 |
| Brown shrimp | 1.89 | 1.81 | 1.31 | 1.44 |
| White shrimp | 1.13 | 1.12 | 1.13 | 1.13 |
| Iridescent swimming crab | 1.38 | 1.06 | 0.72 | 0.64 |
| Longspine swimming crab | 1.63 | 1.36 | 0.87 | 0.91 |
| Brown rock shrimp | 2.75 | 2.57 | 1.11 | 1.15 |
| Pink shrimp | 1.34 | 1.33 | 0.95 | 0.92 |
| Mantis shrimp | 1.43 | 1.66 | 0.89 | 0.97 |
| Lesser rock shrimp | 1.13 | 0.79 | 0.59 | 0.47 |
| Blotched swimming crab | 1.03 | 1.30 | 0.55 | 0.54 |
| Blue crab | 1.17 | 1.25 | 0.77 | 0.27 |

Table 2. Continued

| Common name | Summer FPC (no./hr) | Summer FPC (kg/hr) | Fall FPC (no./hr) | Fall FPC $(\mathrm{kg} / \mathrm{hr})$ |
| :--- | :---: | :---: | :---: | :---: |
| Yellow box crab | 0.91 | 0.68 | 0.12 | 0.05 |
| Other Invertebrates |  |  |  |  |
| Longfin inshore squid | 0.77 | 0.63 | 0.92 | 0.74 |
| Atlantic brief squid | 0.68 | 0.63 | 0.68 | 0.61 |
| Arrow squid | 0.75 | 0.61 | 0.93 | 0.68 |
| Paper scallop | 4.65 | 3.89 | 1.68 | 2.00 |

## Discussion

Differences in mean catch rates occurred by season, but there was no widespread increase or decrease by season. In the fall, mean catch rates increased for 13 species in both nets, but declined in both nets for 16 species. Both mean catch rates for 13 species declined in the fall in the shrimp net but increased in the fall in the fish net. For another four species, mean no. $/ \mathrm{hr}$ catch rates declined in both nets but increased in both nets for mean $\mathrm{kg} / \mathrm{hr}$. The mean catch rates might be expected to decrease in the fall for species commercially exploited in the summer such as brown, pink, and white shrimp, northern red snapper, Gulf menhaden, Gulf butterfish, and, possibly, Atlantic croaker. This did not always occur. Brown shrimp, Gulf menhaden, and Atlantic croaker mean catch rates did decline in the fall in both nets, but mean catch rates of white shrimp increased in the fall in both nets. Mean no./hr of pink shrimp declined in both nets, but mean $\mathrm{kg} / \mathrm{hr}$ increased in both nets. Mean no./hr of northern red snapper increased in the shrimp net in the fall but decreased in the fish net, but mean $\mathrm{kg} / \mathrm{hr}$ catch rates declined in the shrimp net and increased in the fish net.

The mean catch rates do not include stations where the catch rate of an individual species was zero in either or both nets and do not represent the mean catch rates when computed for the entire study area because zeros are not factored into the estimate. A zero catch for an individual species is deleted from the analysis because Kappenman's model does not allow zeros. Therefore caution should used when trying to make assumptions about the overall mean catch rates and density estimates.

FPC values in this study appear to vary little for a species in a particular season whether using no./hr or $\mathrm{kg} / \mathrm{hr}$ CPUE data to derive them. One major exception was Atlantic bumper; where a summer FPC of 0.27 was derived from the no. $/ \mathrm{hr}$ CPUE data, and an FPC of 1.01 was derived from the $\mathrm{kg} / \mathrm{hr}$ CPUE data. These results suggest that
a FPC should be derived for each type of CPUE used.

FPC values derived during this study ranged from a low of 0.05 to a high of 4.94 . There were no extremely high values, such as the value of 32.95 for length interval I walleye Pollock caught in a trawl comparison study in Alaskan waters (von Szalay and Brown, 2001). This result was attributed to the small size of the length interval ( $<15 \mathrm{~cm}$ ) and suggested that small fish were more likely to pass through an empty cod end than one with a substantial catch in it. The exceptionally low FPC values of 0.5 (fall, $\mathrm{kg} / \mathrm{hr}$ ) and 0.12 (fall, no. $/ \mathrm{hr}$ ) were derived for yellow box crab; however, these results can be attributed to the small sample size (three) for this species in the fall.

Size was not used as a separate category for any species in this study. Most of the species sampled by the 42 -ft shrimp trawl are relatively small, i.e., less than about 40 cm . Thus the $42-\mathrm{ft}$ shrimp trawl would be expected to be more efficient at sampling smaller sized species than the $65-\mathrm{ft}$ fish trawl, based on von Szalay's suspicions. Based on these results, meaningful conclusions, concerning net efficiencies and relative sizes of individual species as adults, could not be made.

The 42 -ft shrimp trawl was more efficient at capturing all species of crustaceans in the summer months except yellow box crab. However, in the fall, the $42-\mathrm{ft}$ shrimp trawl was more efficient at capturing only 3 of the 11 species of crustaceans: brown, white, and brown rock shrimp. The $42-\mathrm{ft}$ shrimp trawl is specifically designed to catch shrimp, so trawl design may have impacted these results.

Von Szalay and Brown (2001) demonstrated that FPC values for different length classes of the same species can be significantly different, as did Troncoso and Paz (2003). Although FPC values for size classes were not examined in this study, differences in FPC values for species by season were examined. There were significant differences in FPC values between summer and fall for most species (ANOVA, $P<0.02$ ). Although the data were not examined for species-specific size

Table 3. The decision, based on RMS values, whether to use the FPC to transform the 65-ft fish trawl CPUE data to standardize it with the 42 -ft shrimp trawl.

| Common name | Summer <br> sample <br> size | Apply FPC for <br> no./hr in <br> summer? | Apply FPC for <br> kg/hr in <br> summer? | Fall <br> sample <br> size | Apply FPC for <br> no./hr in <br> fall? |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Apply FPC for <br> kg/hr in |  |  |  |  |  |
| fall? |  |  |  |  |  |

Table 3. Continued

| Common name | Summer <br> sample <br> size | Apply FPC for <br> no./hr in <br> summer? | Apply FPC for <br> kg hr in <br> summer? | Fall <br> sample <br> size | Apply FPC for <br> no. /hr in <br> fall? | Apply FPC for <br> $\mathrm{kg} / \mathrm{hr}$ in <br> fall? |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Blue crab | 31 | No | No | 5 | Yes | Yes |
| Yellow box crab | 12 | Yes | Yes | 3 | Yes | Yes |
| Other invertebrates |  |  |  |  |  |  |
| Longfin inshore squid | 129 | Yes | Yes | 129 | Yes | Yes |
| Atlantic brief squid | 83 | Yes | Yes | 83 | Yes | Yes |
| Arrow squid | 161 | Yes | Yes | 161 | Yes | Yes |
| Paper scallop | 27 | No | No | 27 | No | No |

differences in FPC values, size alone might not account for all the differences in FPC values between seasons.

Intuitively, the expectation might be that, since the FPC value diverges further and further from a value of one, the RMS decision rule would result in a decision to transform the CPUE data. While generally true for this study, this was not necessarily the case for all species. For example, the FPC value for summer no. $/ \mathrm{hr}$ and $\mathrm{kg} / \mathrm{hr}$ catches of shoal flounder was 4.94 and 3.91, respectively, but the RMS decision rule resulted in the decision not to transform either CPUE fish trawl data set. In the fall, shoal flounder FPC values were 0.55 and 0.57 for no. $/ \mathrm{hr}$ and $\mathrm{kg} / \mathrm{hr}$ CPUE data sets, respectively, but the RMS decision rule resulted in a decision to apply the FPC to both data sets.

The same was true for paper scallop summer catches that had a no./hr FPC of 4.65 and a kg/ hr FPC of 3.89 , but the decision rule resulted in the decision not to transform either data set. However, paper scallop had fall FPC values of 1.68 and 2.00 for no. $/ \mathrm{hr}$ and $\mathrm{kg} / \mathrm{hr}$ CPUE data sets, respectively, but the decision rule again resulted in the decision not to transform either fish trawl data set.

FPC values can vary for the same species between different vessels and gear types for several reasons, as suggested by von Szalay (2003). They can also vary even though the vessel and gear do not change because of extrinsic factors. Vertical and horizontal migration, both diurnal and seasonal, can affect the estimated FPC. Depth strata affect the vertical openings of the nets, thereby affecting the volume sampled by a particular net at different depths. The bottom type in different areas might affect the nets differently, resulting in changes in CPUE and therefore FPC values. Size of the individuals of a species at the time of sampling can affect catch rates and therefore FPC values, but season at the time of sampling is also a contributor to catch
rates and FPC values. Season can incorporate factors mentioned, such as horizontal migration and, more probably, size composition.

## Acknowledgments

We would like to thank the scientists and crew of the NOAA ship Oregon II for acquiring the trawl data that made this paper possible. Dr. Thomas D. Leming and Ian McCoy provided software support.

## Literature Cited

Beverton, R. J. H., and S. J. Holt. 1957. On the dynamics of exploited fish populations. Fishery Investigations, Series II, Marine Fisheries, vol 19 Chapman and Hall, London.
Brown, E., and H. Zenger. 1998. National Marine Fisheries Service/Alaska Department of Fish and Game trawl comparison study. Alaska Fisheries Science Center Quarterly Report, Jan.-March 1998, p. 3-6, Alaska Fisheries Science Center, Seattle.

Fanning, L. P. 1985. Intercalibration of the research survey results obtained by different vessels CAFSAC (Canadian Atlantic Fisheries Scientific Advisory Committee) Research Document 85/3, Dartmouth, Nova Scotia.
Gulland, J. A. 1956. On the fishing effort in English demersal fisheries. Fisheries Investigations, Series II, Marine Fisheries, vol. 20 Ministry of Agriculture, Fisheries and Food, London.
Kappenman, R. F. 1992. Robust estimation of the ratio of scale parameters for positive random variables. Commun. Stat. Theory Methods 21(10):2983-2996.
Munro, P. T. 1998. A decision rule based on the mean square error for correcting relative fishing power differences in trawl survey data. Fish. Bull. 96:538-546.
-_, and R. Z. Hoff. 1995. Two demersal trawl surveys in the Gulf of Alaska: Implications of survey design methods. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-AFSC-50, 139 pp.
Patella, F. J. 1975. Water surface area within statistical subareas used in reporting Gulf coast shrimp data. Mar. Fish. Rev. 37(12):22-24.

Robson, D. S. 1966. Estimation of the relative fishing power of individual ships. Int. Comm. Northwest Atl. Fish. Res. Bull. 3:5-15.
Troncoso, D. G. 2004. Thorny skate indices from the Spanish surveys conducted in the NAFO Regulatory Area of Divisions. Northwest Atlantic Fisheries Organization, 2004 Scientific Council Research (SCR) Documents, Serial No. N4972, NAFO SCR Doc. 04/24, 18 pp.
-_, and X. Paz. 2003. Testing methods for estimating the factor power correction obtained from the comparative fishing trial: C/V Playa de Menduina versus R/V Vizconde de Eza. Northwest Atlantic Fisheries Organization, 2003 Scientific Council Research (SCR) Documents, Serial No. N4811, NAFO SCR Doc. 03/5, 8 pp.
von Szalay, P. G. 2003. The feasibility of reducing the variance of fish relative abundance estimates by integrating CPUE data from two demersal trawl surveys in the Gulf of Alaska. Alsk. Fish. Res. Bull. $10(1): 1-13$.
——, and E. Brown. 2001. Trawl comparisons of fishing power differences and their applicability to National Marine Fisheries Service and Alaska Department of Fish and Game trawl survey gear. Alsk. Fish. Res. Bull. 8(2):85-95.
Wantiez, L. 1996. Comparison of fish assemblages sampled by a shrimp trawl and a fish trawl in St. Vincent Bay, New Caledonia. J. Mar. Biol. Assoc. U.K. 76(3):759-775.
Wilderbuer, T. K., R. F. Kappenman, and D. R. Gunderson. 1998. Analysis of fishing power correction factor estimates from a trawl comparison. N. Am. J. Fish. Manag. 18:11-18.
U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratory, Building 1103, Room 218, Stennis Space Center, MisSISSIPPI 39529-0001. Date accepted: August 6, 2010.

