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Particular Solutions of products of Helmholtz-type

equations using Matern functions

Abstract

in progress ...

Keywords: Helmholtz-type equations, radial basis function Matern functions, funda-
mental solution, particular solution

1 Introduction

in progress ...
In this paper, we use the Matern functions as the basis function which means

φν(r) = (cr)νKν(cr) (1)

where Kν is the modified Bessel function of the second kind of order ν > 0 and shape
parameter c > 0.

2 Particular solutions for Helmholtz-type equations

using Matern function in 2D

First we consider to derive the particular solution for modified Helmholtz equation using
Matern function (cr)nKn(cr) where n is a positive integer as the basis function in 2D. In
this section, our aim is to derive a close form particular solutions ΦMH of the modified
Helmholtz equations as follow:

(∆− λ2)Φmh
n = (cr)nKn(cr). (2)

By the annihilator method [2, 5], we can apply a differential operator on the both sides
of (2) and then convert the derivation of particular solution to fundamental solution
which is well-known in the literature of boundary element methods.

Similar to the idea that r2n ln is related to the fundamental solution of polyharmonic
differential operator ∆n, Matern function in (1) is also related to the fundamental so-
lution of poly-modified Helmholtz operator. From [3], the fundamental solution of the
following poly-modified Helmholtz equation

(∆− c2)mGm(cr) = δ(x, ξ), m ≥ 1, (3)
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where δ is a Dirac delta function, is given by

Gm(cr) =
(−1)m

2mπ(m− 1)!

(r

c

)m−1

Km−1(cr). (4)

For m = 1, the fundamental solution of the modified Helmholtz equation in 2D is

G1(cr) =
−1

2π
K0(cr).

To illustrate how we convert the problem of finding the particular solution in (2) into
the fundamental solution, we let n = 2 in (2). Repeatedly applying (∆− c2) on the both
sides of (2) and using MAPLE for the symbolic computation, we have

(∆− c2)(∆− λ2)Φmh
2 = (∆− c2)(cr)2K2(cr) = −4c2(cr)K1(cr),

(∆− c2)2(∆− λ2)Φmh
2 = (∆− c2)(−4c2(cr)K1(cr)) = 8c4K0(cr),

(∆− c2)3(∆− λ2)Φmh
2 = (∆− c2)8c4K0(cr) = −16πc4δ(x, ξ). (5)

Note that (5) can be reformatted as follows:

(∆− c2)3(∆− λ2)

(

Φmh
2

−16πc4

)

= δ(x, ξ). (6)

Let G(r; c, λ) be the fundamental solution of (6). Then, the relationship between the
particular solution Φmh in (2) and the fundamental solution G(r; c, λ) of (6) can be
expressed in the following way

Φmh
2 = −16πc4G(r; c, λ). (7)

As we shall see, we will turn our focus to finding the fundamental solution of the product
of poly-modified Helmholtz equation. The above derivation is based on the help of
symbolic software MAPLE. Next, we will show the general case for the Matern function
(rc)nKn(rc) in the following lemma.

Lemma 1 Let n be a positive integer. In 2D, it can be shown that

(∆− c2)n+1(cr)nKn(cr) = (−2)n+1πc2nn!δ(x, ξ). (8)

Proof. For the following derivation, we need the following two formulae [1]

d

dr
(rnKn(r)) = −rnKn−1(r) (9)

rKn+1(r) = rKn−1(r) + 2nKn(r). (10)
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By direct differentiation, it follows that

∆((cr)nKn(cr)) =
1

r

d

dr

(

r
d

dr
(cr)nKn(cr)

)

(From (9)) =− 1

r

d

dr

(

(cr)n+1Kn−1(cr)
)

=− 1

r

d

dr

(

(cr)2 · (cr)n−1Kn−1(cr)
)

(Product rule) =− 1

r

(

2rc2(cr)n−1Kn−1(cr) + (cr)2(−c(cr)n−1Kn−2(cr))
)

=− c2
(

2(cr)n−1Kn−1(cr)− (cr)nKn−2(cr)
)

(From (10)) = c2
(

(cr)nKn(cr)− 2n(cr)n−1Kn−1(cr)
)

.

Then, we have
(∆− c2)(cr)nKn(cr) = −2nc2(cr)n−1Kn−1(cr). (11)

By recursively applying the operator (∆− c2) to (11), we can eventually reduce the
Matern function to Dirac delta function as follows

(∆− c2)n+1(cr)nKn(cr) = (−2)n+1πc2nn!δ(x, ξ).

Lemma 1 sets the stage of finding the particular solution Φmh
n in (2) through the use

of fundamental solution. In Lemma 1, we show the Matern function can be annihilated
by the poly-modified Helmholtz operator. Applying the operator (∆− c2)n+1 to (2), the
particular solution Φmh

n for Metern basis function of order n can be reformulated in the
following form:

Φmh
n = (−2)n+1πc2nn!Gn+1(r; c, λ) (12)

where Gn+1 is the fundamental solution of the product of poly-modified Helmholtz opera-
tor (∆−c2)n+1(∆−λ2). In (12), we establish the relation between the particular solution
and the fundamental solution of the product of poly-modified Helmholtz equation. The
next important step is how to obtain Gn+1(r; c, λ) efficiently and systematically.

Next, we briefly describe how to find the fundamental solution of the following prod-
uct of poly-modified Helmholtz operators

(

∆− λ2
1

)k1 (
∆− λ2

2

)k2 · · ·
(

∆− λ2
n

)kn
G = δ(x, ξ) (13)

where ki, i = 1, 2, · · · , n are nonnegative integers, λ1 6= λ2 6= · · · 6= λn are positive real
numbers. In the literature of boundary element methods, there are various methods
of construction of fundamental solutions of (13). A general expression of fundamental
solution of (13) is given by [3]

G =

n
∑

i=1

1

(ki − 1)!

∂ki−1ciG1(λi)

∂λki−1
i

(14)
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in which

ci =

n
∏

j=1,j 6=i

1

(λ2
i − λ2

j)
kj

(15)

and G1(λ) is the fundamental solution of the modified Helmholtz equation

(∆− λ)G1 = δ(x, ξ).

The derivation of G in (14) through repeatedly taking derivative of G1 is quite tedious.
Another approach is using the algebraic procedure of partial fraction decomposition.

Lemma 2 The following partial fraction decomposition is true [7]

k
∏

i=1

1

(ξ − λ2
i )

αi
=

k
∑

m=1

αm−1
∑

l=0

Cm,l

(ξ − λ2
m)

αm−l
(16)

where Cm,l can be obtained by partial fraction.

In general, we can regard the fundamental solution as a special case of particular
solution. This means if the Dirac delta function δ(x, ξ) in the right hand side of (13) is
replaced by a general function, then G becomes the particular solution. The following
theorem can be obtained in a similar way as shown in [9]. The only difference is replacing
the particular solution by the fundamental solution in the statement of the theorem.

Theorem 3 Let x ∈ Rd, d = 2, 3. Assume

(

∆− λ2
m

)αm−l
Gm,αm−l = δ(x, ξ), m = 1, 2, · · · , αm−l, (17)

then the fundamental solution for the following poly-modified Helmholtz equation

(

k
∏

i=1

(

∆− λ2
i

)αi

)

G = δ(x, ξ), (18)

where λi 6= λj for all i and j, is given by

G =
k
∑

m=1

αm−1
∑

l=0

Cm,lGm,αm−l (19)

where Cm,l is the partial fraction given in (16).

In the above theorem, the partial differential operator ∆ was treated as an algebraic
quantity in the partial fraction decomposition. We refer the reader to the book of
Hörmander [6] for more details. The above theorem provides an easy and efficient way
to find the fundamental solution of the product of poly-modified Helmholtz operators
provided that Gm,αm−l in (17) is known. On the other hand, the closed form of Gm,αm−l

is available in (4). All we need to do is to find Cm,l by partial fraction decomposition
which can be achieved using symbolic software such as MAPLE or MATHEMATICA.
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For illustration, let us go back to (6) to complete the task of finding the particular
solution Φmh. Based on Lemma 2, we decompose the following product into the partial
fraction:

1

(ξ − c2)3(ξ − λ2)
=− 1

(λ2 − c2)3(ξ − c2)
− 1

(λ2 − c2)2(ξ − c2)2

− 1

(λ2 − c2)(ξ − c2)3
+

1

(λ2 − c2)3(ξ − λ2)
. (20)

Then, according to Theorem 3 and (20), the fundamental solution of (6) is given by

G(r; c, λ) =
G1(λr)−G1(cr)

(λ2 − c2)3
− G2(cr)

(λ2 − c2)2
− G3(cr)

(λ2 − c2)

where Gi(cr), i = 1, 2, 3, are given in (4). As a result, the particular solution Φmh
2 in (7)

can be obtained as follows

Φmh
2 (r; c, λ) = −16πc4

(

G1(λr)−G1(cr)

(λ2 − c2)3
− G2(cr)

(λ2 − c2)2
− G3(cr)

(λ2 − c2)

)

. (21)

In the above expression, we observe that G2(cr) and G3(cr) are non-singular due to the
fact that for positive integer n,

lim
r→0

rnKn(r) = 2n−1(n− 1)!. (22)

On the other hand, both G1(λr) and G1(cr) are singular at r = 0. The particular solution
Φmh is a smooth function since the singularities of G1(λr) and G1(cr) are canceled out
each other. Hence, it is crucial to know the behavior of Φmh as r → 0. The series
expansion of K0(cr) is known as follows

K0(cr) = − ln
( c

2

)

− ln r − γ +O(r2)

where γ is the Euler number. It follows that

lim
r→0

(G1(λr)−G1(cr)) =
1

2π
ln

(

λ

c

)

. (23)

Furthermore, from (4) and (22), for positive integer m ≥ 2,we have

lim
r→0

Gm(cr) = lim
r→0

(−1)m

2mπ(m− 1)!

(r

c

)m−1

Km−1(cr) =
(−1)m

4π(m− 1)cm−1
. (24)

Hence, from (20) – (24), we have

lim
r→0

Φmh
2 (r; c, λ) =

2(4c4 ln(c/λ) + 4c2λ2 − 3c4 − λ4)

(c2 − λ2)3
. (25)

For the general case, the following theorem can be obtained by the Mathematical
Induction.

5



Theorem 4 The particular solution of the following modified Helmholtz equation in 2D

(∆− λ2)Φmh
n = (cr)nKn(cr)

is given by

Φmh
n (r; c, λ) = (−2)n+1c2nπn!

(

G1(λr)−G1 (cr)

(λ2 − c2)n+1
−

n+1
∑

i=2

Gi(cr)

(λ2 − c2)n+2−i

)

, r 6= 0, (26)

and

lim
r→0

Φmh
n (r; c, λ) = (−2)n+1c2nn!

(

ln(λ/c)

2(λ2 − c2)n+1
−

n+1
∑

i=2

(−1)i

4(λ2 − c2)n+2−i(i− 1)c2(i−1)

)

,

(27)
where

Gi(cr) =
(−1)i

2iπ(i− 1)!

(r

c

)i−1

Ki−1(cr), i = 1, 2, · · · , n+ 1. (28)

The particular solution for the Helmholtz operator in 2D can be derived in a similar
way as above. Similar to (8), we have

(∆− c2)n+1(∆ + λ2)Φh
n = (−2)n+1πc2nn!δ(x, ξ).

We can summarize the particular solution of the Helmholtz equation using Matern func-
tion in 2D in the following theorem.

Theorem 5 The particular solution of the following Helmholtz equation in 2D

(∆ + λ2)Φh
n = (cr)nKn(cr) (29)

is given by

Φh
n(r; c, λ) = 2n+1c2nπn!

(

(Y0(λr)/4−G1(cr))

(λ2 + c2)n+1
+

n+1
∑

i=2

(−1)iGi(cr)

(λ2 + c2)n+2−i

)

(30)

and

lim
r→0

Φh
n(r; c, λ) = 2nc2nn!

(

ln(λ/c)

(λ2 + c2)n+1
+

n+1
∑

i=2

1

2(λ2 + c2)n+2−i(i− 1)c2(i−1)

)

(31)

where

Gi(cr) =
(−1)i

2iπ(i− 1)!

(r

c

)i−1

Ki−1(cr)

in which Kν is the modified Bessel function of the second kind of order ν.
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3 Particular solution for Helmholtz-type equations

in 3D

For 3D case, the Laplacian ∆ is defined as follows

∆ =
1

r2
d

dr
r2

d

dr
. (32)

In this case, the Matern function with positive integer order could not be annihilated
by the differential operator (∆ − c2)n+1 as shown in the 2D case and the annihilator
method mentioned above could not be applied for the 3D case. We observe the Matern
basis function in 2D is related to the fundamental solution Gn in (3). For the 3D case,
the fundamental solution of (3) is given by

Gn(cr) =
(−1)n

2n+1/2π3/2(n− 1)!

(r

c

)n−3/2

Kn−3/2(cr). (33)

Hence, we will choose the Matern basis function with positive integer n ≥ 2 in the form

φn−3/2(r) = (cr)n−3/2Kn−3/2(cr), (34)

in the 3D case. In the literature, it is known that the Matern function with order n−3/2
can be simplified to the product of exponential basis function and radial power function.
Some examples for various n− 3/2 are:

n = 2, φ1/2(r) =

√
2π

2
exp(−cr),

n = 3, φ3/2(r) =

√
2π

2
(1 + cr) exp(−cr),

n = 4 φ5/2(r) =

√
2π

2
(3 + 3cr + c2r2) exp(−cr).

In this subsection, our goal is to derive the particular solution of the modified Helmholtz
equation using φn−3/2(r), n ≥ 2, in 3D:

(∆− λ2)Φmh
n = (cr)n−3/2Kn−3/2(cr). (35)

Similar to (11) in the proof of Lemma 1, we have

∆(cr)n−3/2Kn−3/2(cr) =
1

r2
d

dr

(

r2
d

dr
(cr)n−3/2Kn−3/2(cr)

)

=
1

r2
d

dr

(

−rc2(cr)n−3/2Kn−5/2(cr)
)

=
1

r2
d

dr

(

−c2r3 · (cr)n−5/2Kn−5/2(cr)
)

= −3c2(cr)n−5/2Kn−5/2(cr) + c3r(cr)n−5/2Kn−7/2(cr) (36)
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From (10), we have the following identity

(cr)Kn−7/2(cr) = (cr)Kn−3/2(cr)− (2n− 5)Kn−5/2(cr). (37)

From (36) and (37), after some algebraic manipulation, we have

(∆− c2)(cr)n−3/2Kn−3/2(cr) = −2(n− 1)c2(cr)n−5/2Kn−5/2(cr). (38)

It follows that

(∆− c2)n(cr)n−3/2Kn−3/2(cr) = (−1)n2nc2n−3(n− 1)!π
√
2πδ(x, ξ) (39)

which implies
Φmh

n = (−1)n2nc2n−3(n− 1)!π
√
2πGn(r; c, λ) (40)

where Gn(r; c, λ) is the fundamental solution associated with the differential operator
(∆− c2)n(∆− λ2).

Applying the Lemma 1 and Theorem 3, we have the following theorem.

Theorem 6 Let n be the positive integer with n ≥ 2. The particular solution Φmh
n of the

following modified Helmholtz equation in 3D

(∆− λ2)Φmh
n = (cr)n−3/2Kn−3/2(cr)

is given by

Φmh
n = (−1)n2nc2n−3(n− 1)!π

√
2π

(

G1(λr)−G1(cr)

(λ2 − c2)n
−

n
∑

i=2

Gi(cr)

(λ2 − c2)n+1−i

)

(41)

where

Gi(cr) =
(−1)i

2i+1/2π3/2(i− 1)!

(r

c

)i−3/2

Ki−3/2(cr) (42)

and

lim
r→0

Φmh
n = (−1)n2nc2n−3(n− 1)!

√
2π

(

λ− c

4(λ2 − c2)n
−

n
∑

i=2

(−1)ic3−2iΓ (i− 3/2)

8
√
π(i− 1)!(λ2 − c2)n+1−i

)

(43)
where Γ(x) is the Gamma function.

For the particular solution of the Helmholtz equation in 3D, we can obtain the
following theorem in a similar way as the above theorem.

Theorem 7 Let n be the positive integer with n ≥ 2. The particular solution Φh
n of the

following Helmholtz equation in 3D

(∆ + λ2)Φh
n = (cr)n−3/2Kn−3/2(cr) (44)

8



is given by

Φh
n = (−2)nc2n−3(n− 1)!

√
2π3

(

n
∑

i=1

(−1)n+iGi(cr)

(λ2 + c2)n+1−i
+

(−1)n+1 (cos(λr))

4πr (λ2 + c2)n

)

(45)

and

lim
r→0

Φh
n = (−2)n(n− 1)!

√
2c2n−3

(

n
∑

i=1

(−1)nΓ (i− 3/2) c3−2i

8(i− 1)!(λ2 + c2)n+1−i

)

(46)

where

Gi(cr) =
(−1)i

2i+1/2π3/2(i− 1)!

(r

c

)i−3/2

Ki−3/2(cr), (47)

in which Kν is the modified Bessel function of the second kind of order ν and Γ(x) is
the Gamma function.

4 Particular solution for products of Helmholtz-type

operators

In this section we will extend the technique we developed to the products of Helmholtz-
type operator based on the particular solutions we derived in the previous section. Con-
sier 2D case

(

∆− λ2
1

)k1 (∆− λ2
2

)k2 · · ·
(

∆− λ2
m

)km
Φ(r) = (cr)nKn(cr) (48)

where ki, i = 1, 2, · · · , m are non-negative integers, λ1 6= λ2 6= · · · 6= λm are positive real
number. To find the particular solution Φ in (60), we can apply the annihilator method
using Lemma 1. Then we have

(∆− c2)n+1
(

∆− λ2
1

)k1 (∆− λ2
2

)k2 · · ·
(

∆− λ2
n

)kn
Φ(r) = (∆− c2)n+1(cr)nKn(cr)

= (−2)n+1πc2nn!δ(x, ξ).

We can then follow the same procedure as shown in Section 2 to find the particular
solution Φ̇.

For example, let us consider the following equation

(∆− 4)2 (∆ + 9)Φ(r) = (cr)2K2(cr). (49)

It follows that
(∆− c2)3(∆− 4)2 (∆ + 9)Φ(r) = −16πc4δ(x, ξ).

By partial fraction, we have

1

(ξ − c2)3(ξ − 4)2(ξ + 9)
=

c2 − 43

α4

1

(ξ − 4)
+

6c4 + 56c2 + 187

α4β3

1

(ξ − c2)
− 1

169β3

1

(ξ + 9)

− 1

13α3

1

(ξ − 4)2
− 3c2 + 14

α3β2

1

(ξ − c2)2
+

1

α2β3

1

(ξ − c2)3

9



where α = (c2 − 4), β = (c2 + 9). From Theorem 3, we obtain

Φ(r) = −16πc4
(

c2 − 43

α4
G1 (2r) +

6c4 + 56c2 + 187

α4β3
G1 (cr)−

1

169β3

(

Y0(3r)

4

)

− 1

13α3
G2(2r)−

3c2 + 14

α3β2
G2(cr) +

1

α2β3
G3(cr)

)

where Y0 is the Bessel function of the second kind of order zero and Gi, i = 1, 2, 3, are
defined in (28). However, the obtained Φ is quite lengthy and tedious. For the special
case k1 = k2 = · · · = km = 1 in (48), we can adopt the technique introduced in Reference
[9] to obtain the simple form of Φ. For example, consider

(∆− λ2
1)
(

∆+ λ2
2

)

Φ(r) = φ(r) (50)

where φ is a Matern function of order n. From Lemma 2, we decompose the following
product by the partial fraction

1

(ξ − λ2
1)(ξ + λ2

2)
=

1

(λ2
1 + λ2

2)

(

1

(ξ − λ2)
− 1

(ξ + λ2)

)

. (51)

From Theorem 1 in [9], we have

Φ(r) =
Φmh

n (r)− Φh
n(r)

(λ2
1 + λ2

2)
(52)

where Φmh
n (r) and Φh

n(r) are given in Theorem 4 and Theorem 5 respectively.

5 Numerical results

To validate the particular solution we derived in the previous sections, we apply the
method of particular solutions (MPS) using Matern function with various orders for
solving modified Helmholtz equation in 2D and 3D, and product of Helmholtz and
modified Helmholtz equation. The numerical accuracy is closely related to the selection
of the shape parameter. In this section, we choose the algorithm of leave-one-out cross
validation (LOOCV) [4, 8] for selecting a good shape parameter or so-called sub-optimal
shape parameter. The MATLAB code on LOOCV can be found in [4]. We refer the
interest reader to Reference [4] for further details. The optimal shape parameter of
Matern function is denoted as Copt and the sub-optimal shape parameter using LOOCV
is denoted as Cloocv. Unlike Copt which requires the exact solution in the selection process,
a major advantage of LOOCV is that we do not need to know the exact solution for
the determination of Cloocv. Since LOOCV is a statistical method, the more collocation
points we have, the more accurate Cloocv we can obtain.

In this section, estimates of the numerical accuracy are based on the Root Mean
Squared Error (RMSE)

RMSE =

√

√

√

√

1

Nt

Nt
∑

i=1

(û(xi, yi)− u(xi, yi))
2, (53)

10



where u and û are exact and approximate solution respectively, and Nt is the number
of test points.

Example 1 We consider the following modified Helmholtz equation with Dirichlet bound-
ary condition in 2D

(

∆− λ2
)

u(x, y) = f(x, y), (x, y) ∈ Ω, (54)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (55)

where f and g are chosen according to the following exact solution:

u(x, y) = ex+y.

The computational domain Ω is bounded by the curve defined by the following parametric
equation:

∂Ω = {(x, y) | x = ρ cos θ, y = ρ sin θ, 0 ≤ θ ≤ 2π},
where

ρ =

(

cos(3θ) +
√

2− sin2(3θ)

)
1

3

.

−1 −0.5 0 0.5 1 1.5
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0

0.5

1
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Y

Figure 1: The profile of the computational domain.

We apply the method of particular solutions (MPS) to solve the above problem. For
implementation, we require the particular solution derived in the previous section using
Matern functions with various orders as the basis functions. Furthermore, we choose
300 quasi-random interior points, 100 equally distributed boundary points, 150 randomly
distributed interior points as the test points, and λ = 50 in our numerical implementa-
tion. The profile of computational domain with above mentioned interior and boundary
points is shown in Fig. 1. The overall profile of maximum absolute errors with various
orders of Matern function versus the shape parameters is shown in Fig. 2. We observe
that the lower order of Matern function is more stable but less accurate and vice versa.

11



This is due to the ill-conditioning of the higher order Matern function. As shown in Fig.
2, the curve of order 3 is much smoother than the curve of order 8. We also notice that
the optimal shape parameter of higher order Matern function is larger than the one with
lower order.
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Figure 2: The profiles of error versus shape parameter for various orders of Matern
function.

To demonstrate the stability of the Matern function, we choose Matern function with
order 6 and various initial search intervals to search the sub-optimal and optimal shape
parameter using LOOCV and exact solution respectively. Note that in this paper the
optimal shape parameter is obtained in the sense that the exact solution is being used
and then the MATLAB code ’fminbnd’ is used to search the minimal error in a search
interval [min, max] as shown in the column one of Table 1. As we can see in this table,
the accuracy obtained using LOOCV is as good as the one produced by the known exact
solution irrespective to the range of the search interval. This means our algorithm is
numerically very stable. We obtain the similar results using various orders of Matern
functions. Hence, we can comfortably choose a sufficiently large initial search interval
for our forthcoming numerical computation.

The results in Table 2 are obtained using various orders of Matern functions with an
initial search interval [0, 8]. The accuracy obtained using LOOCV is again as good as
the one using exact solution. For higher order Matern function, the computational cost
is higher since more terms of evaluating the particular solution in (26) are required.

Example 2 In this example, we consider the same modified Helmholtz equation (54) and
Dirichlet boundary condition (55) in 3D. fand g are chosen according to the following
exact solution:

u(x, y) = ex+y+z.

The computational domain Ω is the unit sphere.
In the numerical implementation, we choose 895 uniformly distributed interior points,

500 uniformly distributed surface points, 300 randomly distributed interior points as

12



[min, max] Cloocv RMSEloocv Copt RMSEopt

[0, 6] 2.338 2.329E − 07 2.427 2.161E − 07
[0, 8] 2.286 2.242E − 07 2.363 2.135E − 07
[0, 10] 2.380 2.370E − 07 2.435 2.230E − 07
[0, 12] 2.365 2.363E − 07 2.383 2.378E − 07
[0, 14] 2.300 2.894E − 07 2.622 2.926E − 07
[0, 16] 2.294 2.146E − 07 2.369 2.215E − 07
[0, 18] 2.311 2.643E − 07 2.428 2.145E − 07
[0, 20] 2.308 2.204E − 07 2.349 2.088E − 07

Table 1: Example 1: Sub-optimal shape parameters using LOOCV and the optimal
shape parameter using exact solution for various initial search interval for Matern func-
tion with order 6.

order Cloocv RMSEloocv Copt RMSEopt

4 0.680 8.198E − 07 0.753 6.414E − 07
5 1.399 2.860E − 07 1.503 2.922E − 07
6 2.286 2.242E − 07 2.363 2.135E − 07
7 3.316 2.010E − 07 3.448 2.104E − 07
8 4.474 2.545E − 07 4.452 2.501E − 07

Table 2: Example 1: Sub-optimal shape parameters using LOOCV and the optimal
shape parameter using exact solution for various orders of Matern function with search
interval [0, 8].

the test points, and λ = 50. The profiles of maximum absolute errors versus shape
parameters for various orders of Matern functions are shown in Fig. 3. We observe the
similar pattern between Fig. 2 and Fig. 3.

The results in Table 3 are obtained using various orders of Matern functions with
an initial search interval [0, 10]. Similar to the 2D case in the last example, the results
shown in Table 3 are as accurate as the results using exact solution.

Example 3 In this example, we consider the following plate vibration equation in 2D






(∆2 − λ4)u = f(x, y), (x, y) ∈ Ω,
u = g1(x, y), (x, y) ∈ ∂Ω,

∆u = g2(x, y), (x, y) ∈ ∂Ω.
(56)

where f, g1 and g2 are chosen according to the following exact solution:

u(x, y) = sin(πx) cos
(π

2
y
)

.

The boundary ∂Ω is defined by the following parametric equation:

∂Ω = {(x, y)|x = ρ(t) cos(t+
1

2
sin(5t)), y = ρ(t) sin(t +

1

2
sin(5t)), 0 ≤ θ < 2π} (57)
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Figure 3: The profile of the computational domain in 3D.

order Cloocv RMSEloocv Copt RMSEopt

4 0.053 2.785E − 05 0.083 2.631E − 05
5 0.268 4.071E − 06 0.323 3.187E − 06
6 0.704 7.822E − 07 0.700 7.761E − 07
7 1.251 5.242E − 07 1.214 4.611E − 07
8 1.857 4.130E − 07 1.748 3.821E − 07

Table 3: Example 2: Sub-optimal shape parameters using LOOCV and the optimal
shape parameter using exact solution for various orders of Matern function with search
interval [0, 10].

where

ρ(t) =
1

2

(

2 +
1

2
sin(5t)

)

. (58)

The computational domain Ω is a gear-shape domain as shown in Figure 4.
First, we examine the particular solution Φ of the following equation

(∆2 − λ4)Φ = (cr)nKn(cr). (59)

The left hand side of the above equation can be factored into the product of Helmholtz
and modified Helmholtz operators

(∆− λ2)
(

∆+ λ2
)

Φ(r) = (cr)nKn(cr). (60)

From (50), let λ1 = λ2 = λ, we have

Φ(r) =
1

2λ2

(

Φmh
n (r)− Φh

n(r)
)

(61)
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Figure 4: The profile of the gear-shape domain.

where Φmh
n (r) and Φh

n(r) are available from (26) and (30) respectively. In the implemen-
tation of Laplace boundary condition in (56), we need to find

∆Φ =
1

2λ2

(

∆Φmh
n (r)−∆Φh

n(r)
)

. (62)

The direct derivation of ∆Φmh
n (r) and ∆Φh

n(r) using (26) and (30) respectively are very
tedious. Instead, we observe that

(∆− λ2)Φmh
n (r) = (cr)nKn(cr)

which implies
∆Φmh

n (r) = λ2Φmh
n (r) + (cr)nKn(cr). (63)

Similarly,
∆Φh

n(r) = −λ2Φh
n(r) + (cr)nKn(cr). (64)

From (62) – (64), ∆Φh
n(r) can be obtained effortless as follows

∆Φ =
1

2

(

Φmh
n (r) + Φh

n(r)
)

. (65)

In the numerical implementation, we choose λ = 50, 412 interior points, 150 bound-
ary points, both uniformly distributed, as shown in Fig. 4. We measure the accuracy
on 119 quasi-randomly distributed test points using LOOCV. In Table 4, we show that
the numerical results for various order of Matern function using two initial search inter-
vals: [0,10] and [0,20]. Note that we modified LOOCV slightly by using only the interior
points only in the search of the sub-optimal shape parameter. In this way, the resultant
matrix is square and in the code of LOOCV we can can replace the MATLAB code ’pinv’
by ’inv’. To our experience, the generalized matrix solver ’pinv’ in LOOCV normally
overestimates the shape parameter than using ’inv’.
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order [min,max] Cloocv RMSEloocv

4 [0,10] 0.658 7.755E − 05
[0,20] 0.702 5.140E − 05

5 [0,10] 1.418 2.457E − 05
[0,20] 1.435 2.168E − 05

6 [0,10] 2.382 7.148E − 06
[0,20] 1.967 7.456E − 06

7 [0,10] 2.360 3.740E − 06
[0,20] 3.221 6.638E − 06

8 [0,10] 3.819 5.206E − 06
[0,20] 4.102 4.170E − 06

9 [0,10] 4.974 3.046E − 06
[0,20] 4.609 3.075E − 06

10 [0,10] 6.316 2.286E − 06
[0,20] 5.759 2.352E − 06

Table 4: Example 3: Sub-optimal shape parameters using LOOCV for various orders of
Matern function using two different initial search intervals.

6 Conclusion
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