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COMMENTARY 

Gulft~llHexim Srima, 2003(2), pp. 202-205 
© 2003 by the ~'Iarine Environmental Sciences 

Consortium of Alabama 

CONTINENTAL SHELF HYPOXIA: SOME 
COMPELLING ANS\-\lERS.-In a commentary 
in this journal entitled "Continental Shelf 
Hypoxia: Some Nagging Questions," Rowe and 
Chapman (2002) expressed concern about 
oversimplification of the degree to which land
based nutrients, particularly nitrate, are the 
cause of the widely publicized oxygen deple
tion in the northern Gulf of Mexico. They ask, 
"v\lhat if nitrate loading is not the only factor 
controlling hypoxia on the Louisiana conti
nental shelf? vVhat if turning down the nitrate 
in the river has little or no effect on the hyp
oxia?" 

In my considered view, there are already 
clear answers to both questions. Regarding the 
first question, it is well recognized that nitrate 
loading is not the only factor responsible for 
hypoxia but that an increase in nitrate loading 
is the predominant cause of the long-term in
crease in its extent and severity. To answer the 
second question, there is compelling evidence 
and reasoning that reducing nitrate loading 
will significantly reduce hypoxia. 

I have had a good vantage point from which 
to observe the development of science in re
lation to these questions during the past 20 yr. 
In the mid-1980s, I was involved in originating 
the first concerted research on Gulf hypoxia, 
including struggling with how to address the 
same questions about the factors responsible 
for hypoxia that Rowe and Chapman now 
raise. After 1990, I was no longer an active par
ticipant and focused nmch of n1y attention on 
scientific research, monitoring, and assessment 
related to the abatement of sirnilar eutrophi
cation phenomena in the Chesapeake Bay. In 
1999, I served as a member of the editorial 
board responsible for peer reviews of six tech
nical reports, examining various aspects of the 
Gulf hypoxia issue for the Connnittee on En
vironment and Natural Resources of the Pres
ident's National Science and Technology 
Council. This provided me intimate knowledge 
of the evidence, argmnenls, and criticisms ad
dressed by Rowe and Chapman. 

Regarding the factors controlling hypoxia, it 
appears either that Rowe and Chapman did 
not read very carefully the literature they cited 
or they elected to discount it for reasons not 
stated. Specifically, the role of freshwater dis
charge, stratification, and circulation on the 

formation and maintenance of hypoxia has 
been extensively addressed by \-\liseman et al. 
(1997) and Rabalais et al. (1999), among other 
publications. Stratification, particularly result
ing from lower-density surface waters fresh
ened by river discharges, is a critical element 
of the conditions causing bottom-water hyp
oxia. The greater the freshwater discharge, the 
stronger and more extensive is the stratifica
tion. Similarly, the long retention time of bot
tom waters, which results fron1 low current ve
locities and the propensity for summer flow re
versal, has been recognized as a factor of hyp
oxia by the same authors. As Rowe and 
Chapman put it, because of these physical 
characteristics, the Louisiana shelf is "primed 
to become hypoxic." No one would doubt that 
if this continental shelf received only minor 
freshwater discharges or had highly energetic 
tidal currents that broke down density stratifi
cation or reduced residence time, there would 
be little hypoxia. On the other hand, nutrient 
enrichment of coastal systems that are similarly 
physically susceptible has been responsible for 
the onset or intensification of benthic hypoxia 
in many parts of the world (Diaz and Rosen
berg, 1995). 

Physical features and forces are also un
doubtedly significant causes of the year-to-year 
variability in the severity, extent, and persis
tence of hypoxia. High river discharges in
crease stratification, whereas wind mixing clue 
to storms and hurricanes can diminish it. How
ever, regarding the effects of land-based nutri
ent inputs, the operative question is the degree 
to which the increased input of nitrate has af
fected hypoxia beyond what might be attrib
utable to the physical effects of freshwater dis
charge variability. The Committee on Environ
ment and Natural Resources (2000) addressed 
this question in its integrated assessment based 
on the sbc technical component reports men
tioned above. It concluded, "River discharge 
and nitrate concentrations, and sediment core 
data, provide almost 100 yr of record for this 
system. On that time scale, there is no indica
tion that climate factors override the impacts 
of human activities in the basin. Average an
nual flow in the Mississippi River increased 30 
percent between 1955-70 and 1980-96, com
pared to the 300 percent increase in nitrate 
flux over this period." Biological and chemical 
indicators in the sediment record clearly show 
that primary production increased (incorpo-
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ration of marine-source organic carbon and 
biogenic silica in the sediments doubled) and 
hypoxia intensified (hypoxia-tolerant benthic 
foraminifera increased) after the 1950s despite 
the fact that high river discharges had also oc
curred during the earlier part of the century. 

Increased water runoff not only affects strat
ification on the shelf but also increases the 
amount of nitrate flushed to the Gulf. Using 
two different approaches, Donner et al. (2002) 
and Jus tic et al. (2003) agreed that 20-25% of 
the increased nitrate flux between the micl-
1960s to the micl-1990s is attributable to great
er runoff and river discharge, with the rest clue 
to increased nitrogen loading on the land
scape. Simply stated, a wetter climate drives 
more of the nonpoint source loadings of nu
trients (predominantly from agriculture) 
downstream. 

This connection between hypoxia and in
creased nitrate loading on the Louisiana con
tinental shelf is hardly surprising. Dramatic 
manifestations of nutrient overenrichment, in
cluding hypoxia, loss of seagrasses, and in
creased frequency of harmful algal blooms, 
have also been documented in a number of 
well-studied coastal ecosystems in North Amer
ica, Europe, and Japan between 1960 and 
1980, coincident with the fivefold increase in 
the use of manufactured fertilizers during the 
20-yr period (Boesch, 2002). Given this world
wide pattern and the tripling of Mississippi Riv
er nitrate loads, associated with a sevenfold in
crease in fertilizer nitrogen inputs in the Mis
sissippi-Atchafalaya Basin (Goolsby et a!., 
1999), it would be even more surprising if 
there was no increase in hypoxia on the 
"prirned to bec01ne hypoxic" Louisiana shelf. 

By now, managers and technical analysts 
have moved beyond the second question of 
Rowe and Chapman to ask by how much must 
nitrate loading be reduced to accomplish a sig
nificant reduction in hypoxia? In 2000, a task 
force representing eight federal agencies, nine 
states, and two tribal governments adopted a 
general goal of reducing on the average the 
area experiencing hypoxia in the northern 
Gulf of Mexico by two-thirds (to 5,000 km2 ; Ra
balais eta!., 2002b), estimating that this would 
probably require a 30% reduction in nitrogen 
inputs from the Mississippi River. 

In another article cited by Rowe and Chap
man, Rabalais et al. (2002a) describe a mass 
balance eutrophication model of the shelf that 
simulated the effects of nutrient load reduc
tions for 3 yr of record. With the same fresh
water discharge rate as observed for these 
years, a 30% reduction in nitrogen loading was 

estimated to result in a 35-90% increase in av
erage bottom dissolved oxygen concentration 
depending on the year. If they had actually 
read this article, how could Rowe and Chap
man state that "one could equally contend 
that freshwater is the culprit and not ni
trate"-at least not without counterargument? 
More recently, Scavia et a!. (2003) presented a 
statistical model that relates the extent of Gulf 
hypoxia to river nitrogen load and a simple pa
rameterization of ocean dynamics with a high 
degree of fidelity. Using this model in hind 
cast, they concluded that extensive regions of 
low oxygen were not common before the mid-
1970s. JustiC et a!. (2002) reached a similar 
conclusion using a mathematical model simu
lating botton1-water oxygen content related to 
Mississippi River discharge and nitrate flux. In 
forecast, Scavia et a!. (2003) predict that re
ductions in nitrogen loads of 35-45% would be 
required to tneet the task force goals for re
ducing the scale of hypoxia. 

If one does not trust models and needs a 
practical example of the effects of nutrient 
load reduction on continental shelf hypoxia, 
consider the Black Sea. The northwestern shelf 
of the Black Sea-not its deep hypoxic basin
is physically prone to hypoxia like the Louisi
ana shelf. Both are broad and microtidal, re
ceive the discharges of large rivers, and have 
modest currents driven primarily by winds and 
buoyancy differences. In contrast to the Loui
siana shelf, this shelf was well studied by Soviet 
and Eastern European scientists from the 
1950s. Nutrient concentrations in the lower 
Danube River began to increase after the 
1960s, and because of regular surveys, we can 
say for sure that large-scale hypoxia first oc
curred in 1973 (Zaitsev, 1999). The situation 
suddenly changed after 1989-90, when Eastern 
European countries embarked on an abrupt 
transition to market economies and fertilizer 
use decreased by half. ·within 5 yr the total ni
trogen discharge of the Danube had been re
duced by nearly half, and in 1996, hypoxia was 
virtually nonexistent for the first summer since 
1973 Uvlee, 2001). 

Rowe and Chapman repeat the assertions of 
a report prepared for Fertilizer Institute (Ca
rey et al., 1999) that fluvial organic matter de
livered by the Mississippi and Atchafalaya rivers 
could be as important as the plankton produc
tion fueled by river-borne nutrients. The inte
grated assessment addressed this issue and re
ported, "Scientists reviewed the evidence 
about the role of [land-derived] organic car
bon at a December 1999 meeting and agreed 
that it is a relatively small factor driving hyp-
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oxia-nitrogen-driven carbon production is 
approximately an order of magnitude greater." 
Notably, the contributing author of the organic 
carbon section of the Carey et al. (1999) report 
joined the consensus. In a book review imme
diately after the Rowe and Chapman article in 
this journal, the author (Pennock, 2002) 
found that the National Research Council re
port he reviewed presented "a clear argument 
for the role that nitrogen plays in nutrient 
over-enrichment of estuarine and coastal wa
ters." Although there are large quantities of 
organic carbon discharged onto the shelf by 
the rivers, most of it is refractory or is depos
ited near the river mouths. A mole of reactive 
nitrogen, on the other hand, is repeatedly re
cycled to stimulate the fixation of many more 
moles of highly labile carbon by marine phy
toplankton over a broader area. Furthermore, 
the delivery of organic carbon by the rivers has 
decreased during the last half of the 20th cen
tury at the same time that nitrate delivery in
creased threefold. 

Another issue raised by Rowe and Chapman 
is the role of oxidation of reduced metabolic 
by-products (e.g., sulfide) diffusing from the 
seabed as a contributing factor in the deple
tion of dissolved oxygen in bottom waters. Un
doubtedly, this oxidation does contribute to 
depleted oxygen concentrations downdrift. 
However, what is the source of the organic car
bon undergoing anaerobic decomposition in 
the sediments in the first place? Only near de
pocenters adjacent to the river mouths is it 
likely to be fluvial organic matter. Elsewhere, 
plankton in overlying waters produces most of 
the readily decomposable organic matter in 
the sediments. In other words, the initial pro
duction of these anaerobically decomposed or
ganics has a lot to do with nitrate loading. 

The three-zone concept of Rowe and Chap
man regarding controls on hypoxia with dis
tance fr01n the river source includes some el
ements of reality but misrepresents some im
portant processes. The brown water, first zone, 
does not extend as far from the river mouths 
as they depict. Hypoxic conditions seldom 
overlie areas of high sediment accmnulation, 
where the surface sediments are typically well 
oxidized and turbidity limits the production of 
phytoplankton. The green water, second zone, 
is 1nore extensive and, as the authors suggest, 
characterized by deposition of bioseston and 
higher botton'! water and sediment respiration. 
As bottom-water oxygen is depleted, reducing 
conditions may extend to the sediment surface 
(commonly observed as black surface sedi
ments of sediments covered with Beggiatoa.). Ni-

trification of ammonium leads to oxygen star
vation, causing denitrification rates to be re
duced because of the lack of nitrate (Childs et 
al., 2002), resulting in the flux of ammonium, 
as well as phosphate, back toward the photic 
zone, where it refuels primary production-a 
positive feedback intensifying hypoxia (Boesch 
et al., 2001). In addition, the simple east--west 
zonation of Rowe and Chapman ignores the 
role of the coastal boundary layer-the near
shore zone of vertically well-mixed water-in 
transport, reintroduction of nutrient-rich bot
tom waters, and maintenance of high primary 
productivity along the inshore edge of the hyp
oxic zone. 

Rowe and Chapman ask, "Are there alter
nate remedial actions besides or in addition to 
lowering nitrate loading?" Specifically, they 
ask, "Can strategies be devised for returning 
some fraction of the river water to natural wet
lands?" Indeed, this was a m<Yor focus of the 
integrated assessment (Committee on Environ
ment and Natural Resources, 2000). Of course, 
the principal way that wetlands would help 
stem hypoxia is by reducing the loading of ni
trate and other nutrients to the Gulf by serving 
as sinks for these nutrients. In an article re
sulting from one of the technical components 
of the integrated assessment, Mitsch et al. 
(2001) estimated that diversion of river flow to 
help rebuild the wetlands of the Mississippi 
and Atchafalaya deltas could reduce the nitro
gen load to the Gulf by at the most 3-6%. So 
even with this strategy fully implemented re
ducing nutrient losses at the source would still 
be required. 

Rowe and Chapman challenge "the com
monly accepted view that it is nitrate, and only 
nitrate, that controls the extent of the hypoxic 
zone." Although there is compelling evidence 
and rationale that reducing the delivery of ni
trate to the Gulf is essential to reduce the ex
tent of the hypoxic zone, it is equally clear that 
it is not only nitrate that matters. One should 
not disregard the delivery of other nutrients, 
including phosphorus and silica, which have 
been changing as well, resulting in complex ef~ 
fects on hypoxia and the trophodynamics of 
the ecosystem (JustiC et al., 1995). Nutrient 
control strategies require integrated approach
es to these multiple nutrients. How humans af
fect the timing and location of the delivery of 
freshwater to the Gulf also matters a lot. This 
fact should be taken into account as one con
templates river diversions and changes in flow 
allocations among distributaries. 

Rowe and Chapman attempt to 1nuddy the 
waters with their nagging questions, but like 
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the muddied waters of the Mississippi as they 
enter the Gulf, these questions cease to nag as 
light penetrates and evidence and reason pre
vail just like nutrients and phytoplankton. 
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