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NUMERICAL COMPUTATIONS 
OF A TWO-LAYER MODEL FOR ESTUARIES 

Kang-Ren Jin 
Department of Civil Engineering 

Mississippi State University, MS 39762 
and 

Donald C. Raney 
Department of Mechanical Engineering 

The University of Alabama, AL 35487-0276 

ABSTRACT: The research described in this paper is aimed at improving the predictive 
capability of numerical models for estuarine circulation. An improved two-layer model has 
been developed, which is applicable to the entire estuary including areas near the river mouth 
and the estuary inlet. This model is applied to Apalachicola Bay, Florida. The calibration 
and verification of the numerical model is accomplished with available prototype data. The 
horizontal density gradient terms have been added to the model and provide significantly 
improved salinity predictions near the river mouths. A theoretical approach to the internal 
wave boundary condition has been developed in this two-layer model. 

Since early times, estuaries and river 
mouths have been uti.lized in many ways, 
for example, as fishery ports, navigation 
harbors, suppliers of water for industries, 
etc. Recently, with a growth of utilization 
of the estuaries and river mouths, environ­
mental problems have attracted public 
attention. Saline intrusion has long been 
recognized as a difficulty to agriculture, 
water supply systems and certain indus­
tries. Sewage and waste along with oil 
spills have more recently become of ut­
most concern as a result of possible 
impact on human health. 

Over the past 20 years, numerical 
modeling of estuaries has become an 
established tool for scientist. A variety of 
numerical models are available based on 
both finite difference and finite element 
formulations of the basic governing equa­
tions: for example, two-dimensional depth 
averaged models (Raney, Huang, and 
Urgun, 1987), three-dimensional hydro­
dynamic models (Davies, 1981), two-layer 
shallow-water models (Vreugdenhil, 1979), 
and two-layer hydrodynamic and salinity 
models (Jin and Raney, 1989). The two-
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layer simulation model is potentially one 
of the most accurate and efficient tools 
for addressing circulation problems in 
estuaries. 

A two-layer hydrodynamic and salin­
ity model is used to examine the flow 
parameters in the upper and lower layers 
of a stratified estuary and to compare the 
difference between these two layers. This 
research lays the foundation for the 
development of an improved system for 
numerical simulation of estuarine hydro­
dynamics and salinity. 

Pritchard (1971) indicates that den­
sity gradients are important in the James 
Estuary. Smith and Cheng (1987) applied 
horizontal density gradients in a model of 
Suisum Bay, California. Their papers illus­
trate that the exclusion of horizontal den­
sity gradient terms would lead to over­
estimation of freshwater inflow for a fixed 
set of model boundary conditions. Recent 
experiences with hydrodynamic salinity 
models have demonstrated that obtaining 
an accurate salinity distribution in an 
estuary may require consideration of 
horizontal density gradients (Raney and 
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Jin, 1988). The importance of density 
gradients in ocean circulation is well 
established but these terms have often 
been neglected in estuaries. 

The horizontal density gradients 
have been formulated in a two-layer 
hydrodynamic and salinity model. The 
numerical model is applied to Apalachi· 
cola Bay, Florida (Figure 1), both with and 
without horizontal density gradient terms 
included. Resulting salinity distributions 
in the bay are presented in a graphical 
format, and comparisons are made to 
quantify the effect of these terms. The 
model has been calibrated and verified 
using prototype data collected in Septem­
ber 1983 and March 1984, respectively by 
Continental Shelf Associates, Inc. and the 
U.S. Army Corps of Engineers, Mobile 
District (USCEM). Sufficient prototype 
data are available to demonstrate that the 
numerical model reproduces the behavior 
of the bay system when subjected to vari· 
ations in tidal elevation, salinity, river 
inflow, and wind boundary conditions. 

ST. VINCENT ISLAND 
APALACHICOLA 

THE MODELING SYSTEMS 
AND BASIC EQUATIONS 

The hydrodynamic equations used in 
this model are derived from the classical 
Navier-Stokes equations and the conti· 
nuity equation in a Cartesian coordinate 
system. For turbulent flow in Cartesian 
coordinate, these equations take the 
form: 

p(u~ + v~ + w~ + ~)- pfv = ax ay az at 
-~+k(a 2u+a 2u+a 2u) (1) 

ax ax2 ay2 az2 

p(u a v + v~ + w~ + ~) + pfu = 
ax ay az at 

- ~ + k( a 2v + a 2v + a 2v) (2) 
ay ax2 ay2 az2 

p(uaw +vaw +waw aw)-pg= 
ax ay az at 

_ ap +k(a
2
w + a2w + a2w) (3) 

a z a x2 a y2 a z2 

GULF 
OF 

MEXICO 

Figure 1. Apalachicola Bay System: Includes Apalachicola Bay, St. Vincent Sound, East Bay, St. George 
Sound. 
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The usual two-layer hydrodynamic 
equations are obtained by assuming: that 
the fluid of each layer is incompressible 
and homogeneous; that vertical accelera­
tions of the fluid of each layer are negli­
gible; and the horizontal flow is reason­
ably uniform over the fluid depth of each 
layer. The three-dimensional equations 
are then integrated over the fluid depth of 
each layer and forced to satisfy the appro­
priate boundary conditions. The lower 
layer depth is from the estuary bottom to 
the interface between the two layers. The 
upper layer depth is from the interface to 
the water surface. The interface location 
is defined at d2, and d2= h2+ 172 as shown 
in Figure 2. 

Relative to the coordinate system in 
Figure 2, the model differential equations 
become: 

Upper Layer 
Continuity Equation: 

817 1 _ a172 + 8(U1d1) + a(~d1) =0 (5) 
at at ax ay 

0~------~~--~~--------~Y 

Figure 2. Cartesian Coordinate System for a Two­
Layer Hydrodynamic Model. 

Momentum Equations: 

a U1 + u
1 
a u1 + ~ a u1 = f~- g a 111 

at ax ay ax 
+ Twind)x _ Tinter)x + K(a 2U1 + a

2
U1) 

p1d1 p1d1 a x2 a y2 
......... x-direction (6) 

a~ +U a~ +V a~= -fU-ga171 
at 1ax 

1
8y 

1 ay 
+ Twind)y- Tinter)y + K( a 2~ + a2~) 

p1d1 P1d1 a x2 a y2 
......... y-direction (7) 
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Lower Layer 
Continuity Equation: 

8172 + a(U2d2) + a(V2d2) =0 (8) 
at ax ay 

Momentum Equations: 

a u2 +U2 a u2 +V2 a u2 =fV2-gP1 a171 
at ax ay P2 ax 

_ g a 172(1- p 1) + T;n~er>x _ T bottom)x 

ax P2 P2d2 P2d2 

K( a2U2 a2U2) d' t' (9) + --+-- ........ x- 1rec 1on ax2 ay2 

(10) 

Additional equations are necessary 
to represent the stress condition at the 
fluid surface, bottom and interface be­
tween the two layers (Liu and Leendertse, 
1979). 

Wind stress: Twind) = 2.15CaPaWcx/ 
Pw Pw 

Where, 
c : Chezy Coefficient 

Ca : Drag Coefficient 
d : Total Depth of the Layer 
f : Coriolis Parameter 
g : Gravitational Acceleration 
h : Depth of the Layer 
K: Kinematic Eddy Viscosity 
k : Eddy Viscosity 
p: Pressure 

(13) 
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t : Time 
U, V, W: Mean Velocity Components 

in the x, y, z Direction 
U, V, w: Velocity Components in the 

x, y, z Direction 
X, y, Z: Rectangular Coordinate 

Variables 
t]: Vertical Deviation of each 

layer 
v: Coefficient of Interfacial 

Friction 
p: Density 

Pa: Density of Air 
Pw: Density of Fresh Water 

Tbottom : Bottom Stress 
Tinter: Interfacial Stress 
Twind: Wind Stress 

Subscripts 1 and 2 represent the upper 
and lower layers. 

The conservation of salt equation 
can be expressed as: 

as 
a (dS) a(duS) a(dvS) a(d Dx 8)() 

at + ax + ay - ax 

as a(dDy-a ) • 
---><-Y1- -dS=O (14) ay 

In this equation, Sis salinity, and dis total 
depth of each layer. Dx and Dy are the 
mixing coefficients of salt. 

ADDITION OF 
SALINITY GRADIENT TERM 

The salinity equation and hydro­
dynamic equation are coupled through 
horizontal density gradient terms. These 
terms for the upper layer can be approxi­
mated as a salinity gradient (Raney and 
Jin, 1988), then; 

j_~=g.fu:h +j_g_(d) [~]as (15) 
P1 ax ax 2p1 1 as a x 

In a similar manner, the density 

gradient terms can be obtained for the 
lower layer. The variation of density with 
salinity is a known physical property. 
Thus, the horizontal salinity gradient 
terms can be represented by adding the 
underlined terms to previous model 
equations. 

BOUNDARY CONDITIONS 

The boundary conditions for this 
two-layer model are open boundaries and 
water-land boundaries. For the water-land 
boundaries, the assumption is that of "no 
flow" normal to the boundary. Open boun­
daries define the computational cell rows 
or columns exiting the grid. At these 
boundaries water levels or flow rates are 
prescribed as functions of location and 
time for both layers. 

For the lower layer, the elevation 
boundary condition is an internal wave. 
Yoshida and Kashiwamura (1976) describe 
the mechanism of the two-layer flow 
which varies in response to the tide with 
an internal wave driving the lower layer. 
If one expresses the tidal elevation at the 
upper layer boundary by 

t] 1=Acos (ot+e) (17) 

where, A is constant and e~1. Then, the 
approximate form for the internal wave 
applied to the lower layer can be ex­
pressed as 

t] 2 =(1-~) (b0 +~t+b2F+ 
C,/ 

where C2,,; is a propagation velocity of 
the wave. 

o ... = g(d1+d2)±gy (d1+d2)2-4ed1d2. (19) 

2 

The polynomial coefficients b0, ~. b2, b3, 

b4, b5, and b6 can be determined by curve 
fitting techniques using a non-linear least 
square algorithm. Figure 3 illustrates the 
relationship between an upper layer tidal 
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boundary condition and the related inter­
nal wave applied as a boundary condition 
to the lower layer. 

2. 00 
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TIDAL AND INTERNAL BOUNDARY C. 

Figure 3. Tidal and Internal Wave Boundary 
Conditions. 

SOLUTION TECHNIQUE 

To solve the governing equations, a 
finite difference approximation of the 
equations (Roache 1972) and an Alter­
nating Direction Implicit technique 
(Anderson, Tannehill and Pletcher 1984) 
are employed. The solution scheme is 
similar to that proposed by Leendertse 
(1970, 1971). A space-staggered scheme 
(Raney, Huang, and Urgun, 1987) is used 
in which velocities, water-level displace­
ment, salinity, Chezy coefficient, and total 
water depth are defined at different loca­
tions within a grid cell as shown in Figure 
4. Central finite differences are used for 
evaluating all derivatives in the governing 
equations. 
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r---------------------------~Y 

k-1 k+ 1 

'. J J-1 
T I 

·U····¢-····Q-····¢··-·· :r· 
' ' : : 

1 
• J 

' 

- ~-···¢--··-{ -----¢-····Q--
1 I 
I I 

.l I 

--*"--\7---li<-....Q.-4- J + 1 T 1 
0 WATER DEPTH ,d 
X WATER LEVEL DISPLACEMENT. 1) 

0 VELOCITY IN THE X DIRECTION o u 

X \1 VE LOCil Y IN THE Y Dl RECTION o • 

Figure 4. Grid System and Variable Definition 
Locations. 

A high resolution numerical model is 
desirable with particular emphasis on 
areas near passes, channels, and other 
critical features. This is accomplished by 
applying a smoothly varying grid tech­
nique (Wanstrath, Whitaker, Reid, and 
Vastand 1976). 

APALACHICOLA BAY SYSTEM 

The test case for this model is the 
Apalachicola Bay System. Situated on the 
Florida Panhandle, the Apalachicola Bay 
System consists of a barrier island con­
tained estuary system. The principal em­
bayment is Apalachicola Bay, bounded by 
St. Vincent Sound to the west, East Bay 
to the north, and St. George Sound to the 
east. These waters comprise an integral 
estuarine system illustrated in Figure 1. 

The approximate dimensions of the 
Apalachicola Bay System are listed as 
follows, 

Length Width Area 
(km) (km) (km 2) 

St. Vincent Sound 14.49 3.22 46.66 
East Bay 8.05 4.83 44.07 
St. George Sound 17.71 6.44 124.42 
Apalachicola Bay 19.32 9.66 199.59 

St. Vincent and St. George are barrier 
islands separating the embayment from 
the Gulf of Mexico. Access to the Gulf of 

5

Jin and Raney: Numerical Computations of a Two-Layer Model for Estuaries

Published by The Aquila Digital Community, 1991



6 Jin, Kang-Ren, and Donald C. Raney 

Mexico is provided by Indian Pass, West 
Pass, Sikes Cut, and the northeast end of 
St. George Island. All of the openings are 
natural except Sikes Cut. Sikes Cut was 
dredged across St. George Sound in 1954. 
The bay system is very shallow with an 
average depth of 2.44 meter. 

The finite difference grid was con­
structed using a 1:48,000 scale nautical 
chart. The chart was based upon a bathy­
metric survey made during September 
1983 and March 1984. Bathymetric data 
were digitized and the best average depth 
was calculated for each finite difference 
cell. The Manning n friction values from 
bottom materials (mud, sand, weeds, etc.) 
were also digitized and interpolated in a 
similar manner. 

The resulting finite difference grid 
was 82x50 cells for a total of 4100 cells. 
The geometry for the finite difference 
cells is shown in Figure 5. Smaller cells 
were used in areas near passes opening 
to the Gulf of Mexico, near the Gulf Intra­
coastal Waterway Channel, and near the 
inner bar channel. Similarly, in areas 
where the bay geometry or depths were 
changing rapidly, or other critical features 
exist, smaller cells were also used. Larger 

• 1'-

I 

- -~~ --

cells were used in East Bay and other 
areas of the bay where geometry and 
bathymetry were reasonably simple or 
constant. 

At all computational boundary open­
ings to the Gulf of Mexico, a time depen­
dent tidal and salinity boundary condition 
was specified. At the river inflows, volu­
metric flow rate and salinity boundary 
conditions were specified. The time 
dependent freshwater input into the bay 
was modeled by Apalachicola River, St. 
Marks River, and East River inflows. A 
wind shear stress based upon the time 
varying wind velocity was applied to each 
finite difference cell. 

MODEL CALIBRATION 
AND VERIFICATION 

During two 30-day periods, prototype 
data from Apalachicola Bay System were 
collected for calibration and verification 
of the numerical model. Velocity, salinity, 
and bathymetric data were collected by 
Continental Shelf Associates, Inc. while 
the National Oceanic and Atmospheric 
Administration, National Ocean Service 

1\. 
I\' !},_ 
1-" 

pv 

Ill -~ 
'---' 1 mile 
,....-.., 1 km 

Figure 5. Finite Difference Grid in Apalachicola Bay, Florida. 

6

Gulf of Mexico Science, Vol. 12 [1991], No. 1, Art. 1

https://aquila.usm.edu/goms/vol12/iss1/1
DOI: 10.18785/negs.1201.01



(NOS) provided the wind and tidal data. 
Data on fresh water inflow into the bay for 
the time period of interest were obtained 
from the U.S. Department of Interior, Geo­
logical Survey (USGS). The data locations 
are indicated as SG1, SG2 ... SG10 in 
Figure 5. In addition, the USCEM with the 
assistance of the USGS and Florida 
Department of Environmental Regulation, 
collected salinity data for 24-hour periods 
during September 14-15, 1983, and March 
8-9, 1984. The data locations are indicated 
as G1, G2 ... G9 in Figure 6. 

The time period September 14-15, 
1983 was used as the calibration condi­
tion. Appropriate bathymetric and bottom 
friction data were determined for each 
finite difference cell of the model. Proto­
type surface elevation and salinity data 
were applied as boundary conditions at 
each computational boundary of the 
model opening to the Gulf of Mexico. 
Initial conditions were established for the 
model and the model was allowed to 
"warm-up" for a period of time prior to the 
actual period of calibration. The warm-up 
period is necessary to allow time for the 
model to minimize errors associated with 
incorrect starting conditions. After allow­
ing the model to run for the calibration 
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period, model results were compared with 
prototype data. Model parameters (fric­
tion, depths, diffusivity, etc.) and initial 
conditions were adjusted appropriately 
and the model rerun. This process was 
continued until the model produced 
results which agreed with prototype data 
within an acceptable degree of accuracy. 
The range of the Manning "n" friction 
coefficient was 0.023-0.03. Van Der Kreeke 
(1988) discussed dispersion coefficients 
and the variation in directions parallel and 
perpendicular to the main current direc­
tion. Values predicted by existing formula 
are shown to vary widely and yield at best 
an order of magnitude approximation. In 
this study, a constant value of 15 fF/sec 
was used in both x and y directions. The 
range of the depth is 0.5-7.1 meter, but the 
average depth is about 2.44m. The Chezy 
coefficients are calculated from the Man­
ning "n" friction values. The initial con­
dition of salinity was determined for each 
finite difference cell by interpolating 
among the available prototype data. The 
salinity output during initial phases of the 
calibration process (Raney, Huang, and 
Urgun 1987). 

Simulation results are presented 
after the numerical results have stabilized 

Figure 6. Prototype Data Collection Stations in Apalachicola Bay System. 
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8 Jin, Kang-Ren, and Donald C. Raney 

for each cycle. For this study, modeling 
results are presented after three tidal 
cycles. Some calibration results at gage 
point locations for the two-layer hydro­
dynamic salinity model run are presented 
in Figures 7 thru 21. Results are presented 

2.00 
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0 
z 1. 40 
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Figure 7. Surface Elevation at Station SG3 for 
Calibration Condition. 

for calculations both with and without 
horizontal density gradient terms. The sur­
face elevation and velocity results are not 
changed significantly by the addition of 
the horizontal density gradient terms. 
Thus, surface elevation and velocity 
results are presented only for the con­
ditions without density gradient terms. 
There are very good agreement of surface 
elevation and velocity between prototype 
data and numerical result. For example, 

2.00 
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Figure 9. Velocity at Station SG1 for Calibration 
Condition. 

Figures 7 and 8 present the surface eleva­
tion without horizontal density gradient 
terms. The average difference is about 
1.8 em. Velocities without horizontal den­
sity gradient terms are presented in 
Figures 9 and 10. The average difference 

2,00 
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Figure 8. Surface Elevation at Station SG7 for 
Calibration Condition. 

is about 7 em/sec. Salinity results with 
and without horizontal density gradient 
terms are presented in Figures 11 thru 13. 
In Figures 9 and 10, "MODEL UP" and 
"MODEL LO" are the model velocity 
results for the upper and lower layers 
without the horizontal density gradient 
terms. The curves labeled "SURFACE", 
"BOTTOM", and "MIDDEPTH" are proto­
type data in Figures 9 thru 13. "MODEL 1 
UP" is the model salinity results for the 
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Figure 10. Velocity at Station SG5 for Calibration 
Condition. 

8

Gulf of Mexico Science, Vol. 12 [1991], No. 1, Art. 1

https://aquila.usm.edu/goms/vol12/iss1/1
DOI: 10.18785/negs.1201.01



4e 

40 1-
e----o MODEL 1 UP 

~MODEL1 LO 

3e 1-- ~SUFIFACE 

;: 
30 Q 1-- H---------+4- MIDDEPTH 

~ +-----+ BOTTOM 
2e 

> 
>-
H 20 
z 
H 
~ 15 • w 

10 

1""--v ~"">- ,-+---... :I I 
lr-~ 
~ p~ 

,__ b:= v ··~ 

. .r v r\i " A L'L. I~ 
a 

&.< ~ P\ (,,._ -" 

I ~ t!l !if 
1 o 12 14 1 a 18 20 22 2 4 2 4 a a 1 

HOUR OF CAY (9/14/83-9/1~/83) 

GAGE G6 

Figure 11A. Salinity at Station G6 of MODEL 1 for 
Calibration Condition. 

> 
>-

45 

40 

3" 

2!5 

H 20 
z 
H 

~ H~ 
w 

10 

0 

r- G-------€1 MODEL2 UP 

~MODEL2 LO 

f- ~SUF=IFACE 

f- M------1+ Ml:DDEPTH 

-1-------+ 8 0 T TOM 

~ '/" .L 
~ ~ 0>-

_.,. &:,., v v \ }< 
~ 

~ 

"' 
~ 

['.L jjJ ~ 

~ ~ IP ..... 
~ -lJ 

f-+--p 
1 o 12 1 4 1 a 18 20 22 2 4 2 4 a a 1 a 

HOUR OF DAY (9/14/93-9/15/83) 

GAGE GB 
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upper layer without the horizontal density 
gradient terms. "MODEL 1 LO" is the 
model salinity results to the lower layer 
without the horizontal density gradient 
terms. "MODEL 2 UP" is the model salinity 
results for the upper layer with the hori­
zontal density gradient terms. "MODEL 2 
LO" is the model salinity results for the 
lower layer with the horizontal density gra­
dient terms. 

Overall, the calibration results are 
reasonable. At most gage locations the 
numerical model results are in remarkable 
agreement with prototype data. In the 
region around G6 (Figure 11A and 11B), 
SG6 (Figure 12) and SG8 (Figure 13), large 
salinity gradients existed and salinity 
changed appreciably over relatively short 
distances. It is a very dynamic area due 
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to its location relative to the main river 
inflow. The model results are improved by 
the addition of the horizontal density gra­
dient terms. The most significant salinity 
variations occur near the exit of East Bay. 
For example, G6 (Figures 11A and 118) is 
the gage station near the mouth of East 
Bay. Figure 11B shows the significant 
improvement after adding the horizontal 
density gradient terms. Two other gage 
stations (SG6 and SG8) are also near the 
exit of the East Bay. The "MODEL 2" 
results of these two gages (Figures 12 and 
13) also match the prototype data very 
well. The two-layer hydrodynamic salinity 
model (with horizontal density gradient 
terms) is sufficient to illustrate this 
physical phenomenon, because this 
formulation couples the salinity equation 
and hydrodynamic equations through the 
density gradient terms. 
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Figure 12. Salinity at Station SG6 for Calibration 
Condition. 
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Figure 13. Salinity at Station SG8 for Calibration 
Condition. 
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Salinity contours, based on MODEL 1 
and MODEL 2 results, are presented for 
both layers in Figures 14 thru 21 at low 
tide and high tide for the calibration 
period. The movement of the salinity con­
tours over the calibration period appears 

consistent with the primary driving forces: 
tidal elevations and river inflow. At low 
tide (Figures 14 thru 17), the total river flow 
increased from 35,000 cfs to over 40,000 
cfs and the higher salinity levels are 
pushed away from the fresh water inflow 

Figure 14. Salinity Contours of the Upper Layer at the Low Tide- Without Horizontal Density Gradient Terms. 

Figure 15. Salinity Contours of the Lower Layer at the Low Tide- Without Horizontal Density Gradient Terms. 

Figure 16. Salinity Contours of the Upper Layer at the Low Tide· With Horizontal Density Gradient Terms. 
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Figure 17. Salinity Contours of the Lower Layer at the Low Tide· With Horizontal Density Gradient Terms. 

Figure 18. Salinity Contours of the Upper Layer at the High Tide· Without Horizontal Density Gradient 
Terms. 

Figure 19. Salinity Contours of the Lower Layer at the High Tide· Without Horizontal Density Gradient Terms. 

Figure 20. Salinity Contours of the Upper Layer at the High Tide- With Horizontal Density Gradient Terms. 
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Figure 21. Salinity Contours of the Lower Layer at the High Tide- With Horizontal Density Gradient Terms. 

locations. Observe that the 2-5 ppt water 
was pushed completely out of East Bay 
of the upper layer (Figure 14). At high tide, 
the surface elevations in the bay increase, 
and the salinity contours reflect the move­
ment of the higher salinity water back into 
areas near the fresh water inflow. Observe 
that the 2-5 ppt water of the upper layer 
has return to East Bay in Figures 18 and 
20. Even the 10-15 ppt water of the lower 
layer has returned to East Bay at high 
tide, and the bay system has a relatively 
high salinity level with 10 to 15 ppt water 
extending up into some areas of East Bay 
in Figure 21. 

The period March 8-9, 1984, was used 
as the verification condition. The basic 
model parameters established in the 
calibration process were fixed and only 
tide, wind, and river boundary conditions 
were changed for the verification run. 

The surface elevation and velocity 
results are not changed significantly by 
the addition of the horizontal density 
gradient terms for the verification period. 
Surface elevation and velocity results are 
presented only for the without density 
gradient terms conditions. For example, 
Figure 22 presents the surface elevation 
without horizontal density gradient terms. 
Velocities without horizontal density 
gradient terms are presented in Figure 23. 

Salinity results with and without 
horizontal density gradient terms are 
presented in Figures 24 thru 25. In many 
cases the salinity changes from 2 ppt to 
10 or 15 ppt within a few thousand meters. 
In these regions very large salinity 
gradients exist. The addition of the 
horizontal density gradient terms pro­
duces significantly improved salinity 
results in regions of high salinity gradient. 
Results at SG8 (Figure 24), and G6 (Figure 
25A and 25B) clearly illustrate the impor­
tance of the horizontal density gradient 
terms. 
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Figure 22. Surface Elevation at Station SG3 for 
Verification Condition. 

12

Gulf of Mexico Science, Vol. 12 [1991], No. 1, Art. 1

https://aquila.usm.edu/goms/vol12/iss1/1
DOI: 10.18785/negs.1201.01



2.00 

1,80 

1,80 

• 1, 40 
Q 

!!; 1.20 

> 1.00 >-

II G-----g MODEL UP I 
u A-------t'1 MODEL LO I 

t-----------0 M I OOEPT H 
H 
u .eo 0 
J w .eo > 

.40 

.20 

V>-- ~ \ 

\ _/ .X r\ ':a v I~ ''- I/, 
lr - ~ 

,..,._ --.--, 
o.oo 

10 12 14 1e 1B 20 22 24 2 4 e a 10 

HOUR OF DAY (3/9/84-3/9/84) 

GAGE SGS 
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CONCLUSIONS AND DISCUSSION 

This research has produced an 
improved two-layer hydrodynamic and 
salinity model for estuaries. The model­
ing results are the hydrodynamics and 
salinity distribution in an upper layer and 
in a lower layer of an estuary . 

A theoretical approach to the inter­
nal wave boundary condition has been 
developed in a two-layer hydrodynamic 
and salinity model. An internal wave 
boundary conditions for the lower layer is 
based on modification of the surface 
elevation. 

Horizontal density gradient terms 
have been introduced into the two-layer 
hydrodynamic salinity model formulation 
by approximating the density gradient in 
terms of salinity gradients. The horizontal 
density gradient terms represent an addi­
tional forcing term in the equation of 
motion. The hydrodynamic and salinity 
calculation in this model are coupled 
through the horizontal density gradient 
terms. This type formulation has not been 
done previously in two-layer models. In 
general, the density gradient terms are 
relatively small compared with the sur­
face elevation gradient terms in most 
parts of the bay. However, in regions 
where large salinity changes occur, the 
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density gradient terms may locally be 
larger than the surface elevation gradient 
terms. Thus, while the region where den­
sity gradient terms predominate may be 
restricted, secondary effects produced by 
these terms may be significant through­
out a large portion of the bay. Even in 
estuaries which may be relatively unstrati­
fied vertically, there will exist horizontal 
density or salinity gradients. 

The two-layer model can offer more 
efficient results of physical details of the 
estuaries, and helpful information to deal 
with environmental consideration in 
estuaries. The two-layer model provides a 
compromise between the depth averaged 
model and the more complicated fully 
three-dimensional model. 
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APPENDIX- NOTATION 

The following symbols are used in 
this paper: 

c : Chezy Coefficient 
cd : Drag Coefficient 

Dx , Dy : Mixing Coefficent of the salt 
in x, y direction 

d : Total Depth of the Layer 
f: Coriolis Parameter 

g : Gravitational Acceleration 
h : Depth of the Layer 
K: Kinematic Eddy Viscosity 
k : Eddy Viscosity 
P: Pressure 
S: Salinity (A Measure of the 

Mass of Dissolved Salts in 
One Kilogram of Sea Water) 

t: Time 
U, V, W : Mean Velocity Components 

in the x, y, z Direction 
u, v, w : Velocity Components in the 

x, y, z Direction 
x, y, z : Rectangular Coordinate 

Variables 
YJ : Vertical Deviation of each 

layer 
v: Coefficient of Interfacial 

Friction 
P: Density 

Pa: Density of Air 
Pw : Density of Fresh Water 

Tbouom : Bottom Stress 
T,,,., : Interfacial Stress 
Twind: Wind Stress 

Subscripts 1 and 2 represent the upper 
and lower I ayers. 
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