
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Faculty Publications 

7-1-2017 

Comparing Salinities of 10, 20, and 30% in Intensive, Commercial-Comparing Salinities of 10, 20, and 30% in Intensive, Commercial-

Scale Biofloc Shrimp (Scale Biofloc Shrimp (Litopenaeus vannameiLitopenaeus vannamei) Production ) Production 

Systems Systems 

Andrew J. Ray 
Kentucky State University, andrew.ray@kysu.edu 

Jeffrey M. Lotz 
University of Southern Mississippi 

Follow this and additional works at: https://aquila.usm.edu/fac_pubs 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Ray, A. J., Lotz, J. M. (2017). Comparing Salinities of 10, 20, and 30% in Intensive, Commercial-Scale 
Biofloc Shrimp (Litopenaeus vannamei) Production Systems. Aquaculture, 476, 29-36. 
Available at: https://aquila.usm.edu/fac_pubs/15223 

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for 
inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more 
information, please contact Joshua.Cromwell@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/fac_pubs
https://aquila.usm.edu/fac_pubs?utm_source=aquila.usm.edu%2Ffac_pubs%2F15223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=aquila.usm.edu%2Ffac_pubs%2F15223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


1 
 

Comparing salinities of 10, 20, and 30‰ in intensive, commercial-scale biofloc shrimp 

(Litopenaeus vannamei) production systems 

 

 

Andrew J. Ray
1
, Jeffrey M. Lotz 

 

 

Division of Coastal Sciences, Gulf Coast Research Laboratory, The University of Southern 

Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 USA 

 

 

 

 

 

 

 

1
Corresponding Author:  

Present Address: Aquaculture Division, Kentucky State University, Land Grant Program 

103 Athletic Rd., Frankfort KY, USA.  

Email: andrew.ray@kysu.edu 

Phone: 1-502-597-8109 

 

 

© 2016. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/



2 
 

Abstract 

 Minimal-exchange, intensive biofloc aquaculture systems offer a viable means of 

culturing marine animals at inland locations due to very low rates of water use.  Fresh, never-

frozen shrimp can be provided to metropolitan markets; however, the cost of artificial salt can be 

substantial.  The purpose of this project was to examine commercial-scale biofloc shrimp 

production at three different salinities.  Nine raceways were randomly assigned to three salinity 

treatments: 10, 20, and 30‰ (LS, MS, and HS), each treatment contained three raceways 

operated at 50 m
3
.  The raceways were operated as heterotrophic biofloc systems, with daily 

additions of sucrose to raise the C:N ratio.  Temperature, dissolved oxygen, pH, and salinity 

were all maintained at consistent levels.  Spikes of ammonia and nitrite occurred in all tanks but 

nitrate remained low, with a peak value of 8.7 mg NO3-N L
-1

.  There were no significant 

differences in any shrimp production metric.  Mean shrimp growth rate was 1.8, 2.0, and 2.0 

grams week
-1

 in the LS, MS, and HS treatments respectively.  Mean feed conversion rate was 

1.6, 1.2, and 1.2 in the LS, MS, and HS treatments respectively, and mean final weight ranged 

from 17.8 to 19.3g.  The only time water was removed from the systems was when settling 

chambers were emptied, resulting in a total mean water replacement of 5.2% or less per raceway.  

The mean volume of full strength seawater used to produce shrimp was 104, 159, and 235 L kg
-1

 

of shrimp
 
in the LS, MS, and HS treatments respectively.  Although there were no significant 

differences in shrimp production metrics between treatments, these values were noticeably lower 

in the LS treatment due to human error.  Operating at the low salinity of 10‰ reduces salt use by 

about 50% over the MS treatment which implies substantial cost savings for production facilities.  

This study helps to illustrate the range of salinity options for shrimp production in commercial-

scale biofloc systems. 
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Introduction 

 Minimal-exchange, intensive, biofloc-based systems undergo low rates of water 

exchange.  This greatly enhances biosecurity, reduces or eliminates pollution from effluent, and 

may facilitate inland culture of marine animals (Hargreaves, 2013).  These systems are stocked at 

high animal densities, reducing the area needed to culture animals and making indoor, 

temperature controlled production possible (Prangnell et al., 2016).  As a result of low water 

exchange, high stocking densities, and because only crude solids filters are needed, a dense 

microbial community develops in the water column.  This microbial community is responsible 

for remediating nutrients, some of which are potentially toxic to shrimp (De Schryver et al., 

2008).  The microbial community contained on flocculated (biofloc) particles may also provide 

nutrition to shrimp, thereby helping to recycle expensive nutrients from feed (Burford et al., 

2004; Moss 1995; Wasielesky et al., 2006).   

 These systems can be sited away from the coast, using less expensive land and in close 

proximity to urban areas where demand for fresh, never-frozen shrimp can be substantial 

(Browdy and Moss, 2005).  Even with minimal-exchange systems some water must be replaced 

due to solids management and controlling the accumulation of contaminants such as nitrate and 

metals (Kuhn et al., 2010, Frías-Espericueta et al., 2001).  Therefore, the cost of artificial sea 

salts or imported seawater can be a substantial expense at inland facilities and systems should be 

operated at the lowest salinity possible to optimize financial returns. 

The isosmotic point for L. vannamei has been reported to be 24.7‰ salinity (Castile and 

Lawrence, 1981).  At this salinity, shrimp should not have to expend energy hypo- or hyper-

osmoregulating to maintain haemolymph osmolality.  At lower salinities L. vannamei must 
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hyperosmoregulate; a function performed partially by the renal organ and antennal gland, but to 

the largest extent by the gills (Roy et al., 2010).   

There are conflicting reports of whether L. vannamei growth rates are compromised at 

salinities below the isosmotic point.  Bray et al. (1994) found no difference in shrimp growth 

between animals grown in 5 and 15‰ salinity and no difference in growth between shrimp 

grown in 25 and 35‰ salinity.  However, the shrimp cultured in the two lower salinities grew 

faster than those at the two higher salinities.  This is in contrast to a more recent study by Yan et 

al. (2007) who found that as salinity was increased from 11 to 21 to 31‰, there was an 

increasing trend in shrimp growth rate.  Both studies found no difference in shrimp survival 

between these salinities. 

In the United States, L. vannamei has been produced at salinities of 1-15‰ in Alabama, 

Arizona, Florida, and Texas (Roy et al., 2010).  However, these are relatively low intensity 

operations, stocking shrimp at roughly 10 to 40 m
-3

 in outdoor ponds.  There is a lack of 

information on low or moderate salinity shrimp culture in intensive biofloc systems, and 

especially little research on a commercial scale.  Operating low salinity biofloc systems may 

pose unique challenges due to fluctuations in concentration of inorganic nitrogen compounds 

(Browdy et al., 2012).  The toxicity of inorganic nitrogen compounds, including ammonia, 

nitrite, and nitrate, has inverse relationships with salinity (Schuler et al., 2010; Kuhn et al., 

2010).   

The ionic composition of saltwater can vary based on its source (Roy et al., 2010) but   

only the concentration and ratios of a few major ions are most important for L. vannamei culture.  

Saoud et al. (2003) demonstrated that potassium, magnesium, and sulfate concentrations were all 

positively correlated with shrimp survival.  Roy et al. (2007) found that by decreasing the 
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sodium: potassium ratio, shrimp growth and survival were increased.  They also demonstrated 

that low concentrations of magnesium resulted in higher shrimp respiration and lower survival 

rates.  Roy et al. (2007) recommended maintaining a Na:K ratio of 28:1, and a Mg:Ca ratio of 

3.1:1 (approximately equal to that of seawater). 

Using 150-L tanks, Maicá et al. (2012) explored the effects of changes in salinity on the 

microbial communities in biofloc shrimp systems.  They found that at higher salinity flagellates 

and diatoms were more abundant, while chlorophytes and ciliates were more abundant in lower 

salinity treatments.  

The purpose of this study was to compare water quality and shrimp production in a 

commercial-scale, biofloc-based culture facility operated at three different salinities.    

 

Materials and Methods 

Shrimp Source, Nursery, and Feeds 

Eight-day-old postlarvae (PL 8) Litopenaeus vannamei were obtained from Shrimp 

Improvement Systems, LLC (Islamorada, Florida, USA) and stocked at 4000 shrimp m
-3

.  All 

raceways used for this project, including the nursery raceway, were 30.1 m x 3.2 m (L x W). 

Raceway walls were constructed of concrete surrounding a sand floor and lined with woven 

polyethylene pond liners.  Raceways were contained in dome-shaped greenhouse structures 

covered in clear plastic.  The nursery raceway was operated at a depth of 0.5 m and contained a 

central wall made of plastic sheeting; water was propelled around this wall using 6 airlift devices 

as described by Ray et al. (2011b) and Ray (2012a).  Each airlift device had three, 15.2 cm long 

ceramic diffusers receiving air from a 746 W regenerative blower (Sweetwater
®

, Pentair Aquatic 

Ecosystems Inc., Apopka, Florida, USA).  The airlift devices comprised (1) a PVC frame, (2) the 
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diffusers and (3) a rubber deflector.  The PVC frame held the diffusers approximately 6 cm 

above the raceway floor.  Above the diffusers was a sheet of EPDM rubber held by the PVC 

frame and oriented at an approximately 35° angle relative to the water movement.  Air from the 

diffusers traveled vertically and contacted the EPDM, which deflected the air, and the water 

traveling with it, horizontally forward. 

Shrimp were kept in the nursery raceway for 54 days at a salinity of 25‰.  Sucrose was 

added periodically to raise the C:N ratio and stimulate heterotrophic bacterial assimilation of 

ammonia on an as-needed basis.  On four occasions water exchanges were conducted due to 

ammonia concentrations over 5 mg TAN L
-1

; throughout the nursery phase a total exchange of 

140% of the system volume occurred. 

For the first 16 days of the nursery phase, shrimp were fed freshly hatched Artemia sp. 

(INVE Aquaculture, Inc., Salt Lake City, Utah, USA) at a rate of 5,000 Artemia sp. L
-1

 day
-1

.  

Beginning the first day of the nursery phase, shrimp were fed Zeigler Brothers, Raceway Plus 

Post-Larval Diet (Zeigler Brothers, Inc., Gardners, Pennsylvania, USA) with varying crumble 

sizes according to the size of shrimp.  This diet contained 50% protein, 15% fat, 1% fiber, 10% 

moisture, and 7.5% ash according to the manufacturer.  Beginning on day 23, Zeigler PL 40-9 

Vpak 1.5 mm diet was provided (40% protein, 9% fat, 3% fiber, 10% moisture, and 13% ash).  

On days 34 through 54, Zeigler Hyperintensive-35, 2.4 mm diet was provided (35% protein, 7% 

fat, 2% fiber, 12% moisture, and 15% ash).  During the nursery phase, shrimp were fed based on 

a percent of the assumed shrimp biomass, starting at 15% of biomass and gradually decreasing to 

8.8%.   

Experimental Systems and Design 
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At the end of the nursery phase shrimp were sampled using the methods described by 

Ray et al. (2011a), and weighed 1.22 ± 0.02 g (mean ± SEM).  At this time shrimp were 

enumerated by weight and 12,500 shrimp were placed into each of 9 production raceways.  

These raceways were identical to that used for the nursery phase, except that only 4 airlift 

devices were contained in each raceway, a 560-W water pump at each raceway helped to 

circulate and aerate the water, and the raceways were only filled to a depth of 0.26 m (25 m
3
 

volume) making the initial stocking density 500 shrimp m
-3

.  The water pump was connected to a 

5-cm diameter pipe that encircled the inside of each raceway.  At 10 locations throughout each 

raceway (Fig. 1) a 1.3 cm diameter pipe connected Venturi nozzles (Turbo-Venturi
®
, Kent 

Marine, Franklin, Wisconsin, USA) to the 5-cm diameter pipe.  Each Venturi was located just 

below the 5-cm diameter pipe.  Connected to the outflow of the Venturi was 1.3 cm diameter 

piping that extended down to approximately 3 cm above the bottom of the raceway before 

turning 90 degrees and extending out 14 cm parallel to the bottom of the raceway.  Each Venturi 

had tubing attached to the gas injection point which then attached to another pipe, 2.5 cm in 

diameter that circumvented the raceway.  This pipe had two valves to allow ambient air to be 

drawn in and a point where pure oxygen gas could be injected, allowing air, pure oxygen, or a 

combination of the two to be injected into the Venturi nozzles.   

The 5-cm diameter water pipe that circumvented each raceway supplied water to 4 spray 

bars.  Spray bars were 1.3-cm diameter pipes with 2, 2-mm diameter holes drilled in them, and 

the spray bars were located about 0.5-m behind the airlift mechanisms (Fig. 1).  Water from the 

spray bars contacted the water surface on both sides of the airlifts, as thick mats of surface sludge 

had accumulated in these areas during previous experiments.  The 5-cm diameter water pipe also 

supplied water to a 1.9-cm pipe that carried water to the settling chambers at each raceway.   
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This experiment was conducted during winter months at the University of Southern 

Mississippi’s Thad Cochran Marine Aquaculture Center (CMAC), located in Ocean Springs, 

Mississippi, USA.  To control temperature two 500,000 BTU boilers (RBI, Division of Mestek 

Canada, Inc., Ontario, Canada) heated fresh, clean water to 66⁰ C.  This water was continuously 

pumped through a central line that passed near each raceway.  Adjacent to each raceway a digital 

controller received a signal from a temperature probe submerged in the raceway.  The controller 

regulated a small pump that, when on, sent hot water from the central line through a 3.7-m long, 

8-bar, titanium heat exchanger located in each raceway.   

An 8-day “rest” period was initiated after moving the shrimp to the experimental 

raceways, allowing shrimp to recover from any stress incurred during stocking.  During this time 

the shrimp were kept in 25 m
3 

of 25‰ salinity water, temperature was maintained at 24⁰ C 

initially, and gradually increased to 28⁰ C.  The 9 raceways were each randomly assigned to 1 of 

3 treatments: a low salinity (10‰) treatment (LS), a medium salinity (20‰) treatment (MS), and 

a high salinity (30‰) treatment (HS).   

After the 8-day rest period, clean water was slowly added to the raceways to bring them 

to the correct salinity and depth.  Salinity was measured using a YSI Model 556 Handheld 

Instrument (YSI Incorporated, Yellow Springs, Ohio, USA).  Water at a salinity of 

approximately 20‰ was obtained from Davis Bayou, a tributary of The Mississippi Sound 

adjacent to the CMAC.  This water was bleached, then aerated and sodium thiosulfate was added 

to dechlorinate it.  Salinity was increased to approximately 35‰ using Fritz Super Salt 

Concentrate (Fritz Pet Products, Mesquite, Texas, USA) and sodium chloride (Morton
®
 Purex

® 

Salt, Morton
® 

Salt, Chicago, Illinois, USA).  Dechlorinated municipal water was used as a source 

of fresh water.  Combinations of fresh and salt water were used to reach the desired salinity in 
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each raceway.  This process was carried out over an additional 8 days, after which 50 shrimp 

from each raceway were weighed in groups of 10 to estimate mean individual shrimp weight and 

the experiment began; this was considered time point 0.   

Water Quality 

 At time point 0 water samples were collected, filtered with 0.7 µm pore size filters, and 

analyzed for Na, Mg, K, and Ca concentration.  These samples were sent to the Clemson 

Agricultural Services Laboratory (Clemson, South Carolina, USA) for analysis using inductively 

coupled plasma mass spectrometry.   

Twice per day, at approximately 0730 and 1600 h, temperature, dissolved oxygen (DO), 

pH, and salinity in the raceways were measured using the YSI Model 556 Instrument.  Once per 

week ammonia, nitrite, alkalinity, total suspended solids (TSS), volatile suspended solids (VSS), 

turbidity, and settleable solids were measured in each experimental raceway.  At time point 0, 

week 4, and week 8 nitrate concentration was measured in each raceway.  At weeks 1, 2, 4, and 6 

phosphate (orthophosphate) concentration was measured.  Five-day biochemical oxygen demand 

(BOD5) was measured at weeks 2 through 6, and chlorophyll-a concentration was measured at 

weeks 0, 3, 4, 7, and 8.   

Ammonia (TAN) was assessed using Hach method 8155 (Hach Company, 2003) and 

nitrite (NO2-N) was measured using the spectrophotometric procedure outlined by Strickland and 

Parsons (1972).  The concentration of NO3-N was determined using the chemiluminescence 

method described by Braman and Hendrix (1989).  The concentration of PO4 was measured 

using the PhosVer 3 method as outlined in Hach Method 8048.  Alkalinity was measured 

following the Potentiometric Titration to Preselected pH procedure outlined in section 2320 B by 

the APHA (2005).  BOD5 was measured using the procedure described in section 5210 B by the 
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APHA (2005), which includes a 5-day incubation period at 20⁰ C.  Chlorophyll-a extraction was 

performed according to the methods described by DeLorenzo et al. (2004).  Concentrations of 

chlorophyll-a were measured using the procedures outlined in section 10200 H by APHA (2005). 

TSS and VSS concentrations were measured following ESS Method 340.2 (ESS, 1993).  

Turbidity was measured in Nephelometric Turbidity Units (NTU) using a Micro 100 

Turbidimeter (HF Scientific, Fort Myers, Florida, USA).  Settleable solids was measured 

according to Section 2540 F (APHA, 2005). 

Systems Management 

 After checking salinity in all raceways each morning, dechlorinated municipal water was 

added to replace evaporation as needed.  The objective was to keep the water in each raceway 

within 0.5‰ salinity of the treatment salinity.   

 The morning pH readings were used to determine the amount of sodium bicarbonate to 

add to each raceway every day.  If the pH in a raceway was above 7.9 no NaHCO3 was added, 

7.9 > pH > 7.7 = 300g NaHCO3 added, 7.7 > pH > 7.5 = 500 g NaHCO3 added, 7.5 > pH = 1,000 

g NaHCO3 added. 

 Sucrose (Extra Fine Granulated Cane Sugar, Sysco
®
 Corporation, Houston, TX, USA) 

was added to each raceway three times per day between feedings, and through the night on 12-

hour belt feeders to facilitate heterotrophic bacterial assimilation of inorganic nitrogen.  The wet 

weight of feed added daily was multiplied by 50% to determine the amount of sucrose to add 

each day.  When concentrations of ammonia and nitrite were high, additional sucrose was added.  

Overall, the amount of sucrose added was 57.4% of the wet weight of the feed, resulting in a C:N 

ratio of inputs of 10.9:1, calculated using C and N levels in feed and sucrose. 
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 Each raceway was equipped with a 760-L settling chamber as described by Ray et al. 

(2011b).  The settling chambers were operated at a flow rate of 15 L min
-1

 continuously, except 

that once per week water flow was terminated for approximately one hour to allow thorough 

settling of particles.  A small submersible pump with a short hose attached was lowered into the 

top of the settling chambers to decant the water back to each raceway and leave the dark-colored 

settled material.  As the pump was lowered the color of the water being pumped to the raceway 

was monitored.  The settled material on the bottom of the chamber was then drained.   

Shrimp Culture 

For the first 9 days after shrimp were moved to the growout raceways, both the Zeigler 

PL 40-9 Vpak diet and the Zeigler Hyperintensive-35 diet were provided, after which only 

Zeigler Hyperintensive-35 diet was given.  Equal portions of feed were broadcast evenly 

throughout each raceway by hand four times per day at 0730, 1000, 1230, 1500 hrs.  At 1630 hr. 

feed was placed on two belt feeders for each raceway which delivered feed for 12 hours.  Each 

day 70% of the feed ration was delivered by hand and 30% was placed on the belt feeders.  

During the 8-day rest period and the 8-day salinity adjustment period feed rations were 40% of 

what they were during the experiment.  During the experiment feed rations were based on routine 

dip net sampling in each raceway.  Feed rations were calculated such that no uneaten feed could 

be found in the raceways 30 minutes prior to each feeding.  Each raceway received the same 

amount of feed at every feeding.  Shrimp weights were estimated once per week by weighing 

five groups of ten shrimp from each raceway; shrimp were grown in the experiment for eight 

weeks. 

Data Management and Analysis 
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 Data are presented as mean ± SEM, and in most cases the range is given in parentheses.  

The statistical software used for this study was Systat Version 13 (Systat Software, Inc., 

Chicago, Illinois, USA).  An alpha value of 0.05 was used to determine significant differences.  

 To standardize the comparison of Na, Mg, K, and Ca concentrations, the LS treatment 

data were multiplied by 3 and the MS treatment data were multiplied by 1.5; the data were then 

compared using a one-way ANOVA.  The concentration of DO, ammonia, phosphate, alkalinity, 

BOD5, VSS, settleable solids, and the turbidity data were all analyzed using a repeated measures 

(RM) ANOVA followed by pairwise comparisons.  Ammonia, VSS, and settleable solids data 

were transformed by calculating the log10 values of the data prior to analysis to conform to the 

normality assumption of the ANOVA.  Turbidity data were transformed by calculating the 

cosine.  Morning and afternoon temperature and pH data, and salinity, nitrite, nitrate, 

chlorophyll-a, and TSS data could not be transformed to fit the ANOVA assumptions, therefore a 

nonparametric Wilcoxon signed rank test followed by pairwise comparisons was used to analyze 

these data according to the recommendations of Zimmerman and Zumbo (1993).  The percent 

water exchanged data were arcsine transformed and analyzed using a one-way ANOVA.  The 

amount of seawater used per kg of shrimp, seawater used per raceway, and the cost of artificial 

salt for each treatment were analyzed using a one-way ANOVA.  Shrimp growth rate, FCR, final 

weight, biomass, and survival were analyzed using a one-way ANOVA. 

 

Results 

 During week 4 of this study the 5-cm pipe on one of the HS raceways broke during a time 

that no one was present.  This resulted in the water being drained, killing all of the shrimp in that 
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raceway.  Because this was a mechanical failure in the middle of the study no data from this 

raceway are included in the results.   

 During the last week of the study, one of the vertical water pipes in a LS raceway was 

removed in an attempt to clear blockage at the last Venturi in the water line.  When this occurred 

a large amount of thick, dark, sludge material poured into the raceway; due to the odor, it was 

suspected this material contained hydrogen sulfide.  Later that day many dead shrimp were found 

in this raceway, and a 5% water exchange was performed using clean 10‰ salinity artificial 

seawater made as described above.  The following day ammonia concentration was 2.0 mg TAN 

L
-1

 and nitrite was 3.5 mg NO2-N L
-1

.  On the third day, this raceway was harvested, 3 days 

before the others in the study.  A total of 1,366 dead shrimp, weighing 17.4 kg, were removed 

from the raceway over the course of three days; the remainder of the shrimp were alive at the 

time of harvest.  All water quality data from this raceway are included, aside from the last week.  

Because this event was directly caused by human error just prior to the end of the experiment, all 

shrimp production data are included in the reported results.  Shrimp production data from this 

raceway include only those shrimp that were alive at the time of final harvest because these were 

the only shrimp fit for sale.   

 The initial concentrations of major cations (standardized for salinity differences) are 

presented in Table 1.  The concentration of these ions correlated with salinity.   However, there 

were significant differences between LS and HS potassium and calcium values.   

 Temperature was maintained at 29⁰ C (Table 2) with little variability using the 

centralized heating system during this study.  There were significant differences in temperature 

between the treatments for both morning and afternoon measurements: MS > LS > HS, although 

differences in mean values were subtle (Table 2).   
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Dissolved oxygen (DO) was maintained at relatively consistent morning and afternoon 

concentrations.  There were significant differences between treatments with respect to morning 

DO concentration: HS > MS > LS.  With respect to afternoon DO concentration, there were 

significant differences between the LS and MS treatments and between the HS and MS 

treatments: HS, LS > MS (Table 2).   

 The pH was significantly higher in the LS treatment, followed by the MS treatment, and 

then the HS treatment.  Morning pH was relatively steady throughout the study; afternoon pH 

was less consistent (Fig. 2). 

 Salinity in the raceways was maintained at a steady level throughout the study and was 

significantly different between treatments. 

 The concentration of ammonia increased substantially in all but one HS raceway during 

week 5 of the study (Fig. 3a).  Ammonia concentration increased again in most raceways the last 

week of the experiment (Fig. 3a).  There were no significant differences in ammonia 

concentrations between treatments (Table 2).  Nitrite concentration increased to 1.4 and 1.5 mg 

NO2-N L
-1

 in two HS raceways during week 6.  Nitrite rose again in all but one LS and one MS 

raceway during the last week of the study (Fig. 3b).  Nitrite concentration was significantly 

greater in the HS treatment than in the LS treatment and there were no significant differences 

between the MS treatment and the other treatments (Table 2).  Nitrate concentration was 

generally low (Fig. 3c), and there were no significant differences in nitrate concentration 

between treatments.  

 The concentration of TSS was significantly higher in the HS treatment versus the LS and 

MS treatments: HS > MS, LS (Table 2).  Over the course of the first two weeks TSS 
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concentration decreased substantially in the raceways (Fig. 4a).  There were no significant 

differences between treatments with respect to the concentration of VSS (Fig. 4b). 

 The concentration of settleable solids was significantly greater in the HS treatment 

compared to the LS treatment (Table 2) and there were no significant differences between the 

MS treatment and any other treatment (Fig. 4c).  There were no significant differences between 

treatments with respect to turbidity (Fig. 4d).   

 There were no significant differences between treatments regarding 5-day BOD (Table 

2).  The concentration of chlorophyll-a started at approximately 200 µg L
-1

 just prior to the 

beginning of the study, and decreased to approximately 50 µg L
-1

 after the experiment started.  

There were no significant differences in chlorophyll-a concentration between treatments.  

 The mean volume of full salinity seawater (35‰) used per kg of shrimp produced in the 

LS, MS, and HS treatments was 104, 159, and 235 L, respectively (Table 3).  There were no 

significant differences among treatments with respect to the total volume of water used (52.4, 

52.3, 52.6 m
3
 respectively).  The estimated cost of artificial sea salts (assuming only artificial 

salts are used), based on those used at the CMAC, is also depicted in Table 3. 

 Because of the mortality event that occurred in one of the LS raceways, the shrimp 

production in that treatment was lower than the others (Table 4).  However, there were no 

significant differences in any shrimp production metric between treatments.  Growth rate (Fig. 5) 

was high and feed conversion ratio (FCR) was low (Table 4).  Harvested shrimp, including those 

in the problematic raceway, had long antennae, firm exoskeletons, and few lesions in the 

exoskeletons. 

 

Discussion 
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 This study helps to illustrate some of the benefits of maintaining relative consistency in 

water quality parameters and implications for commercial-scale shrimp production in biofloc 

systems.  Overall, shrimp production metrics were at acceptable and commercially relevant 

levels regardless of salinity.    

The water temperature during this study was apparently influenced little by solar input, 

even though the tanks were in greenhouses.  The significant differences in temperature between 

treatments was likely caused by the location of raceways with respect to the hot water delivery 

system.  The DO concentration during this study was relatively consistent, and was maintained at 

a high level to ensure this was not a source of stress for shrimp.   

 The intensive monitoring of pH and salinity and the regular inputs of sodium bicarbonate 

and fresh water resulted in consistent pH and salinity during this study.  The consistency in 

temperature, DO, pH, and salinity during this study may have contributed to the high shrimp 

production values obtained, as a more constant physical environment can help to minimize stress 

for aquatic animals (Stickney, 2005).   

 The cause of lower pH with increasing salinity in this study is unclear.  In seawater, pH 

typically increases with higher salinity because more carbonate and bicarbonate ions are present, 

contributing to a higher pH buffering capacity (Libes, 2009).  Saraswat et al. (2011) found that in 

both laboratory and estuarine experiments, as salinity increased so did pH.  However, Decamp et 

al. (2003) cultured L. vannamei in 1700-L minimal-exchange biofloc systems at 50 shrimp m
-2

, 

with treatments of 9, 18, and 36‰ salinities, and found that pH was significantly lower as 

salinity increased.  These authors attributed the relationship between salinity and pH to 

potentially increased photosynthesis in the lower salinity treatments.  This may have been the 

case in the current study as well, although photosynthetic oxygen production was not measured.  



18 
 

Because no significant differences in chlorophyll-a concentrations were found, there were likely 

no substantial differences in algal abundance; however, the taxonomic composition of algae may 

have differed.  Higher concentrations of CO2 and consequently the weak acid H2CO3 may have 

been present as salinity increased, possibly due to increased shrimp respiration.   

 The ammonia spike during week five (Fig. 3a) of the study was followed by a sharp 

decline in BOD5 concentration the following week.  The BOD5 drop may have been an 

indication that a portion of the microbial community died, and the decomposition of those 

microbes could have contributed to increased ammonia concentrations.   

 At week zero, chlorophyll-a concentration was much higher than after the study started.  

This is likely a result of a shift from dominance of algae to greater dominance by heterotrophic 

bacteria after the intensive additions of feed and sucrose began.  Such a shift in microbial 

dominance was also noted by Browdy et al. (2001).  The mean chlorophyll-a concentrations 

reported in the current study are approximately 15% of what was reported by Ray et al. (2012b) 

and 20% of that reported by Venero et al. (2009); both groups of authors operated biofloc 

systems with no supplemental carbohydrate additions.  However, the chlorophyll-a 

concentrations reported here are more than five times higher than what was reported by Moreno-

Ostos et al. (2008) in oligotrophic waters as a comparison. 

 Table 3 helps to illustrate the substantial savings in seawater by growing marine shrimp 

at lower salinities.  At inland aquaculture facilities, these water savings translate directly to cost 

savings when considering the price of artificial sea salts.  The low rate of water exchange during 

this study (Table 3) also helps to lower seawater use and justify inland shrimp aquaculture.  

Water was only exchanged as a result of solids removal.  Several similar trials conducted at the 
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Oceanic Institute (OI) in Hawaii, USA were reported to have used 187, 172, and 402 liters of 

seawater per kg of shrimp (Otoshi et al., 2007). 

 Although there were no significant differences in shrimp production between treatments, 

the substantially lower production in the LS treatment would translate to less profit for a 

commercial shrimp operation.  It is unclear whether the accidental introduction of anaerobic 

material would have caused the same level of mortality in the higher salinity treatments.  

However, it is clear that the estimated cost of artificial salts was 49.7% lower in the LS treatment 

compared to the MS treatment, which would translate into higher profit margins for farmers.   

 In summary, the production goals, and availability and cost of sea salt should be 

considered when deciding the salinity at which to culture shrimp.  Fluctuations in ammonia and 

nitrite are common in intensive biofloc-based systems and should be considered as well.  This 

study indicates that the three salinities evaluated can result in comparable shrimp production in 

commercial-scale biofloc systems. 
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Table 1. The initial concentrations of major cations (LS values multiplied by 3, and MS values 

multiplied by 1.5 to standardize for salinity differences).  Concentrations are reported in mg L
-1

 

as mean ± SEM.  Different superscript letters indicate significant differences between treatments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment

Low Salinity Medium Salinity High Salinity

Na
+ 8620 ± 184 8426 ± 183 8236 ± 82

 Mg
2+ 1017 ± 10 1009 ± 10 1006 ± 6

K
+

 354 ± 2
a

  346 ± 5
ab

 335 ± 3
b

Ca
2+

 312 ± 4
a

  314 ± 4
ab

 331 ± 1
b



26 
 

Table 2. Water quality parameters during the 8 week shrimp production experiment.  Data are 

presented as mean ± SEM (range), and different superscript letters in a row indicate significant 

differences.  

 

 

 

 

 

 

 

Treatment

Low Salinity Medium Salinity High Salinity

Temperature (⁰C)

               AM 29.0 ± 0.0 (26.5 - 29.6)
a

29.1 ± 0.0 (26.3 - 29.6)
b

28.8 ± 0.1 (26.1 - 29.5)
c

               PM 29.1 ± 0.0 (27.6 - 30.1)
a

29.2 ± 0.0 (27.7 - 30.0)
b

29.0 ± 0.0 (27.5 - 30.0)
c

Dissolved Oxygen (mg L
-1

)

               AM 8.6 ± 0.1 (6.7 - 11.1)
a

8.7 ± 0.1 (6.6 - 12.5)
b

8.9 ± 0.1 (6.0 - 12.9)
c

               PM 7.9 ± 0.1 (5.8 - 10.8)
a

7.7 ± 0.1 (5.2 - 10.0)
b

8.0 ± 0.1 (4.5 - 15.0)
a

pH

               AM 7.9 ± 0.0 (7.7 - 8.2)
a

7.8 ± 0.0 (7.6 - 8.0)
b

7.7 ± 0.0 (7.4 - 8.0)
c

               PM 7.9 ± 0.0 (7.1 - 8.3)
a

7.7 ± 0.0 (7.4 - 8.2)
b

7.7 ± 0.0 (7.3 - 8.1)
c

Salinity (‰) 10.3 ± 0.0 (9.2 - 11.0)
a

20.2 ± 0.0 (18.2 - 21.2)
b

30.2 ± 0.0 (27.1 - 31.9)
c

Ammonia (mg TAN L
-1

) 0.8 ± 0.2 (0.0 - 4.0) 1.2 ± 0.4 (0.0 - 8.0) 0.7 ± 0.3 (0.0 - 4.4)

Nitrite (mg NO2-N L
-1

) 0.3 ± 0.1 (0.0 - 3.4)
a

0.4 ± 0.2 (0.0 - 3.5)
ab

0.6 ± 0.2 (0.0 - 3.3)
b

Nitrate (mg NO3-N L
-1

) 1.4 ± 1.0 (0.0 - 8.7) 0.3 ± 0.2 (0.0 - 2.0) 0.6 ± 0.3 (0.0 - 1.5)

Phosphate (mg PO4 L
-1

) 2.4 ± 0.3 (0.6 - 3.8) 2.6 ± 0.3 (1.4 - 4.4) 2.0 ± 0.2 (0.8 - 3.3)

Alkalinity (mg CaCO3 L
-1

) 310 ± 15 (207 - 442) 320 ± 19 (200 - 509) 322 ± 25 (205 - 500)

BOD5 (mg BOD5 L
-1

) 180 ± 12 (72 - 243) 164 ± 9 (87 - 211) 171 ± 17 (65 - 238)

Chlorophyll-a (µg L
-1

) 80 ± 16 (24 - 200) 85 ± 18 (24 - 240) 84 ± 16 (40 - 240)

TSS (mg L
-1

) 263 ± 14 (185 - 500)
a

286 ± 19 (175 - 510)
a

330 ± 30 (210 - 645)
b

VSS (mg L
-1

) 198 ± 14 (95 - 460) 189 ± (35 - 370) 191 ± 24 (90 - 490)

Turbidity (NTU) 74 ± 7 (49 - 211) 64 ± 4 (35 - 126) 61 ± 6 (41 - 127)

Settleable Solids (ml L
-1

) 7 ± 1 (3 - 18)
a

9 ± 1 (4 - 21)
ab

9 ± 1 (4 - 21)
b
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Table 3. Amount of salt water (adjusted to full strength (35‰) seawater) used per raceway, water 

exchanged, and the cost of artificial salt used per raceway.  Data are presented as mean ± SEM 

(range), and different superscript letters in a row indicate significant differences. 

 

*Cost of artificial sea salt is based on using one 36 kg bag of Morton brand NaCl (Morton
®

 

Purex
® 

Salt, Morton
® 

Salt, Chicago, Illinois, USA) and one 19-L bucket of Fritz brand Super Salt 

Concentrate (Fritz Pet Products, Mesquite, Texas, USA) to make each 1,514-L of 35‰ water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  Treatment

LS MS HS

Total 35‰ Seawater Used per Raceway (m
3
) 15.0 ± 0.1

a
29.8 ± 0.0

b
45.1 ± 0.0

c

35‰ Seawater Used per kg Shrimp (L kg
-1

) 104 ± 14
a

159 ± 5
b

235 ± 4
c

Total Water Exchange (%) 5.0 ± 0.3 4.5 ± 0.1 5.2 ± 0.0

Cost of Artifical Sea Salt per Raceway (USD)* 653.8 ± 2.2
a

1300.8 ± 0.7
b

1964.0 ± 0.2
c



28 
 

 

Table 4. Shrimp production in the three treatments.  Data are presented as mean ± SEM.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Treatment
LS MS HS

Growth Rate (g week
-1

) 1.8 ± 0.1 2.0 ± 0.0 2.0 ± 0.1

FCR 1.6 ± 0.2 1.2 ± 0.0 1.2 ± 0.0

Mean Weight (g) 17.8 ± 0.9 19.3 ± 0.2 19.0 ± 0.5

Biomass (kg) 149.5 ± 19.2 188.2 ± 5.7 191.5 ± 3.5

Biomass volume
-1

 (kg m
-3

) 3.0 ± 0.4 3.8 ± 0.1 3.8 ± 0.1

Survival (%) 68 ± 10 78 ± 2 81 ± 1
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Figure 1. The configuration of each of the 9 experimental raceways used for this study. 

Figure 2. Mean morning (a) and afternoon (b) pH.   

Figure 3. Concentrations of ammonia (a), nitrite (b), and nitrate (c).  Data points are treatment 

means and error bars are 1 standard error around the mean. 

Figure 4. Concentrations of total suspended solids (a), volatile suspended solids (b), and 

settleable solids (c), as well as turbidity (d).  Data points are treatment means and error bars are 1 

standard error around the mean. 

Figure 5. Shrimp weight throughout the 8 week production study.  Data points are treatment 

means and error bars are 1 standard error around the mean.   
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