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Modeling of first-order photobleaching kinetics using Krylov
subspace spectral methods

Somayyeh Sheikholeslamia, James V. Lambersb

aThe University of Southern Mississippi, Department of Physics and Astronomy, Hattiesburg, Mississippi, 39406, USA
bThe University of Southern Mississippi, Department of Mathematics, Hattiesburg, Mississippi, 39406, USA

Abstract

We solve the first order 2-D reaction-diffusion equations which describe binding-diffusion kinetics
using the photobleaching scanning profile of a confocal laser scanning microscope, approximated
by a Gaussian laser profile. We show how to solve the first-order photobleaching kinetics partial
differential equations (PDEs) using a time-stepping method known as a Krylov subspace spectral
(KSS) method. KSS methods are explicit methods for solving time-dependent variable-coefficient
partial differential equations. They approximate Fourier coefficients of the solution using Gaussian
quadrature rules in the spectral domain. In this paper, we show how a KSS method can be used to
obtain not only an approximate numerical solution, but also an approximate analytical solution
when using initial conditions that come from pre-bleach steady states and also general initial
conditions, to facilitate asymptotic analysis. Analytical and numerical results are presented. It is
observed that although KSS methods are explicit, it is possible to use a time step that is far greater
than what the CFL condition would indicate.

Keywords: Lanczos algorithm, spectral methods, Gaussian quadrature, FRAP, photobleaching
kinetics equation
2010 MSC: 65M70, 65F60

1. Introduction

Fluorescence recovery after photobleaching (FRAP) is a method used to obtain information
about the dynamic behavior of the molecules in a cell membrane. A high-intensity laser beam is
used to bleach molecules in a region of the cell. The redistribution of the molecules is monitored
in both bleached and unbleached regions over time to investigate the movements of molecules
within membrane domains. The FRAP method was stablished by Jacobson et al. in 1976 [11].
The chemical equation of the binding-diffusion process that happens in FRAP is

u + a
kon
−−⇀↽−−
koff

b, (1)

where u denotes unbound molecules, a refers to specific binding sites, and b represents bound
complexes (ua). The rate of the forward binding reaction is called kon, where a molecule binds to
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a binding site to form a bound complex, and koff refers to the rate of the reverse unbinding reaction
where a molecule is released from its binding site. The first-order reaction-diffusion equations
which describe binding-diffusion kinetics are

∂u
∂t

= −kbIrn (x, y)u + D1∆u − konu + koffb

∂b
∂t

= −kbIrn (x, y)b + D2∆b + konu − koffb (2)

∆ =
∂2

∂x2 +
∂2

∂y2 , D1 > D2

where the initial conditions from the pre-bleach steady state are

u(x, y, 0) =
koff

kon + koff

ci (3)

b(x, y, 0) =
kon

kon + koff

ci. (4)

D1 and D2 are diffusion coefficients of u and b, respectively; kon and koff are the on and off binding-
rate constants, kb is a bleach constant which is the intensity of the bleaching laser, determined from
the properties of the fluorophore, and ci is the initial concentration of the fluorescent molecules
inside the bleached zone. Also, D1, D2, kon and koff are positive constants. The photobleaching
scanning profile of the confocal of the Gaussian laser can be approximated by [1, 2, 8]

Irn (x, y) =
2I0

πr2
n

e
−

2((x − xc)2 + (y − yc)2)
r2

n

where rn is the nominal radius of the laser beam and (xc, yc) is the center.
First-order photobleaching kinetics which are mathematically modeled in equation (2) were

solved numerically by Kang et al. [8, 9]. These equations were also solved numerically using
an inversion method (methods of lines, with backward Euler in time and central differencing
in space) in [20]. In this paper we apply an explicit time-stepping method known as a Krylov
subspace spectral (KSS) method to solve the first-order photobleaching kinetics PDEs. KSS
methods developed by Lambers [12] use Gaussian quadrature rules in the spectral domain, as
described in [6], to approximate each Fourier coefficient of the solution. This component-wise
approach yields high-order accuracy in time, stability characteristic of implicit methods even
though KSS methods are themselves explicit [12, 13], and superior scalability compared to other
time-stepping approaches [4]. We will use a KSS method to solve the first-order photobleaching
kinetics equations with initial conditions (3), (4). By applying KSS symbolically to compute each
Fourier coefficient, we can also obtain an approximate analytical solution valid for a sufficiently
small time step, to facilitate qualitative analysis of the solution.

The outline of the paper is as follows. In Section 2, we describe KSS methods. In Section 3
we use a first-order KSS method to derive formulas for the Fourier coefficients of an approximate
solution with general initial data. In Section 4 we derive formulas for the Fourier coefficients of
an approximate analytical solution, for sufficiently small time, with initial data obtained from
pre-bleach steady states. In Section 5 we explain how this KSS method can be implemented
efficiently. Section 6 presents numerical results to validate our approximate analytical solution
and demonstrate the accuracy and efficiency of the corresponding numerical method, and Section
7 gives concluding remarks and discussion of future work, including generalizations.
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2. Methodology

2.1. Krylov Subspace Spectral Methods

In order to solve equation (2), we apply a Krylov subspace spectral (KSS) method [12] in
[0, 2π]2 and t > 0 with periodic boundary conditions. To describe KSS methods, we scale down
to a simpler problem, a single 1-D PDE on [0, 2π] rather than a system of two 2-D PDEs:

∂u
∂t

+ L(x,D)u = 0, u(x, 0) = u0(x)

u(0, t) = u(2π, t)

where D = ∂/∂x and L(x,D) is a differential operator which includes both differentiation operators
and coefficients that are functions of x. The inner product 〈·, ·〉 is the standard L2 inner product of
functions on [0, 2π]. The Fourier coefficients of the exact solution as inner products are calculated
as follows:

〈 f , g〉 =

∫ 2π

0
f (x)g(x) dx

û(ω, tn+1) =

〈
1
√

2π
eiωx, S (x,D; ∆t)u(x, tn)

〉
, |ω| ≤ N/2 (5)

where S (x,D; ∆t) = e−L(x,D)∆t is the exact solution operator and N is the number of equally-spaced
grid points. After spatial discretization, (5) becomes

[ûn+1]ω = êH
ωS N(∆t)u(tn), S N = e−LN ∆t (6)

where LN is a matrix that represents the spatial discretization of the operator L(x,D). Vector
components on a N-point grid and uniform grid spacing h are defined by

[êω] j =
1
√

2π
eiω jh, [u(tn)] j = u( jh, tn), h =

2π
N
.

2.2. Gaussian Quadrature for Riemann-Stieltjes Integrals

The bilinear form in equation (6) that we want to approximate is an example of the generic
bilinear form

uH f (A)v (7)

where u and v are N-vectors, f is a smooth function and A = LN is an N × N symmetric positive
definite matrix with positive and real eigenvalues

0 < a = λN ≤ · · · ≤ λ2 ≤ λ1 = b (8)

and also orthonormal eigenvectors q1,q2, . . . ,qN such that

Aq j = λ jq j, j = 1, 2, . . . ,N. (9)
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As shown in [6], the bilinear form (7) can be written as Riemann-Stieltjes integral

uH f (A)v = uH f

 N∑
j=1

λ jq jqH
j

 v

=

N∑
j=1

f (λ j)uHq jqH
j v

=

∫ b

a
f (λ) dα(λ)

The measure α(λ) is defined as

α(λ) =



0, λ < a
N∑
j=i
α jβ j, λi ≤ λ < λi−1, i = 1, . . . ,N − 1

N∑
j=1
α jβ j, b ≤ λ

(10)

where α j = uHq j and β j = qH
j v. A K-node Gaussian quadrature rule can be written in terms of

nodes t j and weights w j where j = 1, 2, . . . ,K.

uH f (A)v =

∫ b

a
f (λ) dα(λ) = I[ f ] =

K∑
j=1

w j f (t j) + R[ f ].

The weights are calculated by

w j =

∫ b

a
L j(λ)dα(λ), j = 1, 2, . . . ,K,

where L j(λ) is a Lagrange polynomial for the nodes t1, . . . , tK that can be written

L j(λ) =

K∏
i=1,i, j

λ − ti
λ j − λi

, j = 1, . . . ,K

L j(tk) = δ jk.

The error can be calculated by

R[ f ] =
f 2K(η)
(2K)!

∫ b

a

 K∏
j=1

(λ − t j)


2

dα(λ), a < η < b.

2.3. The Case u = v
In order to construct a Gaussian quadrature rule for the measure α(λ), we define a sequence of

polynomials q0(λ), q1(λ), . . . that are orthonormal. Orthonormality is defined by the conditions∫ b

a
qi(λ)q j(λ) dα(λ) = δi j
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where q j has exact degree j for j = 0, 1, 2, . . .. We therefore use the inner product we could write

〈 f , g〉 =

∫ b

a
f (λ)g(λ) dα(λ) = uH f (A)g(A)v

The polynomials q0, q1, . . . satisfy a three-term recurrence relationship, which, for j = 1, 2, . . . ,
can be written

β jq j(λ) = (λ − α j)q j−1(λ) − β j−1q j−2(λ), q−1(λ) ≡ 0, q0(λ) ≡
(∫ b

a
dα(λ)

)−1/2

,

where for j = 1, 2, . . . ,K we have

α j = 〈q j−1, xq j−1〉 = xH
j Ax j, j ≥ 1

β j = 〈p j, p j〉
1/2 = ||r j||2

x j = q j−1(A)u, j ≥ 1
r j = p j(A)u = (A − α jI)q j−1(A)u − β j−1q j−2(A)u =

(A − α jI)x j − β j−1x j−1

where α j and β j are recursion coefficients, and x j and r j are vectors. The resulting orthonormal
polynomials and tridiagonal Jacobi matrix JK , produced by Lanczos iteration, are

q(λ) =


q0(λ)
q1(λ)
...

qK−1(λ)

 , JK =



α1 β1
β1 α2 β2

. . .
. . .

. . .

βK−2 αK−1 βK−1
βK−1 αK


. (11)

The eigenvalues of JK are the nodes for a K-point Gaussian quadrature rule. The squares of the
first elements of the normalized eigenvectors of JK are the weights w j = (β0q0(t j)/‖q(t j)‖2)2. We
then have the Gaussian quadrature approximation

uH f (A)u = ‖u‖22eH
1 f (JK)e1,

which can easily be evaluated in terms of the quadrature nodes and weights.

2.4. The Block Case u , v
The block Lanczos iteration [7] produces a block tridiagonal Jacobi matrix JK of order 2K,

which yields a block Gaussian quadrature rule that can be used for the case u , v. We have

JK =



M1 BH
1

B1 M2 BH
2

. . .
. . .

. . .

BK−2 MK−1 BH
K−1

BK−1 MK


(12)

where, for j = 1, 2, . . . ,K,

R j−1 = X jB j−1, M j = XH
j AX j, R j = AX j − X jM j − X j−1BH

j−1 (13)
5



where X j is an N × 2 matrix, XH
1 X1 = I, B j is 2 × 2 upper triangular and M j is 2 × 2 symmetric

[15]. The matrices X j and B j−1 are obtained by performing a QR factorization of R j−1. The initial
value is R0 =

[
u v

]
. Once JK is obtained, a block Gaussian quadrature approximation of (7)

is given by
uH f (A)v = e1BH

0 EH
12 f (JK)E12B0e2, E12 =

[
e1 e2

]
. (14)

2.5. Block Arnoldi, u , v Case

The spatial differential operator for the system that we are solving is not self-adjoint, and
therefore that would be discretized by an unsymmetric matrix. In the case of unsymmetric A,
since the orthogonal tridiagonalization does not exist, we could instead obtain a block Hessenberg
matrix HK in place of the tridiagonal or block tridiagonal Jacobi matrix JK . The block Hessenberg
matrix HK of order 2K for the block case u , v can be written

HK =



H11 H12 H13 . . . H1,K

H21 H22 H23
...

...
. . .

. . .
. . .

...
0 0 HK−1,K−2 HK−1,K−1 HK−1,K
0 0 0 HK,K−1 HK,K


(15)

and for j = 1, 2, . . . ,K and i = 1, 2, . . . , j we have

R j−1 = X jH j, j−1, Hi j = XH
i AX j, R j = R j − XiHi j (16)

where XH
1 X1 = I [4] and R0 is defined as before. As in the block Lanczos case, the eigenvalues and

eigenvectors of HK are used to construct a quadrature rule for the underlying Riemann-Stieltjes
integral, which has the form (14) with HK instead of JK . Such quadrature rules are justified in [4]
and the references therein.

The main reason for using block Arnoldi [3, 16] is the loss of orthogonality of the Lanczos
vectors in iterations which makes the unsymmetric Lanczos method unstable. In other words,
iterations terminates while there is no invariant subspace information for A. Another problem
with the unsymmetric Lanczos method is lack of convergence of eigenvalues and also serious
breakdown [5].

For each time step and each frequency ω, the block KSS method proceeds by defining

R0 = [u v] =

[
1√
2π

eiωxN u(xN , tn)
]

as the initial block for the block Arnoldi algorithm

[5] described above, where xN is a vector of equally spaced grid points. We compute the QR
factorization R j−1 = X jH j, j−1. Then, block Arnoldi [3, 16] is applied to produce the Hessenberg
matrix HK , which in turn yields the nodes and weights for the Gaussian quadrature rule needed to
approximate each Fourier coefficient of the solution at time tn+1. The details of these steps are
discussed in the next two sections.

The temporal order of accuracy which has been reported for KSS methods applied to the heat
equation [12], the wave equation [13], the Schrödinger equation [14], and Maxwell’s equations
[15] are O(∆t(2K−1)d), where d is the highest order of a time derivative in the PDE. For the case
K = 1, unconditional stability was proved for the parabolic [12] and hyperbolic [13] PDEs in 1-D,
even though KSS methods are explicit. We will investigate the stability and convergence of the
single-block node KSS method, as applied to equation (2), in future work.
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3. Application of a First-Order KSS Method

In this section, we present the details of applying a first-order (K = 1) KSS method to (2). We
seek a solution that is a linear combination of chosen basis functions, in which each coefficient
in the linear combination is an expression of the form (7) that can be approximated using the
approach outlined in Section 2. We begin with the construction of appropriate basis functions.

3.1. Construction of Basis Functions
For convenience, we use the spatial domain E = [0, 2π]2, and impose periodic boundary

conditions, as the initial data consists of constant functions and the evolution of the solution takes
place in the interior of the domain. Homogeneous Dirichlet or Neumann boundary conditions can
be handled in a similar manner [4]; we will discuss this in detail in Section 6.3. With this domain
and boundary conditions, we use as our basis functions the eigenfunctions of a constant-coefficient
problem obtained by averaging the variable coefficient kbIrn , as described in [15].

Let ω = (ω1, ω2) ∈ Z2. We denote points in E by x = (x, y). We define

L =

[
−kbIrn (x) − kon + D1∆ koff

kon −kbIrn (x) − koff + D2∆

]
, v(t) =

[
u(x, t)
b(x, t)

]
, (17)

then (2) takes the form vt = Lv. We now seek to solve a constant-coefficient approximation of
this system of PDEs. To that end, the average of Irn (x) over a rectangular domain E is given by

Irn =
1

A(E)

∫ ∫
E

Irn (x, y) dx dy =
1

A(E)

∫ ∫
(x−xc)2+(y−yc)2<r2

n

I0

πr2
n

dx dy =
I0

A(E)
.

We then compute the 2 × 2 matrix

L(ω) =

[
〈eiω·x, L11eiω·x〉 〈eiω·x, L12eiω·x〉

〈eiω·x, L21eiω·x〉 〈eiω·x, L22eiω·x〉

]
,

where 〈·, ·〉 is the standard L2 inner product on E and, for i, j = 1, 2, Li j is obtained from the entry
Li j of L by replacing Irn by Irn . Then, the eigenvalues of L(ω) are

λ1 = −
kbI0

A(E)
−

1
2
‖ω‖2(D1 + D2) −

1
2

(kon + koff) +

1
2

[
‖ω‖4(D1 − D2)2 + ‖ω‖2(2(D1 + D2)(kon + koff)−

4(D1koff + D2kon)) + (kon + koff)2
]1/2

λ2 = −
kbI0

A(E)
−

1
2
‖ω‖2(D1 + D2) −

1
2

(kon + koff) −

1
2

[
‖ω‖4(D1 − D2)2 + ‖ω‖2(2(D1 + D2)(kon + koff)−

4(D1koff + D2kon)) + (kon + koff)2
]1/2

.

If we write [
u11
u21

]
=

[
koff

kbI0
A(E) + D1‖ω‖

2 + kon + λ1

]
(18)

7



then one eigenvector of L(ω) is [
u11
u21

]
=

[
koff

c1

]
where

c1 =
1
2
‖ω‖2(D1 − D2) +

1
2

(kon − koff) +

1
2

[
‖ω‖4(D1 − D2)2 + ‖ω‖2(2(D1 + D2)(kon + koff)−

4(D1koff + D2kon)) + (kon + koff)2
]1/2

.

If the eigenvalues λ1 and λ2 are distinct, then the eigenvector corresponding to λ2 is given by[
u12
u22

]
=

[
koff

c2

]
where

c2 =
1
2
‖ω‖2(D1 − D2) +

1
2

(kon − koff) −

1
2

[
‖ω‖4(D1 − D2)2 + ‖ω‖2(2(D1 + D2)(kon + koff)−

4(D1koff + D2kon)) + (kon + koff)2
]1/2

.

Let U be the 2 × 2 matrix with entries ui j, j = 1, 2. By computing V = U−T , we obtain the left
eigenvectors of L̄(ω):

U−1(ω) = VT (ω) =
1

koff(c2 − c1)

[
c2 −c1
−koff koff

]
=

−1
(D1 − D2)(ω2

1 + ω2
2) + (kon − koff)

[ u22
koff

−u21
koff

−1 1

]
.

If we write
U(ω) =

[
u1(ω) u2(ω)

]
and similar for V(ω), then the right and left eigenfunctions, respectively, of the frozen-coefficient
operator L are, for j = 1, 2,

u j,ω(x) = u j(ω) ⊗ ei(ω·x) =

[
u1 jei(ω·x)

u2 jei(ω·x)

]
,

v j,ω(x) = v j(ω) ⊗ ei(ω·x) =

[
v1 jei(ω·x)

v2 jei(ω·x)

]
.

If the eigenvalues λ1 and λ2 are equal, we use Schur vectors instead of eigenvectors, which entails
setting [

u12
u22

]
=

[
−c1
koff

]
8



and computing V(ω) = U(ω)/(k2
off

+ c2
1).

Once we have obtained our basis functions for each ω ∈ Ω ⊂ Z2, where Ω is a chosen subset
of frequency space determined by spatial discretization, we then seek a solution of (2) of the form[

u(x, tn+1)
b(x, tn+1)

]
=

∑
ω∈Ω

2∑
j=1

u j,ω(x)
〈
v j,ω, eLt

[
u(x, tn)
b(x, tn)

]〉
.

where ∆t = tn+1 − tn is a chosen time step. We can then approximate each inner product in the
above linear combination by treating it as a Riemann-Stieltjes integral, as described in Section 2.

3.2. Block Arnoldi, ω , 0
Now that our basis functions have been chosen, we will approximate each coefficient of the

form 〈
v j,~ω,

[
u(x, tn+1)
b(x, tn+1)

]〉
=

〈
v j,~ω, eL∆t

[
u(x, tn)
b(x, tn)

]〉
, j = 1, 2, (19)

using a two-node block Gaussian quadrature rule. We begin with spatial discretization, using a
uniform grid with spacing ∆x = ∆y = 2π/N, where for convenience we assume N is even. We
denote by xN a N2 × 2 matrix, the columns of which contain the x- and y-coordinates, respectively,
of the grid points (xi, y j), i, j = 0, 1, . . . ,N − 1, with xi = i∆x and y j = j∆y. As before, we also
denote by ω = (ω1, ω2) a pair of wave numbers, where −N/2 + 1 ≤ ωi ≤ N/2 for i = 1, 2. It
follows that spatial error is introduced due to the truncation of the Fourier series of u(x, t) and
b(x, t).

To approximate each coefficient (19), we perform a single iteration of block Arnoldi, with
N2 × 2 initial blocks

R0 =

[
v11(ω)eiω·xN

v21(ω)eiω·xN

u(xN , tn)
b(xN , tn)

]
R̃0 =

[
v12(ω)eiω·xN

v22(ω)eiω·xN

u(xN , tn)
b(xN , tn)

]
.

Before proceeding, we introduce the following notation for conciseness. First, we suppress the
explicit dependence on xN and tn in the current solution:

u = u(xN , tn), b = b(xN , tn).

Next, we use a similar shorthand for the discrete Fourier transforms, which implicitly depend on
ω:

û = (eiω·xN )Hu, b̂ = (eiω·xN )Hb.

Throughout, we use ‖ · ‖ to refer to vector `2-norms.
Then, as the first step in block Arnoldi, we perform a QR factorization of R0 and R̃0, which

yields

R0 = X1B0, R̃0 = X̃1B̃0.

By defining

f = uN2‖v1(ω)‖2 − (v2
11(ω)û + v21(ω)v11(ω)b̂)eiω·xN

g = bN2‖v1(ω)‖2 − (v2
21(ω)b̂ + v21(ω)v11(ω)û)eiω·xN

h = uN2‖v2(ω)‖2 − (v2
12(ω)û + v22(ω)v12(ω)b̂)eiω·xN

k = bN2‖v2(ω)‖2 − (v2
22(ω)b̂ + v22(ω)v12(ω)û)eiω·xN

9



we obtain

X1 =
[

x11 x12

]
=


 v11(ω)eiω·xN

v21(ω)eiω·xN


N‖v1(ω)‖

 f
g

√
‖ f ‖2 + ‖g‖2


X̃1 =

[
x̃11 x̃12

]
=


 v12(ω)eiω·xN

v22(ω)eiω·xN


N‖v2(ω)‖

 h
k

√
‖h‖2 + ‖k‖2

 . (20)

It should be noted that if the columns of R0 or R̃0 are not linearly independent, then we can simply
use the approach described in Section 2.3 to approximate our bilinear form (19), which is in this
case effectively a quadratic form.

Then, M1 and M̃1, which correspond to H11 from the block Arnoldi algorithm, can be
calculated by

M1 = XH
1 LX1

=

[
M11 M12
M21 M22

]
(21)

M̃1 = X̃H
1 LX̃1

=

[
M̃11 M̃12
M̃21 M̃22

]
. (22)

Formulas for the entries of M1 and M̃1 are given in Section Appendix A.1 of the Appendix.
After computing the eigenvalues λ1,ω, λ2,ω of M1, the coefficient of u1,ω in the solution at time

t can be approximated by

[BH
0 eM1∆tB0]12 =

〈
v1(ω)⊗eiω·xN , ρω(LN)

[
u
b

]〉
where ρω is a polynomial of degree 1 which interpolates eλ∆t at λ1,ω and λ2,ω and is given by

ρω(LN) =
eλ1,ω∆t

λ1,ω − λ2,ω
[LN − λ2,ωI] +

eλ2,ω∆t

λ2,ω − λ1,ω
[LN − λ1,ωI] (23)

if λ1,ω , λ2,ω, based on Lagrange interpolation, or

ρω(LN) = eλ1,ω∆tI + ∆teλ1,ω∆t(LN − λ1,ωI) (24)

if λ1,ω = λ2,ω, based on Hermite interpolation. The coefficient of u2,ω can be approximated in a
similar manner, using the eigenvalues λ̃1,ω, λ̃2,ω of M̃1.

The value of ∆t can be chosen sufficiently small to ensure desired accuracy, and then this
process can be repeated in subsequent time steps. By using the integrand g(λ) = λeλ∆t in place of
f (λ) = eλ∆t, one can easily use the above M1 and M̃1 to compute an approximate time derivative,
which can then be used to obtain a residual vt − Lv. This residual can serve as an estimate of local
truncation error, for the purpose of adaptive time-stepping.
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3.3. Block Arnoldi, ω1 = ω2 = 0
We now use block Arnoldi for the case ω1 = ω2 = 0, for which we use the initial block

R0 =


−u22

koff(kon − koff) u(xN , tn)
1

kon − koff
b(xN , tn)

 .
Then, after computing the QR factorization R0 = X1B0, we have

X1 =



1√
2N

u −
ū + b̄

2√
‖u‖2 + ‖b‖2 −

N2(b̄ + ū)2

2

1√
2N

b −
ū + b̄

2√
‖u‖2 + ‖b‖2 −

N2(b̄ + ū)2

2


,

where we use f̄ to denote the average of the components of a grid function f . Then, we compute
M1 = XH

1 LX1. Formulas for the entries of M1 are given in Appendix A.2. We then proceed as in
the previous discussion to obtain the coefficient of u1,(0,0) in the solution.

Similarly, for the coefficient of u2,(0,0), our initial block is

R̃0 =


u21

koff(kon − koff) u(xN , tn)
−1

kon − koff
b(xN , tn)

 .
Computing the QR factorization R̃0 = X̃1B̃0 yields

X̃1 =


kon

N
√

k2
on + k2

off

u(k2
on + k2

off) − k2
onū + konkoffb̄√

d21

−koff

N
√

k2
on + k2

off

b(k2
on + k2

off) − k2
offb̄ + konkoffū√

d21


,

d21 = ‖u‖2 + ‖b‖2 −
N2ū2k2

on

k2
on + k2

off

−
N2b̄2k2

off

k2
on + k2

off

+
2N2ūb̄konkoff

k2
on + k2

off

.

Then, we compute M̃1 = X̃H
1 LX̃1. Formulas for the entries of M̃1 are given in Appendix A.2.

4. Approximate Analytical Solution

In this section, we specialize to initial data (3), (4) from pre-bleach steady states to obtain an
approximate analytical solution for sufficiently small t. The terms in the entries of V(ω) that are
of lower order in ‖ω‖ are neglected.
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4.1. The ω , 0 Case
To facilitate analysis of high-frequency components, here we neglect lower-order terms in

‖ω‖2. For the component of the solution in the directions of u1,ω and u2,ω with ‖ω‖ > 0, the initial
blocks are

R0 =

 −1
(D1 − D2)‖ω‖2 + (kon − koff)

 u22eiω·xN

koff

−eiω·xN




koffci
koff + kon

konci
koff + kon




R̃0 =

 −1
(D1 − D2)‖ω‖2 + (kon − koff)

 −u21eiω·xN

koff

eiω·xN




koffci
koff + kon

konci
koff + kon




Orthogonalization of these initial blocks yields

X1 =
1

N
√

u2
22 + k2

off

[
−u22eiω·xN koff

koffeiω·xN u22

]
, X̃1 =

1

N
√

u2
21 + k2

off

[
u21eiω·xN koff

−koffeiω·xN u21

]
.

We then compute M1 = XH
1 LX1 and M̃1 = X̃H

1 LX̃1. Formulas for the entries of M1 and M̃1 are
given in Appendix A.3.

As before, for j = 1, 2, let λ j,ω and λ̃ j,ω denote the eigenvalues of M1 and M̃1, respectively.
Formulas for these eigenvalues are also given in Appendix A.3. Then, the component of the
solution in the direction of u1,ω is

[BH
0 eM1tB0]12 =

〈
v1(ω)⊗eiω·x, ρω(L)

[
u(x, 0)
b(x, 0)

]〉
where ρω is a polynomial of degree 1 which interpolates eλt at λ1,ω and λ2,ω given by (23) or (24),
depending on whether λ1,ω and λ2,ω are distinct. The component in the direction of u2,ω can be
computed similarly, by interpolating at λ̃1,ω and λ̃2,ω. We conclude that the approximate analytical
solution is [

u(x, t)
b(x, t)

]
=

∑
ω∈Z2

u1,ω(x)
〈
v1,ω, ρω(L)

[
u(x, 0)
b(x, 0)

]〉
+

∑
ω∈Z2

u2,ω(x)
〈
v2,ω, ρ̃ω(L)

[
u(x, 0)
b(x, 0)

]〉
=

−1
(D1 − D2)‖ω‖2 + (kon − koff)

[
u11(ω)eiω·x

u21(ω)eiω·x

]
×

[
u22
koff

e−iω·x −e−iω·x
]
ρω(L)


koffci

koff + kon
konci

koff + kon

 +

−1
(D1 − D2)‖ω‖2 + (kon − koff)

[
u12(ω)eiω·x

u22(ω)eiω·x

]
×

[
−u21
koff

e−iω·x e−iω·x
]
ρ̃ω(L)


koffci

koff + kon
konci

koff + kon

 . (25)
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Here, we used exact basis functions which are valid for all frequencies, while in previous work
[4] basis functions were approximated for the constant coefficient problem which were valid only
at high frequencies.

4.2. The ω1 = ω2 = 0 Case

To complete the approximate analytical solution (25), we consider the special case ω1 = ω2 =

0. Our initial block for the component in the direction of u1,(0,0) is

R0 =

 −
u22

koff(kon − koff)
koffci

koff + kon
1

kon − koff

konci
koff + kon


Substituting u22 = −koff in x11 and x12, X1 becomes

X1 =


1√
2N

− 1√
2N

1√
2N

1√
2N


which yields

M1 = XH
1 LX1

=

[
−kbIrn 0

kon − koff −kbIrn − (kon + koff)

]
.

The eigenvalues of M1 are

λ1,(0,0) = −kbIrn

λ2,(0,0) = −kbIrn − (kon + koff).

For the component of the solution in the direction of u2,(0,0), we use the initial block

R̃0 =


u21

koff(kon − koff)
koffci

koff + kon
−1

kon − koff

konci
koff + kon


where the QR factorization variables obtained by substituting u21 = kon are

X̃1 =
[

x̃11 x̃12

]
=


kon

N
√

(k2
on + k2

off
)

koff

N
√

(k2
on + k2

off
)

−koff

N
√

(k2
on + k2

off
)

kon

N
√

(k2
on + k2

off
)

 .
Then

M̃1 = X̃H
1 LX̃1

=

[
−kbIrn − (kon + koff) 0

kon − koff −kbIrn

]
.

13



It follows that the eigenvalues of M̃1 are

λ̃1,(0,0) = −kbIrn − (kon + koff)

λ̃2,(0,0) = −kbIrn .

We then use the pairs of interpolation points (λ1,(0,0), λ2,(0,0)) and (λ̃1,(0,0), λ̃2,(0,0)), as in the ω , 0
case, to compute the coefficients of the solution (25) in the directions of u1,(0,0) and u2,(0,0),
respectively.

5. Implementation Details

In this section we show how the KSS method for modeling first-order photobleaching kinetics
can be implemented efficiently through vectorized polynomial interpolation. This approach can
be used to produce an approximate analytical solution that can provide insight into qualitative
behavior, using the formulas for the block Gaussian quadrature nodes given in Section 4, or a
numerical solution through time-stepping, using the more general formulas for the nodes given in
Section 3. In this section, we consider the latter case for concreteness. We use FFTs that produce
frequency components corresponding to wave numbers in the range −N

2 + 1 ≤ ωi ≤
N
2 , for i = 1, 2,

where we continue to assume that N is even.
To carry out a time step from time tn = n∆t to time tn+1, we first compute, for eachω = (ω1, ω2)

with ωi in the indicated range, the block Gaussian quadrature nodes λ1,ω, λ2,ω, λ̃1,ω, λ̃2,ω from
Section 3. Next, we compute the first-degree polynomial ρω(λ) that interpolates eλ∆t at λ1,ω and
λ2,ω. The coefficients of ρω(λ) in power form are given by

c1,ω =


f2,ω − f1,ω
λ2,ω − λ1,ω

λ1,ω , λ2,ω

∆t f1,ω λ1,ω = λ2,ω,

c0,ω = f1,ω − c1,ωλ1,ω,

where
fk,ω = eλk,ω∆t, k = 1, 2.

The polynomial ρ̃ω(λ) that interpolates eλ∆t at λ̃1 and λ̃2 is computed in a similar manner. We
denote its coefficients by c̃0,ω and c̃1,ω.

Next, we compute

ρω(LN)
[

u
b

]
n

= c0,ω

[
u
b

]
n

+ c1,ω

[
p
q

]
n
, (26)

ρ̃ω(LN)
[

u
b

]
n

= c̃0,ω

[
u
b

]
n

+ c̃1,ω

[
p
q

]
n
, (27)

where [
u
b

]
n

=

[
u(x, tn)
b(x, tn)

]
,

[
p
q

]
n

= LN

[
u
b

]
n
.

The application of the operator L through the matrix LN can be performed using a finite difference
discretization of the Laplacian, using the standard five-point stencil on our uniform grid, or using
a 2-D FFT. The former approach is more efficient, but the latter yields spectral accuracy in space,
rather than second-order accuracy. Regardless, the main error is the first-order temporal error.
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Finally, the Fourier coefficients of the solution at time tn+1 are computed as follows:[
û(ω, tn+1)
b̂(ω, tn+1)

]
=

[
u11(ω)
u21(ω)

] 〈
v1,ω, ρω(LN)

[
u
b

]
n

〉
+

[
u12(ω)
u22(ω)

] 〈
v2,ω, ρ̃ω(LN)

[
u
b

]
n

〉
=

[
u11(ω)
u21(ω)

]
[c0,ω(v11(ω)û(ω) + v21(ω)b̂(ω)) + c1,ω(v11(ω) p̂(ω) + v21(ω)q̂(ω))] +[

u12(ω)
u22(ω)

]
[c̃0,ω(v12(ω)û(ω) + v22(ω)b̂(ω)) + c̃1,ω(v12(ω) p̂(ω) + v22(ω)q̂(ω))]

To compute û and b̂, matrices of 2-D Fourier coefficients are multiplied component-wise. An
inverse FFT yields the solution at time tn+1. If we are only taking a single time step, the process
described in this section is still used, but with the formulas for the nodes given in Section 4.

The resulting algorithm requires O(N2 log N) floating-point operations per time step, where
N is the number of grid points per dimension. While other methods that use a finite difference
discretization require only O(N2) floating-point operations per time step, it will be seen in Section
6.2 that an accurate solution can still be obtained via KSS with much greater efficiency.

6. Numerical Results

We now use numerical experiments to validate the formulas of the previous sections and
examine the performance, in terms of accuracy, efficiency, and scalability, of a first-order KSS
method applied to (2).

6.1. Validation of Time-Stepping Scheme

First, we use the formulas of Section 3 to implement a time-stepping method, as described
in Section 5. We present the relative error versus number of grid points per dimension (N) and
number of time steps (nsteps). Errors are computed by comparing the solution at the final time
(denoted by t f ) to that obtained by computing eLN t f times the initial data, using the Matlab
function expm. In all cases, we use the parameter values kb = 1 and ci = 1. The center (xc, yc) of
the laser profile is set to be (π, π).

Table 1: Execution time and relative error for different grid point for nsteps = 10, 000 with parameters kon = 10−0.5 s−1,
koff = 10−1 s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm.

N = 8 N = 16 N = 32 N = 64
Execution time (s) 4.4901 7.9654 19.7626 75.9164

Relative error 0.0012 1.8657e-05 3.6038e-06 6.9968e-08

For our first test case, reaction-dominant parameters that are defined in Chapter 1 are set to be
kon = 10−0.5 s−1, koff = 10−1 s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm for Figure 1.
These values are taken from [8, 10, 18]. Figure 1a shows relative error versus grid points (N) for
nsteps = 10, 000 (number of time steps) and final time t f = 1. It shows a rapidly decreasing trend
for relative error with increasing N. This is due to each solution being compared to an approximate
solution computing using the matrix exponential on a finer grid. Figure 1b shows relative error
versus time steps for N = 64 and final time t f = 1, corresponding to a time step ∆t = 1/nsteps. It
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Figure 1: a: Relative error versus grid points (N). b: Relative error versus time steps. Parameters are kon = 10−0.5 s−1,
koff = 10−1 s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm.

Table 2: Execution time, and relative error for different grid point for N = 64 with parameters kon = 10−0.5 s−1, koff = 10−1

s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm.

time steps=100 time steps=1000 time steps=10000
Execution time (s) 0.79309 6.8334 75.9164

Relative error 7.0045e-06 6.9974e-07 6.9968e-08

shows first-order accuracy in time, as expected. Table 1 shows the execution time and relative
error for different grid sizes for nsteps = 10, 000 with parameters kon = 10−0.5 s−1, koff = 10−1

s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm. Table 2 shows the execution time and
relative error for different time step sizes, with N = 64, for the same parameters.

Table 3: Execution time and relative error for different grid point for nsteps = 10, 000 with parameters kon = 10−2 s−1,
koff = 10 s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm.

N = 8 N = 16 N = 32 N = 64
Execution time (s) 4.6127 7.9169 19.9402 70.3547

Relative error 0.0021 1.8470e-05 2.4014e-06 7.8543e-11

For the second case, pure diffusion parameter values are set to be kon = 10−2 s−1, koff = 10
s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm for Figure 2. Figure 2a shows relative
error versus grid points per dimension (N) for nsteps = 10, 000 and t f = 1. It shows a rapidly
decreasing trend for relative error with increasing N. Figure 2b shows relative error versus number
of time steps for N = 64 and t f = 1. As before, first-order accuracy in time is obtained. Table
3 shows the execution time and relative error for different grid point for nsteps = 10, 000 with
parameters kon = 10−2 s−1, koff = 10 s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s, ωrn = 0.5 µm. Table
4 shows the execution time and relative error for different time steps, with N = 64, for the same
parameters.

For the third case, full model parameter values are set to be kon = 102 s−1, koff = 10−1
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Figure 2: a: Relative error versus grid points (N). b: Relative error versus time steps. Parameters are kon = 10−2 s−1,
koff = 10 s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm.

Table 4: Execution time and relative error for different grid point for N = 64 with parameters kon = 10−2 s−1, koff = 10
s−1, D1 = 30 µm2/s, D2 = 10−4 µm2/s and ωrn = 0.5 µm.

time steps=100 time steps=1000 time steps=10000
Execution time (s) 0.81812 6.9748 70.3547

Relative error 1.0130e-08 8.6496e-10 7.8543e-11

s−1, D1 = 30 µm2/s, D2 = 10−1 µm2/s and ωrn = 0.5 µm for Figure 3. Here we consider a
diffusion-dominated case. Figure 3 shows relative error versus grid points per dimension (N) for
nsteps = 10, 000 and t f = 1. As in the previous cases, it shows a decreasing trend for relative
error by increasing N. Figure 3b shows relative error versus time steps for N = 64 and t f = 1.
First-order accuracy in time is again observed. Table 5 shows the execution time and relative
error for different grid sizes with nsteps = 10, 000 and parameters kon = 102 s−1, koff = 10−1

s−1, D1 = 30 µm2/s, D2 = 10−1 µm2/s and ωrn = 0.5 µm. Table 6 shows the execution time and
relative error for different time step sizes with N = 64 for the same parameters.

It is particularly interesting to note that these test cases, the Courant-Friedrichs-Lewy (CFL)
condition for forward Euler with N = 64 would require 105 time steps to ensure stability, but this
KSS method, an explicit method, is able to not only ensure stability but also high accuracy even
when greatly exceeding this CFL limit.

6.2. Performance Comparison
In this section we compare the performance of KSS with various other time-stepping methods:

forward Euler, fourth-order Runge-Kutta, and Crank-Nicholson. For all methods, the standard
5-point finite difference stencil is used for the Laplacian. The results are shown in Table 7. For
both KSS and Crank-Nicholson, only one time step is necessary to obtain a reasonably accurate
solution, and we see that the accuracy of the two methods is comparable. However, KSS is
significantly faster, and this advantage increases with the number of grid points N. Because
forward Euler and fourth-order Runge-Kutta are explicit, a very small time step is required to
obtain a viable solution, resulting in these methods being literally thousands of times slower than
KSS.
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Figure 3: a: Relative error versus grid points (N). b: Relative error versus time steps. Parameters are kon = 102 s−1,
koff = 10 s−1, D1 = 30 µm2/s, D2 = 10−1 µm2/s and ωrn = 0.5 µm.

Table 5: Execution time and relative error for different grid point for nsteps = 10, 000 with parameters kon = 102 s−1,
koff = 10−1 s−1, D1 = 30 µm2/s, D2 = 10−1 µm2/s and ωrn = 0.5 µm.

N = 8 N = 16 N = 32 N = 64
Execution time (s) 4.5256 8.0008 20.7176 76.6904

Relative error 0.0100 9.6420e-04 1.7973e-04 3.0811e-08

For KSS, two optimizations were made. First, based on observations that the off-diagonal
entries of M1 and M̃1 were, for most frequencies [17], negligibly small compared to the diagonal
entries, only the diagonal entries were computed, and then used as the nodes. Second, the formulas
in Section 5 were simplified to account for the fact that the components of the initial data are
constant functions, which would mean that û and b̂ would have only one nonzero component.

6.3. Changing Boundary Conditions
We now explain how we can solve (2) using homogeneous Neumann boundary conditions,

rather than periodic boundary conditions. The following modifications are needed:

• Using discrete cosine transforms instead of the FFT

• Using frequency ranges ωi = k/2 for i = 1, 2 and k = 0, 1, 2, . . . ,N − 1

• Using the appropriate finite difference discretization of the Laplacian, if applicable.

The formulas derived in Section 4 can still be used, for the appropriate values of ω, as the resulting
quadrature nodes will have the necessary asymptotic behavior, as demonstrated in [4]. Table
8 shows the results of repeating the experiments of Section 6.2, but with Neumann boundary
conditions. We see that all methods exhibit similar accuracy and efficiency.

7. Conclusion

We applied a first-order KSS method to solve the first-order photobleaching kinetics partial
differential equations with general initial conditions and the initial conditions that came from a
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Table 6: Execution time and relative error for different grid point for N = 64 with parameters kon = 102 s−1, koff = 10−1

s−1, D1 = 30 µm2/s, D2 = 10−1 µm2/s and ωrn = 0.5 µm.

time steps=100 time steps=1000 time steps=10000
Execution time (s) 0.78111 7.6507 76.6904

Relative error 3.0821e-06 3.0810e-07 3.0811e-08

Periodic boundary conditions, reaction dominant case
N = 32 N = 64

time steps Execution time (s) Rel error Execution time (s) Rel error
KSS 1 0.0018 7.7769e-04 0.0023 7.7768e-04

CN 1 0.0131 2.0654e-04 0.0611 2.0335e-04

rk4 10,000 1.5401 3.0146e-06 6.9910 4.5533e-13

Euler 100,000 2.3200 3.0241e-06 7.3987 1.4126e-08

Table 7: Execution time and relative error for the solution of (2) using a 1-node KSS method, Crank-Nicholson (CN),
fourth-order Runge-Kutta (rk4), and forward Euler, for the reaction-dominant case from Table 1.

pre-bleach steady state. It has been shown that by applying block Arnoldi iteration symbolically
for each Fourier coefficient, an approximate analytical solution can be obtained that facilitates
qualitative analysis of short-time behavior, which is relevant to the photobleaching stage. The
numerical results indicate satisfactory accuracy of the method for all cases, which is promising
for application to FRAP laboratory research. We present an approximate analytical solution to
this model which makes qualitative analysis feasible for scientists in the field of cell biology.

Future work will consist of proving stability and convergence, consideration of more general
laser profiles, and other generalizations of interest, including to three-dimensional problems as
in [1]. In [15] KSS was applied to Maxwell’s equations in 3-D; application to a 3-D version
of (2) would be analogous. In fact, the approach described in this paper can be used without
modification to the formulas herein, except with appropriately adjusted definitions of ω, LN and
Irn . Efficient application of higher-order KSS methods (that is, K > 1) will also be investigated.
Also of interest are more general models in which the coefficients vary over time, as would be the
case for modeling both photobleaching and recovery, for either a system of linear or nonlinear
PDEs. For this case, a combination of KSS and EPI methods [19] introduced in [4] can be applied,
in which KSS methods are used to approximate required matrix function-vector products.
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Neumann boundary conditions, reaction dominant case
N = 32 N = 64

time steps Execution time (s) Rel error Execution time (s) Rel error
KSS 1 0.0014 7.7774e-04 0.0049 7.7768e-04

CN 1 0.0127 2.0801e-04 0.0470 2.0346e-04

rk4 10,000 1.5437 1.1359e-05 6.7514 6.5951e-13

Euler 100,000 3.0507 1.1369e-05 7.4302 1.4126e-08

Table 8: Execution time and relative error for the solution of (2) using a 1-node KSS method, Crank-Nicholson (CN),
fourth-order Runge-Kutta (rk4), and forward Euler, for the reaction-dominant case from Table 1, except with homogeneous
Neumann boundary conditions.

Appendix A. Appendix

Appendix A.1. Block Arnoldi, ω , 0
Here, we present formulas for the entries of M1 and M̃1 from equations (21) and (22),

respectively. We first define

T1 = v2
11(ω)û + v21(ω)v11(ω)b̂

T2 = v2
21(ω)b̂ + v21(ω)v11(ω)û

T3 = v2
11(ω)û + v21(ω)v11(ω)b̂

T4 = v2
21(ω)b̂ + v21(ω)v11(ω)û

T5 = v2
12(ω)û + v22(ω)v12(ω)b̂

T6 = v2
22(ω)b̂ + v22(ω)v12(ω)û

T7 = v2
12(ω)û + v22(ω)v12(ω)b̂

T8 = v2
22(ω)b̂ + v22(ω)v12(ω)û

Then, for M1, we have

M11 = −kbIrn +
n1

‖v1(ω)‖2

M12 =
n2

d1

M21 =
n3

d1

M22 =
n4

d2
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while for M̃1, we have

M̃11 = −kbIrn +
n5

‖v2(ω)‖2

M̃12 =
n6

d3

M̃21 =
n7

d3

M̃22 =
n8

d4

where

n1 = koffv11(ω)v21(ω) + konv21(ω)v11(ω) − (D1v2
11(ω) + D2v2

21(ω))‖ω‖2 − koffv2
21(ω) −

konv2
11(ω)

n2 = −kb‖v1(ω)‖2(Îrn uv11(ω) + Îrn bv21(ω)) + kbIrn [T1v11(ω) + T2v21(ω)] −

‖ω‖2‖v1(ω)‖2(D1v11(ω)û + D2v21(ω)b̂) + ‖ω‖2[(D1v11(ω)T1 + D2v21(ω)T2] +

‖v1(ω)‖2(v11(ω)(koffb̂ − konû) + v21(ω)(konû − koffb̂)) +

(v11(ω) − v21(ω))[konT1 − koffT2]

n3 = −kb‖v1(ω)‖2(Îrn uv11(ω) + Îrn bv21(ω)) + kbIrn [T3v11(ω) + T4v21(ω)] −

‖ω‖2‖v1(ω)‖2((D1v11(ω)û + D2v21(ω)b̂) + ‖ω‖2[(D1v11(ω)T3 + D2v21(ω)T4] +

‖v1(ω)‖2(v11(ω)(konb̂ − konû) + v21(ω)(koffû − koffb̂)) +

(v11(ω)kon − v21(ω)koff)[T3 − T4]

d1 =
√
‖v1(ω)‖2 ×

N
√
‖v1(ω)‖2(‖u2‖ + ‖b2‖) − Real(2‖v1(ω)‖2[ûT1 + b̂T2]) + [(T2)2 + (T1)2]

d2 = N2‖v1(ω)‖2(‖u2‖ + ‖b2‖) − Real(2‖v1(ω)‖2[ûT1 + b̂T2]) + [(T2)2 + (T1)2]
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n4 = [−koff(T2)2 − kon(T1)2] + konT1T4 + koffT3T2 − N4kb‖v1(ω)‖4(Îrn u2 + Îrn b2) +

kb‖v1(ω)‖2[Îrn uT3 + Îrn bT4] − N2‖v1(ω)‖4(D1‖∇u‖2 + D2‖∇b‖2) −

‖v1(ω)‖2T1[−konb̂ + D1‖ω‖
2û + konû] + ‖v1(ω)‖2T2[−koffû + D2‖ω‖

2b̂ + koffb̂] −
kbIrn [(T2)2 + (T1)2] + (koffb̂ − konû)‖v1(ω)‖2T4 −

‖ω‖2[D1(T3)2 + D2(T4)2] + (konû − koffb̂)‖v1(ω)‖2T3 +

N2‖v1(ω)‖4[−kon‖u‖2 + N2koffub + N2konbu − koff‖b‖2] −

‖ω‖2‖v1(ω)‖2[D1ûT3 + D2b̂T4] + kb‖v1(ω)‖2[Îrn bT2 + Îrn uT1]

n5 = koffv12(ω)v22(ω) + konv22(ω)v12(ω) − (D1v2
12(ω) + D2v2

22(ω))‖ω‖2 − koffv2
22(ω) −

konv2
12(ω)

n6 = −kb‖v2(ω)‖2(Îrn uv12(ω) + Îrn bv22(ω)) + kbIrn [T5v12(ω) + T6v22(ω)] −

‖ω‖2‖v2(ω)‖2(D1v12(ω)û + D2v22(ω)b̂) + ‖ω‖2[(D1v12(ω)T5 + D2v22(ω)T6] +

‖v2(ω)‖2(v12(ω)(koffb̂ − konû) + v22(ω)(konû − koffb̂)) +

(v12(ω) − v22(ω))[konT5 − koffT6]

n7 = −kb‖v2(ω)‖2 Îrn uv12(ω) + Îrn bv22(ω) + kbIrn [T7v12(ω) + T8v22(ω)] −

‖ω‖2‖v2(ω)‖2((D1v12(ω)û + D2v22(ω)b̂) + ‖ω‖2[(D1v12(ω)T7 + D2v22(ω)T8] +

‖v2(ω)‖2(v12(ω)(konb̂ − konû) + v22(ω)(koffû − koffb̂)) +

(v12(ω)kon − v22(ω)koff)[T7 − T8]

d3 =
√
‖v2(ω)‖2 ×√
(N2‖v2(ω)‖2(‖u2‖ + ‖b2‖) − Real(2‖v2(ω)‖2[ûT5 + b̂T6]) + [(T6)2 + (T5)2]

d4 = N2‖v2(ω)‖2(‖u2‖ + ‖b2‖) − Real(2‖v2(ω)‖2[ûT5 + b̂T6]) + [(T6)2 + (T5)2]

n8 = [−koff(T6)2 − kon(T5)2] + konT5T8 + koffT7T6 − N4kb‖v2(ω)‖4(Îrn u2 + Îrn b2) +

kb‖v2(ω)‖2[Îrn uT7 + Îrn bT8] − N2‖v2(ω)‖4(D1‖∇u‖2 + D2‖∇b‖2) −

‖v2(ω)‖2T5[−konb̂ + D1‖ω‖
2û + konû] + ‖v2(ω)‖2T6[−koffû + D2‖ω‖

2b̂ + koffb̂] −
kbIrn [(T6)2 + (T5)2] + (koffb̂ − konû)‖v2(ω)‖2T8 −

‖ω‖2[D1(T7)2 + D2(T8)2] + (konû − koffb̂)‖v2(ω)‖2T7 +

N2‖v2(ω)‖4[−kon‖u‖2 + N2koffub + N2konbu − koff‖b‖2] −

‖ω‖2(‖v2(ω)‖2[D1ûT7 + D2b̂T8] + kb‖v2(ω)‖2[Îrn bT6 + Îrn uT5].

Appendix A.2. Block Arnoldi, ω1 = ω2 = 0
The entries of M1 from Section 3.3 are given by

M1 = XH
1 LX1

=

[
M11 M12
M21 M22

]
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where

M11 = −Irn kb

M12 =
−Nkb(uIrn + bIrn + Irn (ū + b̄))

√
2d1

M21 =
N((koff − kon)(ū − b̄) − kb(uIrn + bIrn + Irn (ū + b̄)))

√
2d1

M22 =
n1

d1

with

n1 = −kbN2
(
Irn u2 + Irn b2 − (ū + b̄)Irn u − (ū + b̄)Irn b + Irn

(
ū2

2
+

b̄2

2
+ ūb̄

))
−

kon

(
‖u‖2 − N2ū(ū + b̄) +

N2(b̄ + ū)2

4

)
− koff

(
‖b‖2 − N2b̄(ū + b̄) +

N2(b̄ + ū)2

4

)
+

N2(kon + koff)
(
ub −

(b̄2 + ū2)
4

−
b̄ū
2

)
− (D1‖∇u‖2 + D2‖∇b‖2)

d1 = ‖u‖2 + ‖b‖2 −
N2(b̄ + ū)2

2
.

Similarly, the entries of M̃1 from Section 3.3 are

M̃1 = X̃H
1 LX̃1

=

[
M̃11 M̃12
M̃21 M̃22

]
where

M̃11 = −Irn kb − kon − koff

M̃12 =
kbN(−konIrn u + koffIrn b + Irn (ūkon − b̄koff))√

(k2
on + k2

off
)d2

M̃21 = M̃12 +

N
(
ū
(
−k2

off
+

konk3
off

k2
on+k2

off

)
+ b̄

(
k2

on −
konk3

off

k2
on+k2

off

))
√

(k2
on + k2

off
)d2

M̃22 =
n2

d2

23



with

d2 = ‖u‖2 + ‖b‖2 −
N2ū2k2

on

k2
on + k2

off

−
N2b̄2k2

off

k2
on + k2

off

+
2N2ūb̄konkoff

k2
on + k2

off

n2 = −kbN2
Irn u2 + Irn b2 + Irn u

 2ūk2
on

k2
on + k2

off

−
2b̄koffkon

k2
on + k2

off

 + Irn b
−2ūkonkoff

k2
on + k2

off

+
2b̄k2

off

k2
on + k2

off

 +

Irn

− ū2k2
on

k2
on + k2

off

−
b̄2k2

off

k2
on + k2

off

+ ūb̄
2konkoff

k2
on + k2

off

 +

N2(ub(kon + koff) + ū2kon + b̄2koff − b̄ū(kon + koff)) −
(kon‖u‖2 + koff‖b‖2) − (D1‖∇u‖2 + D2‖∇b‖2).

Appendix A.3. Approximate Analytical Solution, ω , 0 Case

The entries of M1 and M̃1 from Section 4.1 are given by

M1 = XH
1 LX1

=



n4
u2

22 + k2
off

kbkoff Îrn (u22 − kon)

N2
√

u2
22 + k2

off

√
k2

on + k2
off

kbkoff Îrn (u22 − kon)

N2
√

u2
22 + k2

off

√
k2

on + k2
off

−kbIrn


n4 = −kbIrn (u2

22 + k2
off) − ‖ω‖2(D1u2

22 + k2
offD2) −

(konu2
22 + u22k2

off + koffkonu22 + k3
off)

M̃1 = X̃H
1 LX̃1

=



n5

u2
21 + k2

off

kbkoff Îrn (−u21 + kon)

N2
√

u2
21 + k2

off

√
k2

on + k2
off

kbkoff Îrn (−u21 + kon)

N2
√

u2
21 + k2

off

√
k2

on + k2
off

−kbIrn


n5 = −kbIrn (u2

21 + k2
off) − ‖ω‖2(D1u2

21 + k2
offD2) −

(konu2
21 + u21k2

off + koffkonu21 + k3
off), (A.1)

where f̂ is the complex conjugate of the discrete Fourier transform of the grid function f .
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The eigenvalues of M1 are

λ1,ω = −
1

2(u2
22 + k2

off
)
(‖ω‖2(D1u2

22 + k2
offD2)) −

(konu2
22 + u22k2

off
+ koffkonu22 + k3

off
)

2(u2
22 + k2

off
)

−

kbIrn −
1
2

 1
(u2

22 + k2
off

)2
‖ω‖4(D1u2

22 + k2
offD2)2+

1
(u2

22 + k2
off

)2
(konu2

22 + u22k2
off + koffkonu22 + k3

off)2+

2
(u2

22 + k2
off

)2
‖ω‖2(D1u2

22 + k2
offD2)(konu2

22 + u22k2
off + koffkonu22 + k3

off)+

4k2
bk2

off
Î2
rn

(u22 − kon)(u22 − kon)

N4(k2
on + k2

off
)(k2

off
+ u2

22)

1/2

λ2,ω =
n6

d6

where

d6 =
−1

u2
22 + k2

off

[
‖ω‖2(D1u2

22 + k2
offD2) + (konu2

22 + u22k2
off + koffkonu22 + k3

off)
]
−

2kbIrn −

 1
(u2

22 + k2
off

)2
‖ω‖4(D1u2

22 + k2
offD2)2+

1
(u2

22 + k2
off

)2
(konu2

22 + u22k2
off + koffkonu22 + k3

off)2+

2
(u2

22 + k2
off

)2
‖ω‖2(D1u2

22 + k2
offD2)(konu2

22 + u22k2
off + koffkonu22 + k3

off)+

4k2
bk2

off
Î2
rn

(u22 − kon)(u22 − kon)

N4(k2
on + k2

off
)(k2

off
+ u2

22)

1/2

n6 =
2

(u2
22 + k2

off
)

[
kbIrn‖ω‖

2(D1u2
22 + k2

offD2) + k2
bIrn

2
(u2

22 + k2
off)+

kbIrn (konu2
22 + u22k2

off + koffkonu22 + k3
off)

]
−

2k2
bk2

off
Î2
rn

(u22 − kon)(u22 − kon)

N4(k2
on + k2

off
)(k2

off
+ u2

22)
. (A.2)
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Similarly, the eigenvalues of M̃1 are

λ̃1,ω = −
1

2(u2
21 + k2

off
)
(‖ω‖2(D1u2

21 + k2
offD2)) −

(konu2
21 + u21k2

off
+ koffkonu21 + k3

off
)

2(u2
21 + k2

off
)

−

kbIrn −
1
2

 1
(u2

21 + k2
off

)2
‖ω‖4(D1u2

21 + k2
offD2)2+

1
(u2

21 + k2
off

)2
(konu2

21 + u21k2
off + koffkonu21 + k3

off)2+

2
(u2

21 + k2
off

)2
‖ω‖2(D1u2

21 + k2
offD2)(konu2

21 + u21k2
off + koffkonu21 + k3

off)+

4k2
bk2

off
Î2
rn

(−u21 + kon)(−u21 + kon)

N4(k2
on + k2

off
)(k2

off
+ u2

21)

1/2

λ̃2,ω =
n7

d7

where

d7 =
−1

u2
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21 + k2
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21 + u21k2
off + koffkonu21 + k3

off)
]
−

2kbIrn −

 1
(u2

21 + k2
off

)2
‖ω‖4(D1u2

21 + k2
offD2)2+

1
(u2

21 + k2
off

)2
(konu2

21 + u21k2
off + koffkonu21 + k3

off)2+

2
(u2

21 + k2
off

)2
‖ω‖2(D1u2

21 + k2
offD2)(konu2

21 + u21k2
off + koffkonu21 + k3

off)+

4k2
bk2

off
Î2
rn

(−u21 + kon)(−u21 + kon)

N4(k2
on + k2

off
)(k2

off
+ u2

21)

1/2

n7 =
2

(u2
21 + k2

off
)

[
kbIrn‖ω‖

2(D1u2
21 + k2

offD2) + k2
bIrn

2
(u2

21 + k2
off)+

kbIrn (konu2
21 + u21k2

off + koffkonu21 + k3
off)

]
−

2k2
bk2

off
Î2
rn

(−u21 + kon)(−u21 + kon)

N4(k2
on + k2

off
)(k2

off
+ u2

21)
.

We note that Î2
rn

decays rapidly to zero at higher frequencies, so for such components it can be
neglected for simplicity.
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