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Seasonal Responses of Phytoplankton Productivity to Water-Quality
Variations in a Coastal Karst Ecosystem of the Yucatan Peninsula

ISRAEL MEDINA-GÓMEZ AND JORGE A. HERRERA-SILVEIRA

Dzilam Lagoon (DL) is a shallow, semienclosed, coastal ecosystem located on the

north coast of the Yucatan Peninsula. With 9.4 km3 surface area, this system is

influenced by groundwater (GD) supply and inorganic nutrients drained from the

nearby mangrove. DL is highly preserved and provides a unique site to address the

seasonal responses of phytoplankton production to environmental variability in a

karstic and pristine scenario. Twelve monthly sampling trips were undertaken during

Sep. 1998–Aug. 1999 to record in situ physicochemical parameters and collect water

for inorganic nutrients, chlorophyll a (Chl a), and phytoplankton production at seven

stations plus one GD. Highest Chl a concentrations were determined at the innermost

points of the lagoon, whereas primary production peaked at brackish zones. The

average net primary production in DL (80 g C m23 yr21) is lower than that reported

for other coastal lagoons of the Yucatan Peninsula. Differences in the physical setting

and disturbance extent between DL and those ecosystems are discussed as the context

underlying their distinct production levels.

Coastal lagoons (CL) are commonly enriched
with materials and energy from neighbor-

ing systems. CL are therefore highly connected
systems whose remarkable production is depen-
dent on efficient mechanisms to preserve and
recycle nutrients, as well as organic material
(Kjerfve and Magill, 1989).

CL may be either net autotrophic or net
heterotrophic, depending on the season (Reyes
and Merino, 1991). Their metabolism is signifi-
cantly associated with biogeochemical processes
operating within the sediments and mediated by
heterotrophic bacteria (Smith and Atkinson,
1994). Despite the marked seasonality of benthic
respiration in Ria Lagartos Lagoon, at the
eastern edge of the Yucatan, it entails a net
nitrogen and phosphate sink condition along
the yearly cycle (Valdes and Real, 2004). In
contrast, Dzilam Lagoon (DL) exhibits distinct
patterns for nitrogen species, acting as a sink for
nitrate, while it is a net source for reduced
nitrogen species (Medina-Gómez and Herrera-
Silveira, 2003). The outcome of the dynamics
between the external delivery of organic material
and local processing adds variability to the
nutrient status within DL, thus altering the
primary production of this system (Medina-
Gómez and Herrera-Silveira, 2006).

Groundwater (GD) discharge (occurring thr-
ough fissures on the karst substrate) represents a
conspicuous physiographic feature along the
Yucatan coast of Mexico (Herrera-Silveira et al.,
2004), influencing hydrographic patterns and
nutrient availability (Carruthers et al., 2005),
and primary productivity (Medina-Gómez and

Herrera-Silveira, 2006). Local forcing in the
Yucatan drives the phytoplankton community,
defining patterns of production along the
northern coast (Alvarez-Gongora and Herrera-
Silveira, 2006). The DL, located in a zone
strongly influenced by GD flow, experiences
seasonal changes in phytoplankton structure
that is dominated by diatoms, and more incon-
spicuously cryptomonads and dinoflagellates
(Herrera-Silveira et al., 1999). It has also been
argued that the nearshore phytoplankton com-
munity of Dzilam is altered by hydrodynamic
factors such as advection and turbulence, in
addition to the GD forcing (Alvarez-Gongora
and Herrera-Silveira, 2006).

Despite small-size mats of benthic microalgae
having been reported floating across the lagoon,
particularly during dry season, the widespread
distribution of submerged aquatic vegetation over
DL sediments (cover equal to 85%; Medina-Gómez
and Herrera-Silveira, 2006) suggests that the
contribution of phytomicrobenthos to the primary
production in the system is relatively small.

The limited water exchange with the sea may
pose critical requirements to coastal lagoons as
organic matter accumulated within the system
may result in low oxygen concentration. The
oxygen advected through the seaward boundary
is usually negligible in coastal lagoons forced by
microtidal regimes, as in the Yucatan Peninsula
(Valdes-Lozano et al., 2006). Thus, the impor-
tance of alternative oxygen sources in maintain-
ing healthy oxygen levels, including the photo-
synthetically produced O2 and aeration due to
wind-driven turbulence, is great.
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This paper focuses in evaluating the intra-
annual patterns of phytoplankton production
and biomass in response to the seasonal variation
and spatial heterogeneity in a karstic, undis-
turbed, tropical coastal lagoon lacking fluvial
inputs, but influenced by submerged GD dis-
charges. The specific questions we asked are:
What is the spatial and temporal variability of
phytoplankton production? Which are the key
factors controlling this variability? Is there a
seasonal shift in the trophic status of DL between
autotrophy and heterotrophy?

MATERIALS AND METHODS

Study area.—DL lies within 61,000 ha of a
protected reserve north of the Yucatan Peninsu-
la, SE Mexico. It is a shallow ecosystem (1.1 m
average depth), 13 km long, with a maximum
width of 1.6 km and 9.4 km2 of surface exten-
sion. The lagoon’s main axis is parallel to the
coast and separated from the ocean by a biogenic
sandbar (i.e., constituted by skeletal remains and
shells of marine organisms such as gastropods,
corals, and calcareous algae). DL is connected
with the Gulf of Mexico through a permanent
inlet in the middle of the system, while an
ephemeral narrow entrance can appear at the
easternmost portion of the lagoon during the fall
and summer (Fig. 1). This shallow lagoon
harbors abundant waterfowl all year, but espe-
cially in early summer. Tides are mixed: diurnal
spring tides with a maximum range of 1 m,
and semidiurnal neap tides with a small range
(, 0.20 m) propagating as a standing wave
(Merino and Otero, 1991).

The almost complete absence of confining
beds above limestone in the Yucatan Peninsula
determines a high hydraulic conductivity in the
karstic substrate (Back and Hanshaw, 1970). This
geohydrological trait leads to high infiltration of
the rainfall through subsurface layers, and
eventually, full recharging of the aquifer during
rainy seasons. Because of this enhanced perme-
ability and proclivity to dissolution of the calcium
carbonate, the Yucatan Peninsula is practically
lacking of surface streams; instead, a significant
amount of GD input to the Yucatan coastal zone
operates via fissures on the aquifer, either
through inland sinkholes (i.e., cenotes) or
submerged groundwater discharges (SGD;
Fig. 1) with a strong seasonal pattern (Pope et
al., 2001).

Even though GD supply occurs during the
whole year in the Yucatan CL (Young et al.,
2008), a noticeable spatial and temporal hetero-
geneity is observed on the volume discharged
(Beddows et al., 2007). This could be somehow
related to the characteristic disproportion on the
annual precipitation across the Yucatan Penin-
sula (Valdes et al., 2005) and the spatial
distribution of underground conduit systems,
responsible for 99.7% of the GD flow (Worthing-
ton 2002).

Beddows (2004) found evidence in the eastern
Yucatan Peninsula of slightly higher cumulative
freshwater outflow in a nearshore submarine
spring during wet season than during dry season,
as well as high-frequency variability of this
discharge due to tidal forcing of the aquifer
head: peak outflow velocity during neap tide and
minimum outflow velocity on spring tide. Those
high- and low-frequency signals are overlapped

Fig. 1. Map of the study site: seven sampling stations, plus one submerged groundwater discharge (SGD).
Coordinates are in decimal degrees.
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with the seasonal fluctuation. Despite the details
of the discharge hydrodynamics on the northern
Yucatan coast being still largely unknown, it is
reasonable to consider that similar controls on
its freshwater circulation to that reported for the
eastern coast are operating here.

This geohydrological setting may have ecolog-
ical implications for the Yucatan coast, as karstic
aquifers provide routes for surface sources of
nutrients to penetrate deeply into the aquifer
and move rapidly through it, making them
susceptible to contamination from agricultural
discharges and waste disposal systems (Fitts,
2002). Furthermore, the Dzilam Protected Area
is situated at the eastern edge of a semicircle-
shaped zone of privileged GD discharge named
as ‘‘ring of cenotes,’’ featured by a high
hydraulic gradient at both arms of such region
(Perry et al., 1995).

The complex interactions of such geomorpho-
logic, physiographic, oceanographic, and clima-
tologic mechanisms drive the hydrographic
heterogeneity of DL by defining zones of similar
characteristics (which might not be necessarily
adjacent one each other) in terms of the
magnitudes and rates of change of salt and
nutrients [hydrological affinity zones (HAZ);
Medina-Gómez and Herrera-Silveira, 2003].
There are 3 HAZ in DL: the innermost portions
of the system, east and west HAZ, depicting high
water residence times (t) during dry season and
low salinities in rainy season; and the central
HAZ, a marine-influenced section showing both
short t and reduced inorganic nutrient concen-
trations.

The climate of the Yucatan Peninsula encom-
passes three seasons outlined by variations on the

precipitation–evaporation balance rather than
changes in the atmospheric temperature: dry;
rainy; and ‘‘norte’’ seasons. During dry season,
scarce precipitation (0 to 30 mm mo21) and
high temperatures (36uC to 38uC) are recorded.
Rainy season is characterized by maximum
precipitation (220 mm mo21) and temperatures
(38uC), as well as hurricane passage usually
during late rainfall period, featuring high pluvial
precipitation (350 mm mo21) and strong winds,
up to 250 km/hr. Norte season is influenced by
northerly cold fronts of polar air associated with
high-pressure systems, low temperatures (23uC
mean temperature), and marginal precipitation
(40 mm mo21; Fig. 2).

Because of the spatial and temporal variability
of precipitation (including the interannual
component) introduced earlier, the aggregation
of months into seasons is not straightforward,
but for practical purposes of the current study
the seasons will comprise the following months:
norte season (Nov., Dec., Jan., and Feb.); dry
season (March to May); rainy season (June to
Oct.) (Fig. 2).

Sampling and laboratory techniques.—Twelve
monthly samplings were undertaken in DL from
Sep. 1998 to Aug. 1999 to collect data from eight
stations: six within the system, one adjacent to
the mouth of the lagoon (station 7), and one
station placed in a SGD (Fig. 1). All field
sampling was achieved between 0800 and
1100 h local time, during high tide to ensure
suitable navigation conditions through this
shallow lagoon. Abiotic and biotic data were
concurrently collected at mid-depth in the water
column (around 0.50 m and 1.0 m for the

Fig. 2. Precipitation (bars) and atmospheric temperature (lines) in ‘‘Dzilam the Bravo’’ town located 22 km
from Dzilam Lagoon for the period of the current study (data provided courtesy of the Servicio
Meteorológico Nacional).
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within-lagoon and outlet stations, respectively)
since no stratification was recorded during field
sampling. This mid-depth consistently corre-
sponded to 0.5 Secchi depth.

Water samples for nutrients and chlorophyll a
(Chl a) were collected at all seven stations plus
the SGD (except for Chl a), coupled with
physical–chemical parameters (temperature, sa-
linity, oxygen) recorded in situ using a YSI-85
multiparameter probe and irradiance measured
with a LICOR LI-1000 spherical sensor. The
conductivity measurements were compensated
using a reference temperature of 25uC and
default temperature coefficient of 1.91%. The
YSI-85 probe was also routinely calibrated pre-
ceding each sampling station using the oxygen
saturation percentage as reference.

Water samples were analyzed in the laboratory
for ammonium (phenolhypochlorite method;
Solórzano and Sharp, 1980), nitrite (sulfanil-
amide in an acid solution), nitrate (determined
as nitrite prior reduction in a Cd-Cu column),
soluble reactive phosphorous (SRP; mixing
agents technique), and soluble reactive silica
(SRSi; molybdenum-blue method) according to
Strickland and Parsons (1972). In addition,
140 ml of the water samples were filtered using
0.45-mm membrane Millipore filters for Chl a
determination; filters were further treated with
90% acetone to extract the pigments. The
quantification of pigments was carried out
spectrophotometrically using a Milton-Roy Spec-
tronic Genesys-II spectrophotometer, under the
method and equations provided by Jeffry and
Humphrey (1975). Nutrients and chlorophyll
determinations were performed using true du-
plicates (i.e., taken from separate bottles) of
water collected at each sampling station.

The measurements of phytoplankton produc-
tion were carried out by incubating triplicates of
three sets of bottles: initial, clear, and dark
(Vollenweider, 1974) during 4 hr under in situ
conditions (i.e., submerged at 0.5 Secchi depth
into the water column to avoid photoinhibition
constraints). Incubations were performed be-
tween 1100 and 1500 h. This experimental
design was pursued to minimize the shortcom-
ings of the incubation technique, particularly
those derived from the fast phytoplankton
responses to short-term variability in the coastal
zone (e.g., tidal forcing, meteorological process-
es). Additionally, to control the effects of a varied
time delay (< 3 hr) between the first water
sample (station 4) and the last sample (station
1), clear and dark bottles were held submerged
into a container filled with water from the lagoon
to preserve near-initial conditions before the
incubation. The water-filling the container was

manually recirculated every 20 min until start of
the incubation.

For the measurements of dissolved oxygen
concentration, a temperature-compensated YSI-
59 oximeter calibrated against the Winkler
technique and set with a 4.5 VDC stirring motor
was used. Accuracy on the oxygen determina-
tions was improved by using triplicates for each
sampling station, along with performing short
incubation times. Besides, this strategy allows
controlling of phytoplankton dynamics in terms
of its ecological interactions on the water column
(i.e., respiration measured within the bottles
might include not only that of the autotrophic
algae, but also bacteria and zooplankton).

Hourly rates of aquatic primary production
were converted into daily rates by multiplying by
8.6 to account for low light levels at morning and
dusk (Randall and Day, 1987; Flores-Verdugo et
al., 1988), whereas hourly respiration rates were
multiplied by 24. The oxygen conversion into
carbon amounts was achieved using the quo-
tients 0.310 and 0.375 for production and
respiration, respectively (Strickland and Parsons,
1972).

Statistical analysis.—Box-and-whisker plots were
used to depict the variability of Chl a, net
phytoplankton production, respiration, produc-
tion/respiration ratio (P/R), and light extinc-
tion coefficient among sampling stations. These
plots encompassed the three climatic seasons to
portray the variability of every sampling station
along the period of study.

Since data were generally not normally distrib-
uted, median values of physical–chemical param-
eters (Table 1), inorganic nutrient concentra-
tions (Table 2), and phytoplankton variables
(Table 3) are reported for DL.

Light extinction coefficient (Kd) was calculat-
ed according to the Lambert–Beer law:

Kd ~ ln
I0=Izð Þ

z

where I0 is the incident (surface) light intensity,
Iz is the light intensity at depth z, and Kd is the
light attenuation coefficient (m21) (McPherson
and Miller, 1987).

RESULTS

Water quality variables.—Temperatures and
turbidity (Kd) were high in rainy season
(31.5uC and 3.45 m21), with the latter parameter
peaking at the shallowest zones of the lagoon,
while showing relatively better transparency
conditions nearby the inlet. Temperature depict-
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ed an abrupt gradient during rainfalls, with
increasing values from the inlet toward the inner
portions of the system (Fig. 3). The lowest
oxygen saturation percentage was recorded in
between early and late rainy seasons. Norte
season was characterized by low temperatures
in the water column. Light extinction coeffi-
cients showed consistently high values at the
shallowest innermost branches of DL and a

maximum Kd recorded in the rainy season
(Table 1).

The salinity distribution showed a clear influ-
ence of the SGD during the whole year, but it was
more significant in late rainy season at the
western edge of the system. Hyperhaline [. 50
practical salinity units (psu)] conditions oc-
curred at the eastern part of DL during dry
season (Fig. 3). Peak oxygen saturation was

TABLE 2. Seasonal medians of inorganic nutrients in Dzilam Lagoon, Yucatan. The months gathered into seasons
are as follows: norte 5 Jan., Feb., Nov., and Dec.; dry 5 March, April, and May; rainy 5 June, July, Aug., Sep.,

and Oct.

Season
Sample size

(n)

NO{
3

(mM)

NO{
2

(mM)

NHz
4

(mM)
SRPb

(mM)
SRSib

(mM)

Lagoon Norte 24 3.23 0.17 3.78 0.03 52.10
Dry 18 4.67 0.11 0.94 0.10 18.30

Rainy 30 1.48 0.19 2.74 0.05 145.63
Outleta Norte 4 2.25 0.20 4.30 0.02 9.70

Dry 3 4.06 0.03 0.49 0.10 3.30
Rainy 5 1.49 0.17 0.92 0.05 5.20

Groundwater Norte 4 74.57 0.25 2.66 0.06 154.01
Dry 3 102.40 1.33 0.99 0.04 35.17

Rainy 5 88.77 0.74 1.92 0.10 121.88

a Data collected on station 7 (see Fig. 1).
b SRP, soluble reactive phosphorus; SRSi, soluble reactive silica.

TABLE 1. Seasonal medians of water quality in Dzilam Lagoon, Yucatan. The months gathered into seasons are as
follows: norte 5 Jan., Feb., Nov., and Dec.; dry 5 March, April, and May; rainy 5 June, July, Aug., Sep., and Oct.

Season Sample sizes (n) Temperature (uC) Salinity (psu) Oxygen saturation (%) Kd (m21)

Lagoon Norte 24 27.6 25.4 94 1.55
Dry 18 31.5 36.4 119 1.86

Rainy 30 32.1 17.8 53 3.59
Outleta Norte 4 26.3 35.5 102 0.87

Dry 3 26.9 38.2 93 3.00
Rainy 5 31.1 35.7 95 1.93

Groundwater Norte 4 26.0 2.1 1
Dry 3 26.2 1.9 2

Rainy 5 26.5 3.5 2

a Data collected on station 7 (see Fig. 1).

TABLE 3. Seasonal medians of phytoplankton productivity in Dzilam Lagoon, Yucatan. The months gathered into
seasons are as follows: norte 5 Jan., Feb., Nov., and Dec,; dry 5 March, April, and May; rainy 5 June, July, Aug.,

Sep., and Oct.

Season
Sample size

(n)
Chlorophyll a

(mg m23)
Net production (P)

(mg C m23 d21)
Respiration (R)
(mg C m23 d21) P/R ratio

Lagoon Norte 24 2.32 134 186 0.62
Dry 18 2.43 203 216 0.94

Rainy 30 3.91 123 226 0.85
Outleta Norte 4 1.64 124 133 1.02

Dry 3 2.22 122 128 0.87
Rainy 5 0.85 65 81 0.81

a Data collected on station 7 (see Fig. 1).
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observed on the shallowest zones of the lagoon
during norte and dry seasons, particularly at the
eastern branch of the system, whereas in rainy
season, the oxygen saturation percentage was
relatively lower and more homogenous than in
the rest of the year (Fig. 3).

The SGD was a significant NO{
3 and SRSi

source to the lagoon, as high concentrations
were observed at this point discharge (i.e.,
middle section of the lagoon) during the year
(Table 2). Both nitrate and silicate depicted
clear discrepancies relative to their spatial
patterns (Figs. 4 and 5) as peak SRSi concentra-
tions (260 mM) were observed at the innermost
sections of DL, particularly late rainy season.
During late rainy season the ammonium showed
a gradient of high concentrations on sites
located between the extremes of the system

and the inlet zone (i.e., intermediate water
residence time). These high NHz

4 values were
propagated during nortes and maximum ammo-
nium concentrations occurred in late norte
season (Fig. 4). Also, low NHz

4 concentrations
were recorded in dry season throughout the
lagoon. On the other hand, NO{

2 peaked during
April and July in the SGD, whereas nitrate did
the same during May and along the entire rainy
season. Moreover, high nitrite concentrations
were observed during rainy season at the eastern
section (Fig. 4). Finally, the SRP depicted low
concentrations throughout the lagoon, except
for dry season and early rainfalls, when peak
values were determined at both extremes of the
system, particularly in the eastern zone, as well as
in the SGD, which showed the maximum SRP
concentration (1.83 mM) during Aug. (Fig. 5).

Fig. 3. Seasonal and spatial variation of physical–chemical parameters in Dzilam Lagoon (top panel)
temperature (uC), (middle panel) salinity (psu), and (bottom panel) oxygen saturation (%).
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Chl a.—The highest Chl a median was record-
ed in rainfalls (3.91 mg m23) and the lowest
during nortes (2.32 mg m23). During this latter
season, a fairly spatially homogeneous Chl a
distribution was evident, as opposed to rainfalls,
when large variability was observed among
stations, with a general pattern of peak concen-
trations at the innermost sections of the lagoon
and decreasing values in the middle zone
adjacent to the inlet and in the SGD (Fig. 6).

Net production.—The highest net phytoplank-
ton production in DL was recorded during dry
season (203 mg C m23 d21), whereas the maxi-
mum production rate at the outlet station
(124 mg C m23 d21) was observed in norte
season. Stations 2 and 4 yielded high produc-
tion rates during dry period (382 and

315 mg C m23 d21, respectively), with station 3
defining the higher variability [coefficient of
variation (C.V.) 5 92%]. The highest phyto-
plankton production in nortes was equal to
223 mg C m23 d21 concerning station 3, and
the larger variability corresponded to station 6
(C.V.5 119%). In rainy season, phytoplankton
production was both lower (median equal to
123 mg C m23 d21) and less varying than that
recorded during the rest of the year; peak
production rate was observed at station 1, with
a median of 220 mg C m23 d21 and C.V. equal
to 53% (Fig. 6).

Respiration.—The highest median respiration
in the lagoon was recorded during rainy season
(226 mg C m23 d21) and the maximum for the
outlet station corresponded to norte period

Fig. 4. Seasonal and spatial variation of inorganic nutrients in Dzilam Lagoon: nitrite (top panel), nitrate
(middle panel), and ammonium (bottom panel). Units are given in micromoles per liter.
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(133 mg C m23 d21). Lowest median respira-
tion in the system corresponded to this latter
season as well (186 mg C m23 d21). The peak
median respiration in dry season occurred at
station 4 (313 mg C m23 d21), whereas the
highest variability was attained by station 1
(C.V.5 70%) (Fig. 6).

Phytoplankton production and respiration ratio.—
The lowest phytoplankton P/R ratio correspond-
ed to norte season (0.62), whereas the median
ratio calculated in dry season was close to
balance between production and respiration
(0.94). Despite the high phytoplankton primary
production observed in dry season, a slightly
heterotrophic condition was still observed in DL
(Table 3). The variability of the P/R ratio during
dry season was relatively homogenous across the
lagoon, with the innermost stations showing
generally higher values than the middle zone
(Fig. 7). The same condition was observed
during norte season, which showed not only
peak P/R ratios, but substantially more variable
P/R ratios (Fig. 7). Station 4, in the western
edge of the lagoon (Fig. 1), consistently
showed a P/R ratio above 1 throughout the year
(Fig. 7). It is important though, to note the large
variability characterizing the data, particularly at
station 4.

DISCUSSION

The seasonal changes characterizing the north
coast of the Yucatan Peninsula dictated the
variability of phytoplankton production in DL,
which depicted as well a marked spatial hetero-
geneity tied to the hydrographic gradients
prevailing across the system. It is well document-
ed that GD (both inland and SGD) constitutes a
significant source of nitrate and silicate to the
coastal environment of the northern Yucatan
Peninsula (Herrera-Silveira, 1994). In the cur-
rent study, however, these nutrients exhibited
different distribution patterns within DL, de-
fined by peak NO{

3 concentrations associated
with the SGD located proximate to the inlet,
whereas SRSi recorded a more complex spatial
behavior, portraying maximum values at the
innermost portions of the lagoon, in addition
to those observed at the SGD (Figs. 4, 5).

The spatial pattern shown by the SRSi in DL,
particularly during late rainy season, may be the
result of seasonal trends in the GD intruding
into the surface water through bedrock fissures
at inland springs (cenotes). The hydrographic
properties alteration induced in this water mass
is a function of its residence time within the
mangrove forest (e.g., hydroperiod) before it is
advected to the lagoon. This adjacent ecosystem
is connected to DL through small waterways and

Fig. 5. Seasonal and spatial variation of phosphorus (upper panel) and silicate (lower panel) in Dzilam
Lagoon. Units are given in micromoles per liter.
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surface streams proliferating at its eastern and
western branches (Fig. 1); the thick tannin
plume observed in rainy season suggests that
these channels may drain a significant water
volume during this period.

This complex process may lower the nitrate
concentration both by root uptake or loss
through soil respiration, whereas the silicate
maintains a more conservative condition until it
reaches the lagoon, thus depicting relatively
higher concentrations than nitrate at the inner
sections of the system. Indeed, phytoplankton
cells are more abundant in DL during rainfalls
(4.8 3 107 cells/liter) than in droughts (3.1 3

107 cells/liter), with a marked dominance of
Bacillariophyta during the former season (Her-
rera-Silveira et al., 1999). This seasonal increase
of diatoms in the lagoon may be explained by the

high silicate concentrations distributed across
the entire system during rainy period (Fig. 5).

The Dzilam reserve comprises a vast array of
vegetation–geohydrological features known as
‘‘Petenes,’’ which are islands of vegetation
associated with the nutrient-enriched freshwater
input supplied by springs. The high biomass and
diversity attained by such tropical vegetation
patches contrasts with the coastal landscape,
dominated by the mangrove and deciduous
forest communities. The amount of organic
matter in shallow coastal ecosystems is a control-
ling factor of the microbial reduction of nitrate,
or denitrification, and further loss to the
atmosphere or transfer to other metabolic
pathways within the system (Boynton et al.,
1995). Thus, the overall low nitrate concentra-
tions observed across the lagoon in rainfalls may

Fig. 6. Seasonal variability of chlorophyll a (upper), net phytoplankton production (middle), and respiration
(lower) in Dzilam Lagoon. Mean values are depicted by filled triangles and medians are the horizontal lines
bisecting the boxes. Sampling stations are arranged from west (left) to east (right), and climatic seasons shown
along x-axis on the lower panel.
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be partially explained by the organic material
loaded to the system after profuse precipitation
in the zone.

However, with the current data on water-
column nutrients we can at best speculate about
the nitrogen metabolism dynamics and the
implications of any alteration in the nutrient
status in DL. When we consider that denitrifica-
tion controls an important fraction of the
biologically available nitrogen in shallow, semi-
enclosed ecosystems (Koch et al., 1992), as well
as entails a buffer complex against their eutro-
phication (Valiela et al., 1992), the previous
knowledge gap emphasizes the relevance of
addressing the rates and magnitude characteriz-
ing this biogeochemical process (i.e., denitrifi-
cation) in DL under a management and conser-
vation perspective.

Nitrate also was in relatively high concentra-
tions at the eastern lagoon in early rainy season
(Fig. 4), which may have been associated with
the presence of a population of aquatic birds
during rainfalls. The physical resuspension and
bioturbation enhances the oxygen penetration
deeper into the sediments and may stimulate the
microbiological oxidation of ammonium to
nitrate, or nitrification, as long as it occurs
under aerobic conditions and is highly depen-
dent on the supply of dissolved oxygen within
the first few millimeters of sediment. The

waterfowl inhabiting this section of the lagoon
could carry out the oxygen irrigation within the
substrate and favor not only high nitrate
concentrations, but also the release of nitrite
and phosphate from the bottom, as observed at
the eastern lagoon (Fig. 4).

The eastern branch of DL exhibits a long and
narrow channel connecting the system with the
ocean through an ephemeral inlet (Fig. 1), the
flow of which is regulated by several hydrody-
namic and meteorological processes such as
precipitation, northerly winds, and tides. Hence,
the entrance was opened late rainy (Sep. and
Oct. samplings) and norte seasons (Jan. and Feb.
samplings), whereas it remained closed for the
entire dry season campaign. This is expected to
drive a well-flushed condition, at least intermit-
tently, during such periods in the easternmost
lagoon, yielding an increased marine influence
in the lagoon during norte season, and oppo-
sitely directed from the system to the nearshore
after exceptionally high rainfall.

The increasing salinity toward the end of norte
season and progressively brackish conditions
observed along late rainfalls, combined with
the prominent hyperhaline environment depict-
ed during the entire dry season, lead us to infer
that the characteristic water turnover rates at this
inner portion of the lagoon are significantly
controlled by the opening of this ephemeral

Fig. 7. Seasonal and spatial variation of production/respiration ratio (upper panel) and light extinction
coefficient (lower panel) in Dzilam Lagoon. Mean values are depicted by filled triangles and medians are the
horizontals line bisecting the boxes. Sampling stations are arranged from west (left) to east (right), and climatic
seasons shown along x-axis on the lower panel.
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connection with the adjacent ocean. The dynam-
ics of this exchange with the sea might partially
regulate the renewing of the water within the
lagoon and result in variations of nutrient
availability, which may in turn imply relevant
consequences for the trophic state in DL
(Herrera-Silveira et al., 2002).

The diurnal tidal regime of the northern
Yucatan coast, although of small amplitude,
may contribute in determining the relative
importance of the autotrophic–heterotrophic
pathways to process the materials supplied from
neighboring systems to DL, as a function of the
periodic signal alternating spring and neap tides.
This hydrodynamic forcing may alter, within
tidal frequencies, the relationship of produc-
tion–respiration maxima between phytoplankton
and heterotrophic bacteria (Morales-Zamorano
et al., 1991) and potentially shift to the domi-
nance of the trophic chain via dissolved organic
carbon instead of phytoplankton during such
tidal events.

Accordingly, during norte and rainy seasons
with the eastern inlet opened, the marine
influence turns the lagoon into a heterotrophic
system, as established by the P/R ratio estimated
for those seasons (Table 3), whereas in dry
season, when the circulation was limited by the
temporary closure of this entrance, the high
phytoplankton production ought to be devel-
oped upon the mineralization of organic matter
favored by the high salinity and temperature co-
occurring during this period (Fig. 3).

Moreover, the inconspicuous phytoplankton
productivity observed during rainy season
(Fig. 6; Table 3) may be a consequence of the
phytoplankton cells carried away from the system
owing to the significant freshwater drained in
this period, and perhaps the transient domi-
nance of the incoming bacteria resulting from
mixing with the sea, to the expenses of the
enriched material (e.g., dissolved organic mat-
ter) delivered to the lagoon through surface
streams.

The annual phytoplankton production in DL
(80 g C m23 yr21) was inferior to that estimated
in Celestun Lagoon, another karstic coastal
lagoon of Yucatan (125 g C m23 yr21; Herrera-
Silveira, 1994). It was also substantially lower
than the production recorded in Terminos
Lagoon, a two-inlet coastal lagoon located in
the western Yucatan coast (219 g C m23 yr21;
Stevenson et al., 1988), and El Verde Lagoon on
the Pacific coast of Mexico (522 g C m23 yr21;
Flores-Verdugo et al., 1988).

As opposed to DL, Celestun Lagoon exhibits
only one inlet at the southern portion of the
system, with no ephemeral connections with the

sea, and is influenced by a luxuriant mangrove
forest, including fringe and riverine-like man-
grove systems (Herrera-Silveira, 1995). This
physical–biological environment in Celestun
may engage a more efficient setting to preserve
longer the material delivered from neighboring
systems and thereby take full advantage of this
input by transferring it into higher production
pathways within the system.

The other two ecosystems, one in the Gulf of
Mexico and the other in the Mexican Pacific,
exhibit some level of human impact, and thus,
their relative higher primary production rate and
reduced variability along the year might be
ecological manifestations of such disturbances.
The preceding assumption is based upon the
finding that the natural state in coastal lagoons is
supported by attributes such as hydrographic
heterogeneity, numerous physical–chemical gra-
dients, and habitat diversity (Kjerfve, 1994).
Accordingly, a more prominent fluctuation of
the primary production in DL would be expect-
ed given its pristine condition, than that exhib-
ited by affected systems.

Finally, the importance of regulating the land
use on the coastal zone of karst regions such as
the Yucatan is recognized, since anthropogenic
activities undertaken several kilometers inland
may exert a significant impact over its coastal
ecosystems, owing to the high connectivity
through the extensive GD network featuring
the Yucatan platform.

This study provides strong evidence of the
deep influence that the GD discharges deter-
mine on the variability of the phytoplankton
production in DL. The importance of monitor-
ing the water quality drained to the coastal zone
via GD inputs is also stressed. This strategy will
provide an appropriate framework for prevent-
ing further deterioration of this vulnerable
coastal region.

CONCLUSIONS

The phytoplankton showed maximum produc-
tion during dry season as a result of intense
autochthonous nutrient input through organic
matter mineralization and limited water circula-
tion, and lowest in rainy season due to turbu-
lence and advection of phytoplankton cells away
from the system.

Peak production was defined at the zones with
intermediate salinity between marine and fresh-
water, particularly at the east portion of the
lagoon where an ephemeral inlet controls the
water turnover time.

The DL depicted a slight heterotrophic status
in terms of the phytoplankton production for
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the whole period of the study, with a more
substantial heterotrophic condition in norte
season and close to trophic balance between
autotrophy and heterotrophy during dry season.
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