Northeast Gulf Science

Volume 13
Number 2 Number 2

Winter Mass Mortality of Animals in Texas Bays

Lawrence W. McEachron
Texas Parks and Wildlife Department
Gary C. Matlock
National Marine Fisheries Service
C.E. Bryan
Texas Parks and Wildlife Department
Phil Unger
Jones and Stokes Associates, Inc.
Terry J. Cody
Texas Parks and Wildlife Department
et al.

DOI: 10.18785/negs. 1302.06
Follow this and additional works at: https://aquila.usm.edu/goms

Recommended Citation

McEachron, L. W., G. C. Matlock, C. Bryan, P. Unger, T. J. Cody and J. H. Martin. 1994. Winter Mass Mortality of Animals in Texas Bays. Northeast Gulf Science 13 (2).
Retrieved from https://aquila.usm.edu/goms/vol13/iss2/6

WINTER MASS MORTALITY OF ANIMALS IN TEXAS BAYS

Lawrence W. McEachron
Texas Parks and WIldilife Department
Coastal Fisheries Division
702 Navigation Clrcle
Rockport, Texas 78382
and
Gary C. Matlock
National Marine Fisheries Service
1315 East-West Hlghway
Sllver Spring, Maryland 20910
and
C. E. Bryan
Texas Parks and Wildlife Department
Coastal Fisherles Division
4200 Smith School Road
Austin, Texas 78744
and
Phill Unger
Jones and Stokes Associates, Inc.
2600 V Street, Sulte 100
Sacramento, California 95818
and
Terry J. Cody and Joe H. Martin
Texas Parks and Wildilife Department
Coastal Fisheries Division
702 Navigation Cliccle
Rockport, Texas 78382

Abstract

The Texas coast experienced three unusually cold weather periods in the 1980's, one In 1983 and two In 1989, that caused massive fish kllls. Identification of organlsms killed and estimation of the number of estuarine fishes and Invertebrates killed was accomplished through a systematic standardized approach utilizing alplanes, ground quallative observations and quantititive counts, and trawling. Of 159 specles Identified, 103 were fishies, 45 were Invertebrates, and 11 were vertebrates other than fishes. About 14 million fishes were kllied In December 1983, 11 million In February 1989 and 6 million In December 1989; number of invertebrates killed ranged from 13,000 in February 1989 to 1,000,000 in 1983. These assessments are the largest in area and most comprehensive to be documented In the literature with known levels of precision. Methodology used provides reasonably precise estlmates which managers can use to assess exiensive widespread kills and subsequent impacts on affected populatlons. If is recommended that managers consider reducing fishing mortality on the remalning economically important populations after extensive kills to speed recovery of those populatlons.

Mortality of marine organisms due to events such as cold temperatures can have dramatic impacts on population abundance. Severe mortalities could lower recruitment from loss of spawners
so recovery to pre-event levels is slow to occur. Information on mass mortalities are required by fishery managers to ensure that subsequent fishing mortality does not jeopardize long-term viability of
populations. With knowledge of these natural mortalities, fisheries managers can enact measures to reduce fishing mortality which speeds recovery of the population.

Polar cold fronts have pushed into Texas and crossed the Gulf of Mexico to as far south as Nicaragua (Gunter and Hildebrand 1951). The near-shore Gulf of Mexico and adjacent waters are vulnerable to periodic mass mortalities of fishes due to cold temperatures because of limited openings between land masses separating shallow bays from the Gulf, especially when water temperature decreases rapidly (Bartlett 1856; Higgins and Lord 1927; Anonymous 1931; Storey and Gudger 1936; Storey 1937; Gunter 1941, 1945, 1952; Baughman 1947, 1951; Gunter and Hildebrand 1951; Simmons 1957, 1962; Moore 1976; Holt and Holt 1983). Impact of cold fronts on fish survival is lessened if the front is preceded by gradually decreasing water temperatures which allow poikilothermic animals to acclimate or move offshore (Gunter and Hildebrand 1951, Springer and Woodburn 1960, Dahlberg and Smith 1970). Cold also can affect size of fishes killed (Gunter 1947).

Methods used to estimate the magnitude of freeze mortalities were not well documented prior to 1983-84; precision of estimates was not determined. Generally, qualitative observations were made; few quantitative counts were made over a broad area. Estimations of kills were extrapolated to sections of the coast with little documentation of areal extent of a kill. As a result, reliable quantitative comparisons of the impacts of freezes are impossible. The Texas Parks and Wildlife Department (TPWD) Implemented procedures in the 1970's to estimate numbers of fish killed during rotenone collections in Texas bays (Matlock et al. 1982). These procedures were sufficiently general for application,
with some modification, to estimate the number of fish killed in mass mortallity events. These procedures were applied to 3 mass mortalities that occured in the 1980's. This paper documents methods used to estimate mortality of fishes in a freeze in 1983 and two in 1989, and provides estimates of animals reported killed.

MATERIALS AND METHODS

A stepwise, standardized approach was used to estimate numbers of animals killed in catastrophic cold kills along the Texas coast (Fig. 1); over 100 persons participated in each survey. First, extensive reconnaissance of shoreline areas that were accessible by vehicle were made daily to 1) measure water temperatures; 2) determine when organisms began to die; and 3) record general observations for areal documentation of the kill so future ground counts could be made. Second, when dead organisms were observed, airplane flights were initiated to identify

Figure 1. Texas bay systems.
concentrations of dead organisms within each bay system. Third, based on these findings, bay systems were stratified into areas of high and low animal concentrations, which in turn were divided into shoreline and open water areas. In 1983, organisms were found to be distributed throughout the bay systems, so there was no stratification into high-low areas. Shoreline areas were accessed by boat or vehicle, and the number of dead animals in pre-selected random segments were counted. In the final phase, dead animals were collected on the bottom in open water areas using trawls after shoreline counting began.

In 1983, count ($\mathrm{N}=242$) or trawl (N $=100$) sites were selected from existing shoreline and open water TPWD sample stations, whereas for 1989, shoreline counts ($\mathrm{N}=118$ February; 124 December) and trawl sites $(\mathrm{N}=78$ February; 107 December) were selected from a 1 -minute latitude by 1-minute longitude grid system in each bay. Within each site or grid, three count areas, 30.5 m long, were randomly selected. To obtain the most precise estimates of numbers of dead fish, sampling was stratified (Cochran 1977) among bays and within each bay by observed high- and low-kill density areas. This procedure was used to select shoreline grids for sampling during 1989, whereas in 1983 simple random sampling was used to estimate numbers for each bay; in 1983 bays were treated as strata to estimate coastwide totals. At each shoreline area sampled, all dead fish and macro-invertebrates along shore, floating in the water or visible on bottom out to 15.2 m offshore were identified to species and counted; "other" animals were identified and recorded. Up to 19 randomly selected individuals of each species were measured (nearest 1 mm TL). Due to time constraints, if an estimated >500 animals were visually judged to be in a count area by the on-site counters, a randomly col-
lected subsample was taken so a total area count estimate could be made.

The same site (in 1983) or grid (in 1989) system previously described was also used for trawls. Sites or grids were selected at random in identified kill areas. Trawls were pulled for 10 minutes in preselected grids without replication to estimate numbers of dead animals in water >1 m deep; one 10 minute pull with a $6.1-\mathrm{m}$ trawl covered 0.35 ha. All dead animals were identified to species and counted; up to 19 individuals of each species in each 10 minute collection were measured.

Distribution of fish among sites (in 1983) or grids (in 1989) was highly skewed. Numbers at a few sites or grids were relatively high, whereas most sites or grids had few or no fish. The skewed distribution and large number of zeroes precluded using the raw data to compute unbiased estimators for the mean and standard error; log transformation failed to normalize the data. Therefore, Pennington's (1986) estimators, which are unbiased for skewed distributions with many zeroes, were used to compute mean and standard error of the number of organisms per site or grid for each stratum. All sites had roughly equal lengths and grids had approximately equal areas, so it was not necessary to standardize numbers collected for length or area sampled.

Total numbers and 95% confidence intervals of dead individuals of each species, and total number and 95% confidence interval for all species combined were computed for each bay and for the entire coast as follows (Scheaffer et al. 1979):

Total $=\Sigma N_{1} X_{1}$
95% C. I. $=$ Total $\pm 2 \sqrt{\sum N_{1}\left(N_{1}-n_{1}\right) s_{1}^{2} / n_{1}}$
where $\mathrm{Z}=$ mean number of dead fish per grid/site in stratum i
$N_{1} \quad=$ total number of grids/sites in stratum i
$n_{1} \quad=$ number of grids/sites sampled in stratum i
$\mathbf{s}_{1}{ }^{2} \quad=$ variance of number of dead fish per grid/site in stratum i
Total number of dead individuals in open water areas based on trawl samples were estimated using the same procedures as described for shoreline estimates. For estimation purposes, the catch was assumed to be 100% of the dead animals available in the trawl path.

Separate mortality estimates (number) were developed for eight species of fishes and four species of invertebrates, all selected because of their economic importance. All species sampled were included in the total bay and coastwide estimates. Only length frequencies of selected fish are presented because invertebrates were not readily measurable even though identification to species was possible.

Estimates from shoreline counts and trawl collections were summed using standard statistical procedures to obtain total mortalities for each bay and the entire coast. Individual temperatures obtained from all ground observations, shoreline, and trawl grids/sites were pooled and averaged daily in a bay for presentation.

RESULTS

A total of 159 species (103 fishes, 45 invertebrates, 11 other vertebrates) had documented mortality during three freezes; species composition varied among freezes (Tables 1 and 2). We estimated about 14 million fishes and 1 million invertebrates were killed in 1983, 11 million fishes and 13,000 invertebrates in February 1989, and 6 million fishes and 155,000 invertebrates in December 1989 (Table 3). Striped mullet (Mugil cephalus), pinfish, (Lagodon rhomboides), Gulf menhaden (Brevoortia patronus), and bay anchovy (Anchoa mitchilli) collectively
made up over 50% of the animals killed in each freeze. For fishes other than those estimated killed, the following constituted the majority of the estimate: bay anchovy with 41%, silver perch (Bairdiella chrysoura) with 39\%, sand seatrout (Cynoscion arenarius) with 6\%, and spot (Leiostomus xanthurus), with 3%. No consistent species percentage could be determined for "other invertebrates" killed; each species percentage varied widely among freezes.

Although fish mortalities resulting from freezing temperature occurred along the entire Texas coast, most deaths among species experiencing high mortalities generally occurred south of the San Antonio Bay system (Fig. 1, Table 2). However, over 90% of the Atlantic croaker (Micropogonias undulatus) killed in December 1989, and about 30\% and 90% of the Gulf menhaden mortality in December 1983 and 1989, respectively, occurred in Galveston Bay. East Matagorda Bay accounted for about 70\%,50\% and 50% of the black drum (Pogonias cromis), red drum (Sciaenops ocellatus), and spotted seatrout (C. nebulosus) killed, respectively during the February 1989 cold kill; this bay accounted for 60% of the striped mullet killed in December 1989. The Matagorda Bay system accounted for about 50% of the Gulf menhaden killed in December 1983. The San Antonio Bay system accounted for about 35% of the sheepshead (Archosargus probatocephalus) killed in February 1989.

A wide range of animals were killed in all freezes but the size classes affected apparently differed among freezes for each species; size composition provided an "instantaneous picture" of the effects on the population structure at the time of the kill. There were proportionally more small spotted seatrout ($<300 \mathrm{~mm} \mathrm{TL}$) killed in the December freezes than in the February freeze (Fig. 2). Size composition

Table 1. List of common and scientific names of specles killed during freezes of December 1983, February 1989, and December 1989.

Common name	Scientific name	Common name	Sclentific name
Finfishes		Lined seahorse	Hippocampus erectus
Alligator gar	Lepisosteus spatula	Lined sole	Achirus lineatus
American eel	Angulla rostrata	Longnose killifish	Fundulus simills
Atlantic bumper	Chloroscombrus chrysurus	Lookdown	Selene vomer
Atlantic croaker	Micropogonias undulatus	Molly miller	Scantella cristata
Atlantic cutlassflsh	Triohlurus lepturus	Naked goby	Gobiosoma bosci
Atlantic midshlpman	Porichthys plectrodon	Offshore tonguefish	Symphurus civitatus
Atlantic neediefish	Strongylura marina	Orange fileflsh	Aluterus schoepfl
Atlantic spadefish	Chaetodipterus faber	Permit	Trachinotus falcatus
Atlantic stingray	Dasyatls sabina	Pigfish	Orthopristlis chrysoptera
Atlantic thread herring	Opisthonema oglinum	Pinfish	Lagodon thomboldes
Banded drum	Larimus fasciatus	Rainwater killifish	Lucania parva
Bar jack	Caranx ruber	Red drum	Sciaonops ocellatus
Bay anchovy	Anchoa mitchilli	Sailfin molly	Poecilla latipinna
Bay whiff	Citharlchthys spilopterus	Sand seatrout	Cynoscion arenarius
Bearded brotula	Brotula barbata	Scaled sardine	Harengula jaguana
Bighead searobin	Prionotus, tribulus	Scrawled cowflsh	Lactophrys quadricornis
Blackcheek tonguefish	Symphurus plagiusa	Sharptail goby	Gobionellus hastatus
Black drum	Pogonias cromis	Sheepshoad	Archosargus probatocephalus
Blackwing searobin	Prionotus rubio	Sheepshead minnow	Cyprinodon variegatus
Blue cattish	Iotalurus furcatus	Shoal flounder	Syacium gunterl
Chain pipefish	Syngnathus louisianae	Shrimp eel	Ophichthus gomesi
Channel catfish	Ictalurus punctatus	Silver perch	Bairdiella chrysoura
Clown goby	Microgobius gulosus	Skilletfish	Goblesox strumosus
Code goby	Gobiosoma robustum	Smallmouth bufiafo	Ictiobus bubalus
Common carp	Cyprinus carpio	Smallwing flyingfish	Oxyporhamphus micropterus
Cownose ray	Rhinoptera bonasus	Smoothhead scorpionfish	Scorpaena calcarata
Crested blenny	Hypleurochilus geminatus	Smooth puffer	Lagocephalus laevigatus
Crested cusk-eel	Ophidion welshi	Snapper eel	Echiophis punctifer
Crevalle Jack	Caranx hippos	Snook	Centropomus undecimalis
Darter goby	Gobionellus boleosoma	Southern flounder	Parallchthys lethostigma
Dlamond killifish	Adinia xenica	Southern kingfish	Menticirrhus americanus
Dwari seahorse	Hippocampus zosterae	Southern stargazer	Astroscopus y-graecum
Fat sleeper	Dormitator maculatus	Southern stingray	Dasyatis americana
Finescale menhaden	Brevoortia gunteri	Speckled worm eel	Myrophis punctatus
Florida pompano	Trachinotus carolinus	Spot	Leiostomus xanthurus
Freckled stargazer	Gnathagnus egregius	Spotfin mojarra	Eucinostomus argenteus
Fringed flounder	Etropus crossotus	Spotted gar	Lepisosteus oculatus
Gizzard shad	Dorosoma cepedianum	Spotted seatrout	Cynoscion nebulosus
Gray snapper	Lutjanus griseus	Striped bass	Morone saxatilis
Gray triggerfish	Balistes capriscus	Stiped blenny	Chasmodes bosquianus
Green goby	Microgobius thalassinus	Stiped burrilsh	Chllomycterus schoeptl
Green sunfish	Lepomis cyanellus	Stiped mullet	Mugil cephalus
Gulf butterfish	Peprilus burtl	Threadilin shad	Dorosoma petenense
Gulf flounder	Parallchthys albigutta	Tidewater silverside	Menidla peninsulae
Gulf killifish	Fundulus grandis	Tripletail	Lobotes surinamenis
Gulf menhaden	Brevoortia patronus	White mullet	Mugil curema
Gulf pipefish	Syngnaihus scovelli	Unidentified blenny	Blennildae
Gulf toadfish	Opsanus beta	Unidentlfied drum	Cynoscion sp.
Hardhead catfish	Arius fells	Unidentified fish	Osteichthyes
Harvestfish	Peprilus alepidotus	Unidentified gar	Lepisosteus sp .
Hogchoker	Trinectes maculatus	Unidentified herring	Clupeldae
Inland silverside	Menidla beryllina	Unidentified Gerreidae	Eucinostomus sp.
Inshore lizardfish	Synodus foetens	Unldentified goby	Gobiosoma sp.
Ladyfish	Elops saurus	Unidentified jack	Carangidae
Làne snapper	Lutjanus synagris	Unidentified killifish	Cyprinodontidae
Least puffer	Sphoeroides parvus	Unidentified leatherjacket	Balistidae

Table 1. Continued.

Common name	Scientific name	Common name	Sclentific name
Unidentifled letteye		Pink shrimp	Penaeus duorarum
flounder	Bothidae	Pink purse crab	Persephona crinita
Unidentilied mackeral	Scombridae	Portly splder crab	Libinla emarginata
Unidentilited mullet	Mugll sp.	Red sea urchln	Arbacia punctulata
Unidentified plpefish	Syngnathus sp.	Rough neck shrimp	Trechypenaeus simills
Unidentifiled seabass	Serranldae	Sawtooth pen shell	Atrina serrata
Unldentifled searobin	Prionotus sp.	Sea walnut	Beroe ovata
Unidentilied snake eel	Oplchithida	Shark's eye	Neverita dupllcata
Unidentified tonguefish	Symphurus sp.	Sooty sea hare	Aplysia brasillana
		Southern quahog	Mercenarla campechiensis
Invertebrates		Speckled swimming crab	Arenaeus cribrarlus
Arrow shrimp	Tozeuma carollnense	Surf grassilat crab	Dyspanopeus texana
Atlantic mud crab	Panopeus herbstll	Surf mole crab	Albunea glbbesil
Atlantlc brief squid	Lolliguncula brevis	Thin stripe hermit crab	Cllbanarlus vittatus
Atlantic surf clam	Splsula solldissima	White shrimp	Penaeus sietlferus
Beach mole crab	Albuneas paratll	Yellow box crab	Calappa sulcata
Big claw hermit crab	Pagurus polllcarls	Unidentifiled anemone	Actinaria
Blg claw snapping shrimp	Alpheus heterochaells	Unldentifiled clam	
Blue crab	Callinectes sapidus	Unidentifilied crab	Suborder reptantia
Brown shrimp	Penaeus aztecus	Unidentifiled mollusc	Phylum mollusca
Cabbagehead	Stomalophus meleagris	Unidentifled mud crab	Xanthidae
Common Atlantic octopus	Octopus vulgarls	Unldentifiled penaeid shrimp	Penaeus sp.
Cryptle teardrop crab	Polla mutica	Unldentifiled porcellanid crab	Porcellanidae
Dana swImming Gulf Crab	Callinectes danao	Unidentifiled portunid crab	Portunidas
Dlsk dosinia	Dosinia discus	Unidentified sea cucumber	Class Holothuroldae
Eastern oyster	Crassostrea virginica	Unidentified starilish	Asteroldea
Florlda rock shell	Thals haemastoma	Unidentifiled trachypenaeld	
Fraglie Atlantlc mactra	Mactra fragllis	shrimp	Trachypenaeus sp.
Grass shrimp	Palagmonotes sp.		
Green porrecialn crab	Petroilsthes armatus	Other vertebrates	
Gulf grassilat crab	Dyspanopeus texana	American alllgator	Alligator m/ssissippiensis
Gulf stone crab	Menippe adina	Atlantic bottlenose dolphin	Tursiops truncatus
Harris mud crab	Rhthropanopeus harrisll	Kemp's ridley sea turtle	Lepldochelys kempi
Iridescent swimming crab	Portunus gibbesII	Brown pellcan	Pelecanus occidentalls
Lesser blue crab	Callinegeses simills	Double crested cormorant	Phalacrocorax auritus
Llghtning whelk	Busycon sinistrum	Green turtle	Chelonia mydas
Long claw hermit crab	-Pagurus longlcarpus	Lesser scaup	Aythya afflinis
Longnose splder crab	Libinia dubla	Unidentified reptile	Reptilia
Mantis shrimp	Squilla empusa	Unidentified seagull	Larinae
Minor Jacknife clam	Ens/s minor	Unidentifilied tern	Sterninae
Mottled purse crab	Persephona mediterranea	White pellcan	Pelecanus orythrorhynchus

of red drum killed in December 1983 and February 1989 were similar, but red drum killed in December 1989 were generally larger (Fig. 2). Size composition of black drum killed in the two December freezes were similar, and generally larger than those killed in February 1989 (Fig. 3). The same pattern was evident for sheepshead and Atlantic croaker killed in February compared to those killed in December (Figs. 3 and 4), whereas Gulf menhaden killed in Decembers 1983 and 1989 were generally smaller than those killed in

February (Fig. 4). Striped mullet killed in December 1983 included a greater proportion of small fish than in February or December 1989 (Fig. 5). Pinfísh killed were about the same size in all three freezes (Fig. 5).

The pattern in daily water temperature fluctuations varied substantially among bays and among freeze events. Water temperatures dropped more rapidly and remained low longer during the December freezes than during the February freeze. Water temperatures

Table 2. Estimated number of flshes and Invertebrates killed (No. X 1,000) during December 1883, February 1989 and December 1989 freezes by bay system. Number in parentheses $=\mathbf{8 6 \%}$ confidence interval. ND = no data.

Bay system											
Species Date	Sabine Lake	Galveston	Codar Lakes	East Matagorda	Matagorda	San Antonio	Aransas	Corpus Chrisil	Upper Laguna Madre	Lowor Laguna Madro	Cosstwide
Finflsh Altantlc croaker											
Dec. 83	$0^{\text {a }}$	$\begin{gathered} 53.3 \\ (0.121 .7) \end{gathered}$	$0{ }^{\text {a }}$	$\begin{aligned} & 0.7^{n} \\ & (0-1,8) \end{aligned}$	$\begin{gathered} 1.0 \\ (0-2.1) \end{gathered}$	$\begin{gathered} 0.3 \\ (0-0.8) \end{gathered}$	$\begin{gathered} 39.8 \\ (3.2 \cdot 76.2) \end{gathered}$	$\begin{gathered} 48.8 \\ (0-107.7) \end{gathered}$	$\begin{gathered} 9.3 \\ (1.3-17.3) \end{gathered}$	$\begin{gathered} 37.2 \\ (0.1-84.7) \end{gathered}$	188.3 (57.8-315.9)
Feb-89	0	0	ND	$\begin{gathered} 0.1 \\ (0.0 .3) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.6 .2) \end{gathered}$	0	$\begin{gathered} 0.2 \\ (0.1 .0) \end{gathered}$	0	$\begin{gathered} 22.6 \\ (0-66.3) \end{gathered}$	$\begin{gathered} 10.1 \\ (0-28.2) \end{gathered}$	$\begin{gathered} 33.4 \\ (3.1-65.2) \end{gathered}$
Dec-89	$\begin{gathered} 1.0 \\ (0.1 \cdot 1.9) \end{gathered}$	$\begin{gathered} 49.8 \\ (0-162.4) \end{gathered}$	ND	$\begin{gathered} <0.1 \\ (0.0 .1) \end{gathered}$	0	0	$\begin{gathered} 0.3 \\ (0-2.2) \end{gathered}$	$\begin{gathered} 0.6 \\ (0-2.7) \end{gathered}$	$\begin{gathered} 1.8 \\ (0-11.0) \end{gathered}$	$\begin{gathered} 0.2 \\ (0.0 .5) \end{gathered}$	$\begin{gathered} 53.8 \\ (1.7-154.5) \end{gathered}$
Black drum											
Dec-83	$\begin{gathered} 0.1^{a} \\ (0-0.3) \end{gathered}$	$\begin{gathered} 16.4 \\ (0-51.1) \end{gathered}$	$\begin{gathered} 0.1^{a} \\ (0-0.4) \end{gathered}$	$\begin{gathered} 3.3^{\mathrm{a}} \\ (<.1-6.7) \end{gathered}$	$\begin{gathered} 3.4 \\ (0.6-6.2) \end{gathered}$	$\begin{gathered} 5.6 \\ (1.8-9.4) \end{gathered}$	$\begin{gathered} 13.9 \\ (3.3-28.0 \end{gathered}$	$\begin{gathered} 49.5 \\ (2.2 \cdot 98.8) \end{gathered}$	$\begin{gathered} 126.6 \\ (0-257.3) \end{gathered}$	$\begin{gathered} 55.1 \\ (14.1 \cdot 107.2) \end{gathered}$	$\begin{gathered} 274.2 \\ (01.0-455.0) \end{gathered}$
Feb-89	0	0	ND	$\begin{gathered} 89.9 \\ (15.8-184.0) \end{gathered}$	0	$\begin{gathered} 9.3 \\ (0-104.4) \end{gathered}$	$\begin{gathered} 29.7 \\ (10.2-49.2) \end{gathered}$	0	$\begin{gathered} 2.7 \\ (0-20.8) \end{gathered}$	$\begin{gathered} 1.6 \\ (0-3.5) \end{gathered}$	$\begin{gathered} 133.1 \\ (60.8-204.4) \end{gathered}$
Dec.89	$\begin{gathered} 6.5 \\ (0.8-12.1) \end{gathered}$	$\begin{gathered} 0.1 \\ (0-2.0) \end{gathered}$	ND	$\begin{gathered} 5.0 \\ (1.99 .4) \end{gathered}$	0	$\begin{gathered} 7.5 \\ (0-23.8) \end{gathered}$	$\begin{gathered} 112.5 \\ (0-589.8) \end{gathered}$	$\begin{gathered} 9.2 \\ (0.31 .2) \end{gathered}$	$\begin{gathered} 330.4 \\ (0-1,203.8 \end{gathered}$	$\begin{gathered} 16.0 \\ (1.8-65.3) \end{gathered}$	$\begin{gathered} 487.8 \\ (59.3-819.3) \end{gathered}$
Gulf menhaden											
Dec-83	$0^{\text {a }}$	$\begin{gathered} 290.6 \\ (62.8-518.6) \end{gathered}$	$\begin{gathered} 0.1^{a} \\ (0-0.4) \end{gathered}$	$\begin{gathered} 7.1^{*} \\ (0.15 .8) \end{gathered}$	$\begin{gathered} 452.4 \\ (0-1,346.2) \end{gathered}$	$\begin{gathered} 48.4 \\ (0.125 .5) \end{gathered}$	$\begin{gathered} 112.0 \\ (16.3-262.0) \end{gathered}$	$\begin{gathered} 50.0 \\ (0-107.7) \end{gathered}$	$\begin{gathered} 28.1 \\ (0-85.9) \end{gathered}$	$\begin{gathered} 0.3 \\ (0-0.8)(25 \end{gathered}$	$\begin{gathered} 986.9 \\ 258.1 \cdot 2,288.1) \end{gathered}$
Feb-89	0	0	ND	$\begin{gathered} 0.1 \\ (00.3) \end{gathered}$	0	0	$\begin{gathered} 446.4 \\ (0-1,362.2) \end{gathered}$	0	0	$\begin{aligned} & <0.1 \\ & (0-0.1) \end{aligned}$	$\begin{gathered} 446.4 \\ (0-1,213.8) \end{gathered}$
Dec.89	$\begin{gathered} 5.8 \\ (0-14.8) \end{gathered}$	$\begin{gathered} 146.0 \\ (0-367.9) \end{gathered}$	ND	$\begin{gathered} 2.4 \\ (0-8.7) \end{gathered}$	0	0	$\begin{gathered} <0.1 \\ (0-0.4) \end{gathered}$	$\begin{gathered} 0.1 \\ (0,0.4) \end{gathered}$	0	$\begin{gathered} 6.7 \\ (0-68.2) \end{gathered}$	$\begin{gathered} 161.1 \\ (0.355 .8) \end{gathered}$
Pinfish											
Dec-83	$0{ }^{\text {a }}$	$\begin{gathered} 1.5 \\ (0-4.2) \end{gathered}$	0^{3}	$\begin{gathered} 0.3^{a} \\ (0,0.8) \end{gathered}$	$\begin{gathered} 11.1 \\ (0-34.8) \end{gathered}$	$\begin{gathered} 0.3 \\ (0-0.6) \end{gathered}$	$\begin{gathered} 111.5 \\ (0.306 .1) \end{gathered}$	$\begin{gathered} 2,977.2 \\ (13.66,749.9) \end{gathered}$	$\begin{gathered} 91.4 \\ (0-222.8) \end{gathered}$	$\begin{gathered} 99.9 \\ (0-222.7) \end{gathered}$	$\begin{gathered} 3,292.9 \\ (13,46,856.2) \end{gathered}$
Feb-89	0	0	ND	$\begin{gathered} 0.2 \\ (0-0.5) \end{gathered}$	0	$\begin{gathered} 7.0 \\ (0-21,3) \end{gathered}$	$\begin{gathered} 85.0 \\ (0.180 .7) \end{gathered}$	0	$\begin{gathered} 144.9 \\ (0-1,376.2) \end{gathered}$	$\begin{gathered} 28.0 \\ (0-63.0) \end{gathered}$	$\begin{gathered} 265.0 \\ (6.7534 .8) \end{gathered}$
Dec-89	0	0	ND	$\begin{gathered} 0.1 \\ (0,0.3) \end{gathered}$	0	0	$\begin{gathered} 7.7 \\ (0-54.8) \end{gathered}$	$\begin{gathered} 305.8 \\ (0-1,553.4) \end{gathered}$	0	$\begin{gathered} 38.4 \\ (0-514.4) \end{gathered}$	$\begin{gathered} 352.0 \\ (0.890 .0) \end{gathered}$
Red drum											
Dec-83	$0{ }^{\text {a }}$	$\begin{gathered} 0.3 \\ (0-0.7) \end{gathered}$	$\begin{aligned} & 0.1^{8} \\ & (-0.4) \end{aligned}$	$\begin{gathered} 0.5^{a} \\ (0-1.1) \end{gathered}$	$\begin{gathered} 12.1 \\ (0,36.6) \end{gathered}$	$\begin{gathered} 25.9 \\ (4.2-59.4) \end{gathered}$	$\begin{gathered} 27.3 \\ (1.6-56.5) \end{gathered}$	$\begin{gathered} 0.3 \\ (0-0.8) \end{gathered}$	$\begin{gathered} 5.1 \\ (0-10.8) \end{gathered}$	$\begin{gathered} 32.2 \\ (4.0-84.8) \end{gathered}$	$\begin{gathered} 103.8 \\ (36.1 \cdot 188.0) \end{gathered}$
Feb-89	0	0	ND	$\begin{gathered} 23.5 \\ (3.1-44.2) \end{gathered}$	$\begin{gathered} 0.4 \\ (0.5 .0) \end{gathered}$	$\begin{gathered} 1.5 \\ (0-4.8) \end{gathered}$	$\begin{gathered} 28.8 \\ (7.3-46.3) \end{gathered}$	0	$\begin{gathered} 0.5 \\ (0-4.1) \end{gathered}$	$\begin{gathered} 0.2 \\ (0-0.5) \end{gathered}$	$\begin{gathered} 53.0 \\ (33.5-72.8) \end{gathered}$
Dec-89	$\begin{gathered} 0.7 \\ (0.4-1.0) \end{gathered}$	$\begin{gathered} 15.1 \\ (0-50.7) \end{gathered}$	ND	$\begin{gathered} 0.4 \\ (0.2-0.7) \end{gathered}$	0	$\begin{gathered} 7.8 \\ (0.3-24.4) \end{gathered}$	$\begin{gathered} 23.3 \\ (0-81.3) \end{gathered}$	$\begin{gathered} 0.1 \\ (0-0.5) \end{gathered}$	$\begin{gathered} 15.4 \\ (0-42.5) \end{gathered}$	$\begin{gathered} 3.5 \\ (0.6-13.1) \end{gathered}$	$\begin{gathered} 66.4 \\ (23.1 \cdot 115.1) \end{gathered}$
Sheepshead											
Dec. 83	$\begin{gathered} 0.2^{a} \\ (0.0 .5) \end{gathered}$	$\begin{gathered} 8.1 \\ (1.0-15.3) \end{gathered}$	$\begin{gathered} 0.1^{0} \\ (0-0.2) \end{gathered}$	$\begin{gathered} 4.3^{\mathrm{n}} \\ (0.3-8.4) \end{gathered}$	$\begin{gathered} 14.5 \\ (3.2 \cdot 25.7) \end{gathered}$	$\begin{gathered} 17.3 \\ (4.8-30.0) \end{gathered}$	$\begin{gathered} 28.3 \\ (5.8-50.4) \end{gathered}$	$\begin{gathered} 44.9 \\ (4.1-92.0) \end{gathered}$	$\begin{gathered} 37.8 \\ (18.1-59.5) \end{gathered}$	$\begin{gathered} 74.4 \\ (10.5-149.4) \end{gathered}$	$\begin{gathered} 227.9 \\ (131.7 .323 .2) \end{gathered}$
Fab-89	0	0	ND	$\begin{gathered} 11.6 \\ (0-26.8) \end{gathered}$	$\begin{gathered} 0.6 \\ (0.7 .5) \end{gathered}$	$\begin{gathered} 28.6 \\ (0-63.7) \end{gathered}$	$\begin{gathered} 38.5 \\ (14.2 .62 .7) \end{gathered}$	0	$\begin{gathered} 2.2 \\ (0.7 .3 .7) \end{gathered}$	$\begin{gathered} 1.4 \\ (0-2.8) \end{gathered}$	$\begin{gathered} 83.0 \\ (33.3-135.9) \end{gathered}$
Dec-89	$\begin{gathered} 13.0 \\ (2.8-23.3) \end{gathered}$	0	ND	$\begin{gathered} 0.2 \\ (0-0.8) \end{gathered}$	$\begin{gathered} 0.1 \\ (0,-0.3) \end{gathered}$	$\begin{gathered} 7.5 \\ (0-23.8) \end{gathered}$	$\begin{gathered} 4.5 \\ (0.15 .8) \end{gathered}$	$\begin{gathered} 0.4 \\ (0-1.4) \end{gathered}$	$\begin{gathered} 15.8 \\ (0.38 .2) \end{gathered}$	$\begin{gathered} 4.8 \\ (0-29.7) \end{gathered}$	$\begin{gathered} 46.4 \\ (23.0-74.9) \end{gathered}$
Spotted seatrout											
Dec.83	$\begin{gathered} 0.2^{\mathrm{a}} \\ (0-0.5) \end{gathered}$	$\begin{gathered} 84.5 \\ (0-168.8) \end{gathered}$	$\begin{gathered} 0.1^{a} \\ (0-0.2) \end{gathered}$	$\begin{gathered} 0.8^{2} \\ (0.2 \cdot 1.8) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.1-2.7) \end{gathered}$	$\begin{gathered} 15.4 \\ (0.5-42.0) \end{gathered}$	$\begin{gathered} 246.0 \\ (81.7-431.5) \end{gathered}$	$\begin{gathered} 124.1 \\ (28.1 \cdot 222.2) \end{gathered}$	$\begin{gathered} 43.1 \\ (0-101.2) \end{gathered}$	$\begin{gathered} 127.0 \\ (4.1301 .2) \end{gathered}$	$\begin{gathered} 623.9 \\ (330.3 .6-922.6) \end{gathered}$
Feb-88	0	0	ND	$\begin{gathered} 170.4 \\ (0.352 .6) \end{gathered}$	$\begin{gathered} 0.2 \\ (0-2.1) \end{gathered}$	$\begin{gathered} 21,2 \\ (0-53.4) \end{gathered}$	$\begin{gathered} 76.1 \\ (15.1 \cdot 137.0) \end{gathered}$	0	$\begin{gathered} 48.6 \\ (0-173.7) \end{gathered}$	$\begin{gathered} 34.3 \\ (0.8-72.5) \end{gathered}$	$\begin{gathered} 350.7 \\ (197.5-503.8) \end{gathered}$
Dec. 89	$\begin{gathered} 13.6 \\ \langle 0-27.8) \end{gathered}$	$\begin{gathered} 84.8 \\ (17.0-180.7) \end{gathered}$	ND	$\begin{gathered} 0.6 \\ (0.3-0.8) \end{gathered}$	$\begin{gathered} 8.7 \\ (0-25.1) \end{gathered}$	$\begin{gathered} 7.7 \\ (0-24.2) \end{gathered}$	$\begin{gathered} 135.9 \\ (0-559.7) \end{gathered}$	$\begin{gathered} 23.7 \\ (0-87.0) \end{gathered}$	$\begin{gathered} 103.9 \\ 0-380.7) \end{gathered}$	$\begin{gathered} 20.2 \\ (0-219.8) \end{gathered}$	$\begin{gathered} 409.1 \\ (183.4634-7) \end{gathered}$

Table 2. Continued.

Striped mullet											
Deca3	$0.8{ }^{\circ}$	295.6	18.14	178.4 ${ }^{4}$	568.7	182.1	301.7	120.2	512.0	3,24.6	5,428.9
	(0.2.4)	(79.3511.8)	(041,3)	(28.1330.7)	(888,183,1)	(31.3740)	(119.04839 ${ }^{\text {a }}$	(37.7.219.4)	(12270012)	10, 7124	(235688,44,99)
Febse	0	$\stackrel{224}{(06864)}$	ND	$\stackrel{212}{(04624}$	$\begin{gathered} 02 \\ 0.29 \end{gathered}$	$\begin{gathered} 3.4 \\ 0.909 \end{gathered}$	$\stackrel{64.7}{(172 \cdot 1122}$	$\begin{gathered} 21 \\ 0.2 a, ~ \end{gathered}$	$\begin{gathered} 7.0 \\ \text { (0320.0 } \end{gathered}$	$\begin{gathered} 53.9 \\ 0.1623) \end{gathered}$	$\stackrel{174.8}{\text { (508319.9 }}$
D0080	5.1	4.8	ND	$\begin{gathered} 2884.1 \\ (1,506.13,784.6) \end{gathered}$	45.7 0.1009	${ }_{0}^{2081.9}$	1372	${ }^{144}$	${ }_{0}^{20.6} \mathbf{0} 5$	8285	4,0673
Total fishes											
Doc. 83	1.24	1,259.7	$25.4{ }^{\text {a }}$	214.9	713.3	341.9	1,800.4	4,20.8	985,9	4,005.3	14,392.7
	pasa	(18028039	0869	(4043049	(1098: 3 速		пгxaspras	(80282898		(гинерев7.7)	18516520,462
Febrab	0	$\begin{gathered} 2.4 \\ \text { peodan } \end{gathered}$	ND	$\begin{gathered} 34.8 \\ \text { K } \\ \text { Kien } \end{gathered}$	$\stackrel{2.1}{\text { مazi }}$	$\begin{gathered} 143.6 \\ \text { مa3s } \end{gathered}$		$\begin{gathered} 2.1 \\ \text { م0289 } \end{gathered}$	$\begin{gathered} \text { 0,344.4 } \\ \text { م-166799 } \end{gathered}$	$\begin{gathered} 155.4 \\ (14 B 3 e 19 \end{gathered}$	$\begin{gathered} 11.315 .8 \\ \text { pabaserga } \end{gathered}$
Doc.99	$\underset{\substack{\text { eng } \\(11410 \times 3)}}{ }$		No		$\begin{gathered} 880 \\ \text { مит } \end{gathered}$	$\begin{gathered} 61.7 \\ 0.380 \end{gathered}$	$\underset{(111.788, n}{4830}$	$\begin{gathered} 651.1 \\ 0.0: 4 \pi \times 3 \end{gathered}$	$\begin{gathered} \text { ma7 } \\ 0,1,806 a \end{gathered}$	$\begin{aligned} & 8137 \\ & \text { م2880an } \end{aligned}$	
Invertebrates Blue crab											
Dece3	8.90	1.3	$1.4{ }^{4}$	5.9*	8.7	8.2	44.9	1.6	0.9	68.3	148.2
	(0-19.7)	(0-2.9)	10-4.5)	(0.14.2)	(0.20.1)	(2.4.14.1)	(0-90.6)	(0.13.1)	(0.2.1.6)	(1.8-138.1)	(82.02346)
Febs9	0	0	ND	0	0	0	0	0	0	4.1	4.1
Doc.-89	0	31.2	ND	<1	0	0	0.1	0	0	0.1	31.4
		(0,79.4)		(00.1)			(0-0.7)			(00.2)	(K.174.9)
Brown shrimp											
Dec-83	0	15.9	$0{ }^{0}$	$0{ }^{\circ}$	11.0	0.7	17.7	0	0	78.4	123.7
		(0-19.7)			(0.34,3)	(0-2.3)	(035.8)			(0-198.8)	(23.3224.4)
Febs9	0	0	ND	0	0	$\begin{gathered} 7.0 \\ (0.21 .3) \end{gathered}$	0	0	0	0	$\begin{gathered} 7.0 \\ (0.20 .2) \end{gathered}$
Dec.89	0	0	ND	0	0	0	0.1	0	0	0	0.1
							(01.6)				(00.3)
Pink shrimp											
Doces3	0	0	0	$0{ }^{\circ}$	0	0	87.2	0	0	0	67.2
							(13.7-120.8)				(15.9.9118.5)
Febs9	0	0	ND	0	0	0	1.7	0	0	0	1.7
Doc.89	0	0	ND	0	0	0	0.1	0.1	0	0	0.1
							(0-1.1)	(00.4)			(00.4)
Whte shrimp											
Dec.a3	$0{ }^{\circ}$	173.6	$0{ }^{\circ}$	$0.2{ }^{\text {a }}$	11.5	21.5	60.0	0	0	51.0	317.8
		(47.4299.7)	ND	(00.7)	(035.9)	(0.58.8)	(23.496.8)			(0.118.1)	(184.1474.4)
Feb-89	0	0	ND	0	0	0	0	0	0	0	0
Dec.al	0	31.2	ND	0	0	0	0	24.5	0	0	55.7
		(0-79.4)						(0.80.0)			(0.120.2)
Total Invertebrates											
Doc. 33	8.98	551.0	$1.8{ }^{\text {a }}$	8.6 ${ }^{\text {a }}$	12.6	33.7	212.2	117.2	17.5	357.5	1,316,5
	10+9.7)	(0,1,190.7	(04, ${ }^{10}$	(01528)	102209	(2976.1)	(24,328)	10338.4)	(04, 3)	(1128602)	(201.6.2082)
Febr9	0	0	ND	0.2	0	7.0	1.8	0	0	4.4	13.4
				(00.5)		(221.3)	105. ${ }^{10}$			(0.112)	(031.3)
Dec.89.	0	100.5	No	< 1	<1	17.6	7.0	25.7	0.1	4.0	155.
		(02160)		100.1)	100.5)	044,9	(024,3)	(1088, ${ }^{\text {a }}$	(00.4)	(020.6)	183,273.9

Spotted Seatrout

February 1989

December 1989
$n=814$

Red Drum

December 1983

February 1989

December 1989

Flgure 2. Length frequencies (midpoint of 10 mm groups) of spotted seatrout (Cynoscion nebulosus) and red drum (Sciaenops ocellatus) killed in three freezes.

Black Drum

Sheepshead
December 1983
$n=1181$

February 1989

December 1989 $n=203$

Flgure 3. Length frequencles (midpoint of 10 mm groups) of black drum (Pogonias cromis) and sheepshead (Archosargus probatocephalus) killed in three freezes.

Atlantic Croaker

December 1983
$n=370$

Gulf Menhaden
December 1983

February 1989

Figure 4. Length frequencies (midpoint of 10 mm groups) of Atiantic croaker (Micropogonias undulatus) and Gulf menhaden (Brevoortia patronus) killed in three freezes.

Striped Mullet

December 1983

Pinfish
December 1983

February 1989

December 1989

December 1989

Figure 5. Length frequencies (midpoint of 10 mm groups) of striped mullet (Mugil cephalus) and pinfish (Lagodon rhomboides) killed in three freezes.
remained low longer during the December 1983 freeze than during the December 1989 freeze. Temperatures were about $10^{\circ} \mathrm{C}$ in each bay on 20 December 1983 (Fig. 6). By 26 December the temperature had decreased steadily to near $0^{\circ} \mathrm{C}$ in each bay. Temperatures remained between 0 and $5^{\circ} \mathrm{C}$ until about 1 January 1984 after which they increased steadily. Temperatures in February 1989 generally decreased from about 15 to $20^{\circ} \mathrm{C}$ on 2 February 1989 to between 0 and $10^{\circ} \mathrm{C}$ by about 8 February, depending on the bay system (Fig. 7). In each bay, temperatures began a general increase within about 2 days after reaching their low levels. The most rapid temperature declines and coldest temperatures occurred in both upper and lower Laguna Madre; warmest temperature occurred in Aransas and Corpus Christi Bays. During December 1989 temperatures decreased from about 10 to $15^{\circ} \mathrm{C}$ on 10 December to near $0^{\circ} \mathrm{C}$ by about 23 December after which they began to increase (Fig. 8).

DISCUSSION

Based on a search of the literature, fish kill assessments presented in this paper are the greatest in area and most comprehensive to be conducted with estimated levels of precision. The systematic, four-phase approach documented in this paper can be applied to any widespread and extensive kill as the result of major pollution events, red tide (Gymnodinium breve) blooms (Trebatoski 1988) or algae blooms.

Sampling procedures used during these three freezes produced useable estimates of the magnitude of fishes and invertebrates killed. However, mortality was underestimated, especially for small animals ($<200 \mathrm{~mm}$) because scavenging by birds and other animals undoubtedly occurred. Although illegal, fishermen also removed an unknown number of dead or
dying fish during the freezes by foul hooking, dip netting, or picking up fish along the shoreline. These activities caused us to underestimate fish killed because fish were removed prior to our census.

Even though the estimates are biased low, they provide a relative measure of the immediate impact of freezes on marine populations. These estimates, in conjunction with fishery independent sampling data (Kana et al. 1993) from before and after the freezes can provide insights into the impact on populations affected. Because of the magnitude of marine fishing effort and economic value of recreational and commercial fisheries, it would behoove managers to assist populations to recover quicker than would naturally occur under unabated intense fishing pressure. To enhance recovery to prefreeze levels for economically important fish populations, managers can respond by reducing subsequent fishing mortality through imposition of reduced bag and possession limits, increased size limits, gear restrictions, and closed areas (Anonymous 1985) immediately following a large-scale kill of fishes. The strategy is to reduce fishing mortality on spawning adult fish to allow many of them to spawn. In theory, if recruitment were density-dependent, compensatory mechanisms would allow many recruits to survive to maturity and spawn, thus increasing the size of the fishable population. The ability to detect reductions in fish populations suffering mass mortallities may be difficult if the index of abundance has a large coefficient of variation (Vaughn et al. 1986). Nonetheless, it seems prudent for managers to consider implementing regulations reducing subsequent fishing effort immediately following a large-scale kill.

Impact of cold weather on marine organisms in Texas bays varies sub-

Figure 6. Daily mean water temperatures (${ }^{\circ} \mathrm{C}$) in Texas bays during December 1983 and January 1984.

Figure 7. Daily mean water temperatures (${ }^{\circ} \mathrm{C}$) in Texas bays during February 1989.

Flgure 8. Daily mean water temperatures $\left({ }^{\circ} \mathrm{C}\right)$ in Texas bays during December 1989.
stantially, depending on rapidity of temperature drop, severity and duration of cold, physiography characteristics of the affected area, and life history, behavior, and population dynamics of affected animals. The December 1983 freeze was the most severe of recent freezes, and one of the most severe in recorded Texas history. Water temperatures dropped about $15^{\circ} \mathrm{C}$ in about 10 days to near $0^{\circ} \mathrm{C}$ and remained between 0° and 5° for about 7 days. Fish that are most abundant in Texas bays during winter were the most numerous among the dead animals; most dead fish were seen in shallow bays on the southern (generally warmest) part of the coast. A similar pattern was observed in the December 1989 freeze; however, temperatures did not remain as low for as many days, and fewer fish were killed than in 1983. Even fewer fish were killed in February 1989 when lowest temperatures were generally higher than during the December freezes.

ACKNOWLEDGMENTS

Thanks to the many TPWD employees who helped collect data during the freeze perlods.

LITERATURE CITED

Anonymous. 1931. Yearbook on Texas conservation of wildlife, 1929-30. Tex. Game, Fish, and Oys. Comm. pg. 51. Austin.
Anonymous. 1985. Saltwater finfish research and management in Texas. A report to the Governor and the 69th Legislature. Tex. Parks and Wildl. Dept. PWD Report 3000-154. Austin.
Bartlett, J. R. 1856. Personal narrative of explorations and incidents in Texas, New Mexico, California, Sonora, and Chihuahua, connected with the United States and Mexican Boundary Com-
mission during the years 1850, 1851, 1852, and 1853. 2:530-531. Appleton, NY.
Baughman, J. L. 1947. Loss of fish due to freeze. Tex. Game and Fish Mag., March. Pg. 12 and 31. Austin.
1951. The fish freeze of January 1951. Tex. Game and Fish Mag., May. Pg. 2-4. Austin.
Cochran, W. G. 1977. Sampling techniques, 3rd. ed. John Wiley and Sons., Inc., NY.
Dahlberg, M. D., and F. G. Smith. 1970. Mortality of estuarine animals due to cold on the Georgia coast. Ecology. 51:931-933.
Gunter, G. 1941. Death of fishes due to cold on the Texas coast. Ecol. 22:203-208.
1945. Studies on marine fishes of Texas. Publ. Inst. Mar. Sci. 1:1-190.
1947. Differential rate of death for large and small fishes caused by hard cold waves. Science. 106(2759):238.
. 1952. The import of catastrophic mortalities for marine fisheries along the Texas coast. Jour. Wildl. Manage. 16(1):1-7.
and H. H. Hildebrand. 1951. Destruction of fishes and other organisms on the south Texas coast by the cold wave of January 28-February 3, 1951. Ecol. 32:731-736.
Higgins, E., and R. Lord. 1927. Preliminary report on the marine fisheries of Texas. Report of the United States Commissioner of Fisheries for the Fiscal Year 1926. U.S. Dept. Comm., Bur. of Fish., Wash., D.C. 168-199.
Holt, S. A., and G. J. Holt. 1983. Cold death of fishes at Port Aransas, Texas: January 1982. SW. Nat. 28:464-466.
Kana, J. C., J. A. Dailey, B. Fuls, and L. W. McEachron. 1993. Trends in relative abundance and size of selected finfishes and shellfishes along the Texas
coast: November 1975-December 1991. Tex. Parks and Wild. Dep., Fish. and Wildl. Div. Manage. Data Ser. No. 103. Austin.
Matlock, G. C., J. E. Weaver, and A. W. Green. 1982. Sampling nearshore estuarine fishes with rotenone. Trans. Amer. Flsh. Soc. 111:326-331.
Moore, R. H. 1976. Observations on fishes killed by cold at Port Aransas, Texas, 11-12 January 1973. SW. Nat. 20:461-466.
Pennington, M. 1986. Some statistical techniques for estimating abundance indices from trawl surveys. Fish. Bull. 84(3):519-525.
Scheaffer, R. L., W. Mendenhall, and L. Ott. 1979. Elementary survey sampling. PWS Publishers. Duxbury, Mass.
Simmons, E. 1957. An ecological survey of the upper Laguna Madre of Texas. Publ. Inst. Mar. Sci. 4:142-250. 1962. The effects of a hard freeze on marine life. Tex. Game and Fish Mag., April. Pg. 10-11.
Springer, V. G., and K. D. Woodburn. 1960. An ecological study of the fishes of the Tampa Bay area. Fla. State Board Conserv. Prof. Pap. Ser. No. 1:1-104.
Storey, M. 1937. The relation between normal range and mortality of fishes due to cold at Sanibel Island, Florida. Ecology. 18: 10-26.
, and E. W. Gudger. 1936. Mortality of fishes due to cold at Sanibel Island, Florida, 1886-1936. Ecology. 21:640-648.
Trebatoski, B. 1988. Observations on the 1986-1987 Texas red Tide (Ptychodiscus brevis). Texas Water Commission. Rep. 88-02. Austin.
Vaughn, D. S., J. V. Merriner, and W. E. Schaaf. 1986. Deductibility of a reduction in a single year class of a fish population. The Journal of the Elisha Mitchell Scientific Society. 102:122-128.

