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ABSTRACT

A version of the reduced control space four-dimensional variational method (R4DVAR) of data assimi-

lation into numerical models is proposed. In contrast to the conventional 4DVAR schemes, the method does

not require development of the tangent linear and adjoint codes for implementation. The proposed

R4DVAR technique is based on minimization of the cost function in a sequence of low-dimensional sub-

spaces of the control space. Performance of the method is demonstrated in a series of twin-data assimilation

experiments into a nonlinear quasigeostrophic model utilized as a strong constraint. When the adjoint code is

stable, R4DVAR’s convergence rate is comparable to that of the standard 4DVAR algorithm. In the

presence of strong instabilities in the direct model, R4DVAR works better than 4DVAR whose performance

is deteriorated because of the breakdown of the tangent linear approximation. Comparison of the 4DVAR

and R4DVAR also shows that R4DVAR becomes advantageous when observations are sparse and noisy.

1. Introduction

In the past two decades, the methods of oceano-

graphic data assimilation into numerical models have

undergone a significant progress from the early works of

Le Dimet and Talagrand (1986) and Thacker (1988) to

solution of the increasingly complex problems, reflected

in a series of monographs by Bennett (1992), Wunsch

(1996), Evensen (2006), and Talagrand and Bouttier

(2009), among others.

Most recently, research in data assimilation has an

apparent trend toward the studies of the ensemble-

based sequential techniques (Evensen 2003; Ott et al.

2004; Zupanski 2005; Uzunoglu et al. 2007). These

methods utilize low-dimensional ensembles of model

states to approximate propagation of error covariances

that are vital for improvement of practical weather

forecast. At the same time, the classic strong constraint

four-dimensional variational data assimilation (4DVAR)

methods still remain an important tool in atmospheric and

oceanic data analysis in both global (Wenzel et al. 2001;

Stammer et al. 2003; Blessing et al. 2008) and regional

(Zupanski et al. 2005; Yaremchuk 2006; Di Lorenzo et al.

2007) applications. The strong constraint methods are of

particular importance in oceanography where the data

coverage is sparse and observations are less accurate.

With the ever-growing complexity and resolution of

the ocean general circulation models (OGCMs), con-

straining them by 4DVAR methods is hampered by the

following difficulties:

1) High computational cost of 4DVAR optimization.

OGCMs have the typical state vector dimension of
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106–107 whereas the number of independent obser-

vations is only an order in magnitude smaller and

growing. On the other hand, optimal estimation of

an ocean state with classical 4DVAR methods re-

quires the number of model runs [including those

of the tangent linear (TL) and/or adjoint models]

comparable with the number of observations or

model state dimension, that is computationally pro-

hibitive. As a consequence, applications of 4DVAR

methods are limited to finding suboptimal solutions,

obtained after 10–100 iterations of the minimization

procedure.

2) High maintenance cost of the adjoint and tangent

linear codes. A significant part of the programming

burden related to the maintenance of the adjoint and

TL codes cannot be automated at the present state of

the adjoint compilers. In addition, keeping the ad-

joint and TL codes updated in parallel with the

perpetually upgraded models is labor intensive and

prone to human errors.

3) Breakdown of the tangent linear approximation (TLA).

In the presence of strong physical instabilities of the

background state applicability of TLA is restricted

to relatively short time intervals (e.g., Oldenborgh

et al. 1999). Furthermore, the TL and adjoint codes

of the community OGCMs never represent exact TL

or adjoint operators, especially when model physics

contains parameterized discontinuities (Zhu et al.

2002).

To resolve these difficulties the focus of research has

recently shifted toward the development of the reduced

control space 4DVAR (R4DVAR) methods. As a few

examples, Robert et al. (2005) utilized the empirical

orthogonal (EOF) analysis of the model trajectory for

the definition of the reduced control space and param-

eterization of the background error covariance. Robert

et al. (2006) explored preconditioning of the incre-

mental 4DVAR assimilation by the R4DVAR method.

Qiu et al. (2007) studied a possibility to use an ensemble

of randomly perturbed model states for generation of

the reduced control by singular value decomposition.

Another strategy studied by (Cao et al. 2007; Daescu

and Navon 2007) is based on the reduction of the model

itself using EOF approach. Although the latter tech-

nique improves computational efficiency, the issue of

finding an optimal low-dimensional state subspace re-

mains an open question.

This paper presents a version of the reduced control

space 4DVAR data assimilation method. In contrast to

previous studies (e.g., Robert et al. 2006; Daescu and

Navon 2007; Qiu et al. 2007; Liu et al. 2008), which

utilize a fixed EOF-generated subspace for optimization,

our algorithm employs a sequence of low-dimensional

subspaces that are iteratively updated in the process of

finding a minimum of the cost function.

The paper is organized as follows: in the next section

we first present linear considerations, underlying the

development of the scheme and outline the algorithm.

In section 3 the setup of the twin-data experiments is

described and the issue of the adjoint code instability is

considered. In section 4 we present the results of the

twin-data experiments and compare the method with

the standard 4DVAR technique. The conclusions are

presented in section 5.

2. Linear background

In a linear context, a 4DVAR iterative procedure

employs the adjoint code for exact multiplication of an

arbitrary vector by the Hessian matrix. For computa-

tional reasons, however, the number of iterations in

practical problems is often limited by a few hundred.

Therefore, such solutions should be treated as optimi-

zations on the subspace spanned by a limited number of

eigenvectors of the Hessian matrix.

In this regard, the ability to retrieve leading eigen-

vectors of the Hessian matrix is of primary importance

for practical purposes. In this section, we consider a

simplified linear variational data assimilation problem

controlled by the initial conditions, employ EOF anal-

ysis of the model solutions to obtain low-dimensional

approximations to the Hessian structure, and construct

a minimization method, which does not require the

adjoint algorithm.

a. EOF analysis of model solutions

As discussed by Farrell and Ioannou (2001, 2006), an

optimal reduction of a dissipative normal dynamical

system can be represented as Galerkin projection of the

dynamics onto the least damped modes. In this study,

we consider control of model solutions by the initial

conditions. Therefore it will be instructive to consider

first the impact of initial conditions on the result of EOF

analysis of the corresponding model solution in the

simplified case of the normal dynamical operator.

Consider a model of oceanic circulation ›tx 5 Mx,

where x is the vector of the state variables and M is

a normal differential operator with a full set of ei-

genfunctions mk and corresponding eigenvalues lk,

which satisfy the conditions Re{lk} # 0 and ~l 5

min
k
jIml

k
j. 0. If M is time independent, a model so-

lution corresponding to the initial state x0 is x(t) 5 x0

exp(Mt). In terms of mk the solution is represented by

the expansion x(t) 5 �k ak exp(lkt)mk, where ak are the

projections of x0 on the eigenstates of M.
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A standard technique widely used for initialization of

the sequential data assimilation schemes (e.g., Robert

et al. 2005) is the EOF analysis of the covariance matrix

C generated by the time averaging of a model run over a

sufficiently long-time interval T. When written in terms

of mk(x), the covariance matrix is

C [ x(t)xT(t) 5
1

T

ðT

0

�
k,l

a
k
a

l
* exp[(l

k
1 l

l
*)t]m

k
m

l
*T dt

5 �
k,l

a
k
a

l

exp[(l
k

1 l
l
*)T]� 1

(l
k

1 l
l
*)T

m
k
m

l
*T,

where the T symbol denotes transposition and the as-

terisk stands for the complex conjugate. If the averaging

time is long enough (~lT / ‘), the off-diagonal ele-

ments of C vanish in the basis {mk} and its largest ei-

genvalue Lm, satisfying the condition Reflmg/~l! 0,

can be estimated as

L
m

5 ja
m
j2

exp(2Refl
m
gT)� 1

2Refl
m
gT [ ja

m
j2F(Refl

m
gT).

(1)

The expression in (1) shows that the leading eigenvalues

of C are the squares of the largest m components of x0

corresponding to eigenstates of M with the smallest

damping Re{l}. Since dissipation in M usually selec-

tively damps high-frequency modes, the leading eigen-

vectors of C tend to capture the largest spatial scales of

model variability, which is also typical for the results of

EOF analyses of the oceanic data. At the same time, the

largest spatial scales are the least prone to parameteri-

zation errors of the dissipative processes in OGCMs.

This property makes the EOF decomposition of a

model solution an efficient tool for selectively retrieving

those components of x0 that are most accurately pro-

jected by a numerical model on the data points dis-

tributed over a given time interval.

b. Krylov subspace methods and the large least
squares problems

Now consider a problem of 4DVAR into a linear

dynamical system ›tx 5 Mx, where x 2 RM is the state

vector of the ocean and M is a time-dependent linear

operator. The model solutions are controlled by the

initial state x0 [ x(t0). Observations dn of x are made at

times tn, n 5 0, . . . , N, with N�M. We adopt a linear

model for observations dn 5 Onx(t n) 1 «, where « is the

spatially uncorrelated noise with the inverse covariance

Rn and linear operatorsOn project the model states x(tn)

onto the observed quantities dn. Since the total number

of observations in the time interval [t0, tN] is usually

much less than M, a background model state x0
b and its

inverse error covariance B are utilized for regularization

of the problem.

Introducing notations Gn 5
ffiffiffiffiffi
R
p

nOn, d
n

5
ffiffiffiffiffi
R
p

ndn and

An for the propagator between t0 and tn, the standard for-

mulation of the 4DVAR assimilation problem (e.g.,

Bennett 1992) can be written down as

J 5
1

2
(x0 � x0

b)TB(x0 � x0
b)

�

1�
n

(G
n
Anx0 � d

n
)T(G

n
Anx0 � d

n
)

�
! min.

X0
(2)

Minimization of J is can be reduced to solution of the

normal equation:

›J

›x0
5 B 1�

n
AnTGT

nGn
An

� �
x0

� Bx0
b 1�

n
AnTGT

n d
n

� �
5 0, (3)

which can be rewritten as Hx0 5 b, where b 5 Bx0
b 1

�
n
AnTOT

nRn
d

n
and

H 5
›2J

›(x0)2
5 B 1�

n
AnTGT

nGn
An (4)

is the Hessian matrix. Assuming that the symmetric

M 3 M matrix B could be represented as B 5 QTQ, it is

convenient to rewrite the minimization problem (2) in a

symmetric form:

J 5
1

2
(Sx0 � d)T(Sx0 � d), (5)

where

S 5

Q

G
1
A

..

.

G
N

AN

2
66664

3
77775, d 5

Qx0
b

d
1

..

.

d
N

2
66664

3
77775 (6)

are the ‘‘square root’’ of H [ STS and the normalized

data vector, respectively.

The large and sparse system of linear equations (3)

could be solved by means of the Krylov subspace

methods that form an orthogonal basis {em} on the se-

quence Hmr0, m 5 1, . . . , M, where r0 5 Hx0
0 2 b is an

arbitrary initial residual vector. The approximations to

the solution are obtained by minimizing the residual

over the Krylov subspaces K
m spanned by {em}. The

well-known generalized minimum residuals (GMRES),
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conjugate gradient, and biconjugate gradient methods

can be viewed as particular applications of the Krylov

subspace technique (e.g., Saad 2003).

As is seen from (4), multiplication of the arbitrary

residual vector by the Hessian matrix requires an al-

gorithm for multiplication of the vector by AnT (the

adjoint model). The latter may often be unavailable

and/or expensive to run and implement (see section 1).

Therefore, it might be useful to explore a possibility of

constructing an ‘‘adjointless’’ iterative scheme for the

minimization problem in (2), which is based on the

Krylov subspace technique.

In this regard, inspection of (4) shows that computa-

tion of the higher powers of H for construction of the

Krylov subspaces may seem to be redundant, because,

for example, HM contains terms with powers of A up to

2NM whereas a complete basis in RM could, in princi-

ple, be built on the sequences {AkTGT
kGkAkr}, {GkAkr}, or

{Akr} with k 5 1, . . . , M (assume, for a moment, that

both A and GT
kGk have the full rank). This observation

gives some grounds to examine numerical data assimi-

lation schemes, which do not require multiplication by

AT in the construction of Krylov subspaces.

The simplest approach is to build K
m on the powers

of A. Although this method does not explicitly take into

account the structure of B and Gk, it tends to selectively

extract the least damped components of r (i.e., those

components that are most accurately projected by Ak on

the data; section 2a). This property could be achieved by

extracting the leading eigenvectors of the covariance

matrix C 5 Sn(Anr)(Anr)T through the EOF analysis of

its dual C*(i, k) 5 hAir, Akri, where angular brackets

denote inner product RM.

The second adjointless approach is to build K
m on

the sequence {GnAnr}. This method requires a definition

of the operators ~Pn to project the model counterparts of

the data on the state space at times tn. Inspection of (4)

shows that specifying ~Pn 5 AnTGT
n provides a ‘‘natural’’

scheme K
k

5 span{AkT GkGkAkr}. This method, how-

ever, should be discarded, as it contains AT. Mathe-

matically, there is a considerable freedom in defining

the projection operators: the only restriction imposed

on ~P
n

by the requirement of convergence of the Krylov

scheme to the solution of (2) is to keep the rank of the

modified ST intact (Hayami et al. 2007). This can be

achieved, for example, by replacing AT by A in the ex-

pression for ST. Computationally, such a replacement

will require an additional model run (as a substitution of

the adjoint) for the generation of K
n. In the present

study, we take another approach and utilize the back-

ground error covariance B21 for projection by setting
~Pn 5 (DT

nDn)�1GT
n with DT

n 5 [GT
n , QT]. This choice could

be supported by the fact that the covariance propagates

in time by model dynamics and thus provides a measure

for the distance between the model states x(t) in terms

of their value at t 5 0.

One can expect that this second method of generating

K
k may converge faster, because it takes into account

the structure of Gk and B in generating the Krylov

spaces and, therefore, may give better approximations

to H than the first method.

c. Practical implementation

In this section we describe a 4DVAR assimilation

method based on successive minimizations of the cost

function performed in low-dimensional Krylov sub-

spaces K
m spanned by projections of the residuals on

the approximations to the leading eigenmodes of H and

C in different experiments. The proposed technique

exploits low computational cost of both EOF analysis

and explicit inversions of the Hessian operators in K
m.

The optimization procedure starts with a first-guess

state x0
0, whose time evolution is subsampled to retrieve

the first Krylov space K
m
0 via EOF decomposition of the

corresponding covariance matrix C. The corresponding

projection operator P0 is represented by the M 3 m

matrix, whose columns are the eigenvectors {m0
i} of C.

The dimension m of K
m is somewhat arbitrary, but

should be small enough to reduce the computational cost.

Objectively, m can be chosen, for example, as the number

of modes, explaining a certain portion 1 2 j of the model

variability defined by the observational noise level j.

After specifying the first Krylov subspace, the gradi-

ent =0J in K
m
0 is computed by perturbing x0

0 with {m0
i }

and taking the finite differences of J. Simultaneously,

we obtain the projection of the Hessian operator H0 5

P0
THP0 in K

0
using the approach of Zupanski (2005).

Next, the value of control x0
1 after the first iteration is

computed as

x0
1 5 x0

0 � ~x0
0 [ x0

0 � P0H�1
0 =0J. (7)

Note that in the case of linear dynamics, x0
1 corresponds

to the exact and unique minimum of J in K
m
0 . In the

nonlinear case considered in the next section, it is nec-

essary to execute several iterations of this ‘‘internal’’

optimization loop to reach a local minimum.

The second ‘‘external’’ iteration starts with the EOF

analysis of x1(t), which generates the next Krylov sub-

space K
m
1 . Note that the residual control x0

1 does not

contain the K0 components of x0
0 (denoted by ~x0

0),

which already explain a certain portion of the data. To

remove them from K
m
1 , the basis in K

m
1 3 K

m
0 is or-

thogonalized using the Gram–Schmidt process.
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Next, we store the suboptimal control ~x0 5 ~x0
0 and

exclude it from optimization process by updating the

cost function in (5) and minimizing it in K
m
1 :

J ! J 5
1

2
[S(x0 1 ~x0)� d]T[S(x0 1 ~x0)� d]! min

x02K
m
1

.

(8)

Minimization in K
m
1 is performed by the procedure

outlined by (7). In a similar manner we proceed with

further iterations.

In general, on the ith iteration, we first update the sub-

optimal control ~x0 ) ~x0 1 ~x0
i , find K

i11
through the

EOF analysis of xi(t), orthogonalize the basis in

K
m
i11 3 K

m
i , update the cost function in (8), and then

minimize it in K
m
i11 to obtain the next contribution ~x0

i11

to the suboptimal control vector ~x0. Numerically, ~x0
i are

iteratively accumulated in a single array ~x0 and do not

require additional memory resources.

d. Comparison with GMRES

The proposed algorithm belongs to the family of Krylov

subspace methods widely used for solution of the large

sparse linear systems of equations. Therefore it is instruc-

tive to compare it with the well-known limited-memory

generalized minimal residual (GMRESm) scheme (Saad

2003). When applied to the system of equations Hx 5 b,

the GMRESm algorithm [m 5 sup(dim K)] employs the

following iterative loop:

1) Given the approximate solution ~x on the kth itera-

tion, generate Krylov spaces spanned by {P i[H]r}, i 5

1, . . . , k, where P i[H] are the ith-order polynomials

in H and

r 5 b� H~x (9)

is the residual. The polynomials P i are generated

sequentially by the Arnoldi process (Arnoldi 1951)

to form orthonormal bases in K
i.

2) Compute

j: J 5 (Hj� r)T(Hj� r)! min
j2K

t
(10)

and update the approximation to the solution:

~x ) ~x 1 j.

3) If the updated residual is small enough, exit; other-

wise, go to step 1 and either increase the dimension

of the Krylov subspace by generating the next-order

polynomial, or (if i 5 m) start building the new se-

quence of K
i using the updated residual.

It can be proved that if m 5 M, the GMRES algo-

rithm provides the exact solution (Saad 2003). More-

over, the Krylov space can be built on the powers of any

matrix, whose null space is H-orthogonal to b.

The proposed R4DVAR algorithm has two major

differences from the classic GMRESm. Both of them are

dictated by the necessity to avoid multiplication by AT.

First, the Krylov spaces are built not on the powers of H,

but on the sequences of the operators approximating the

entries of its square root in (6). Second, since computa-

tion of the residual in (9) requires the adjoint code, we

adopt an alternative expression r 5 x
0
� ~x implicitly

multiplying (9) by H21. This modification does not affect

the convergence properties of the algorithm as soon as

the first-guess vector x0 contains all the spectral compo-

nents of H that are needed for decomposition of b.

Other distinctions from the classic GMRESm scheme

are purely technical:

1) Orthogonalization of the basis in K
m is done not by

the Arnoldi process, but via EOF analysis of the

sample covariance matrix built on the Krylov vectors

{Air} or f ~P iG
i
Airg.

2) Minimization in the Krylov subspace is done by di-

rect computation of the gradients and inversion of

the Hessian in K
m. From the computational point of

view this is approximately equivalent to the GMRES

minimization scheme, which employs the Gramm

matrix generated by the Arnoldi process.

3) The residual cost function (10) is taken in its original

form (8), which can be considered as a square root

form of (10). This allows us to estimate the cost

function by summing the squares of the residuals in

the data space and thus avoid utilization of the adjoint

code, which is necessary for estimation of (10).

From the mathematical point of view the proposed

algorithm should be equivalent to full (m 5 M) GMRES

under two conditions: 1) the rank of ST is kept intact by
~Pk; and 2) the first-guess vector contains all the spectral

components of b. These conditions do not seem to be too

restrictive in applications, because a relatively good first-

guess approximation is often available in the form of the

background state x0
b. Note, however, that in contrast to

full GMRES, which may work with any first-guess vector,

the proposed algorithm relies on the quality of x0.

In the numerical experiments below we demonstrate

the algorithm’s performance in a typical ‘‘oceanographic

application’’ when neither the background state nor its

error covariance is available. In such situations the

‘‘best’’ first-guess state has to be retrieved from the data,

the background state is taken to be zero, and its error

covariance is modeled by a low-pass filter. This approach

to error covariance modeling has gained considerable

attention in recent years (e.g., Weaver and Courtier 2001;

Pannekoucke and Massart 2008).
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3. Twin-data experiments

To assess the performance of the method, we con-

ducted twin-data experiments with a nonlinear model

controlled by the initial conditions. The underlying idea

is to generate reference model solutions, sample them

using a simulated ‘‘observational array,’’ contaminate

the samples by noise, and then reconstruct the reference

solution from these samples using the assimilation

method under study (hereafter R4DVAR).

A nonlinear model is chosen for two reasons: 1) it is

more realistic than the linear one in the sense of ap-

plications, and 2) it has an ability to generate reference

solutions with unstable tangent linear and adjoint models.

The latter situation is quite common in practice, and it

was interesting to compare R4DVAR with the standard

4DVAR in that case.

a. Numerical model

We consider a quasigeostrophic model in a square

33 3 33 grid V with a spatial resolution of dx 5 15 km

(Fig. 1):

›
t
q 1 J(c, Dc) 1 b›

x
c 5 nD2c 1

1

h
curl

z
t, (11)

Dc� R�2
d c 5 q, (12)

where c is the streamfunction in the upper layer, b is

the meridional gradient of the Coriolis parameter, Rd is

the internal Rossby radius of deformation, and n is the

horizontal diffusion coefficient.

At the spinup stage the model is forced for 1000 days

by a steady wind stress curl pattern:

curl
z
t 5

t
0

L
sin 4p

x*

L

� �
cos 4

y*

L

� �
.

Here t0 5 5 3 1025 m2 s22, L 5 480 km is the horizontal

size of the domain, and x*, y* are Cartesian coordinates

rotated 408 with respect to the north–south direction.

The other model parameters are h 5 700 m, b 5

2 3 1021 m21 s21, and Rd 5 25 km. The horizontal

diffusion coefficient n was either 50 or 500 m2 s21 in

different experiments.

Since the boundary conditions are assumed to be

known (cj›V 5 Dcj›V 5 0), the model is controlled by the

initial distribution of the potential vorticity field q(x, y, 0).

Equations (11) and (12) are integrated in time using the

leapfrog scheme with a time step of 0.05 days. Therefore,

the number of adjusted parameters M (gridpoint values

of q at t 5 1000 and t 5 1000.05 days) is 2 3 312 5 1922.

After the spinup the wind was switched off and the

model was run in an unforced regime for T 5 45 days,

FIG. 1. Streamfunction c of the reference solutions with (top) n 5 50 m2 s21 and (bottom) n 5 500 m2 s21. Asterisks denote the data

points of the sampling grids used in twin-data experiments. The contour interval is 3000 m2 s21.
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producing the reference solutions cref (Fig. 1) for the

twin-data experiments.

b. Instability of the tangent linear model

The reference solution with n 5 50 m2 s21 is charac-

terized by a high degree of nonlinearity (the typical

value of jJ(c, v)j exceeds dissipation and b-effect terms

by an order in magnitude). As a consequence, TL and

adjoint codes turn to be unstable. This instability has an

e-folding time scale te of approximately 15 days, that is

several times less than the typical dissipation time td 5

dx2/n of the grid-scale harmonics. This property of the

model significantly degrades the performance of the

traditional 4DVAR scheme, based on the adjoint code.

We tested the validity of TLA by perturbing q at t 5 0

with a test function:

d
q
(x, y) 5 « sin 13p

x

L

� �
sin 11p

y

L

� �

and estimated the quantity:

F(«) 5
c

q1dq
� c

q
� c

q

dq

			 			
c

q

		 		 , uk k[

ðT

0

ð
V

juj dV dt,

where c is the streamfunction produced by integrating

the model from initial conditions specified by the sub-

script and c
q

denotes the solution of the tangent model

linearized in the vicinity of cq. As shown in Fig. 2, the

correct asymptotic behavior of the Taylor expansion

F(«) ; «2, (« / 0) is observed only with n 5 500 m2 s21

(i.e., when the dissipation time scale is comparable with te).

Exponential growth of the small-scale harmonics in

the tangent linear and adjoint codes could be sup-

pressed by increasing the viscosity to a ‘‘stable’’ value

(n 5 500 m2 s21; B. Cornuelle 2006, personal commu-

nication). This approach usually improves the perfor-

mance of the adjoint 4DVAR schemes in the cases

when TLA breaks down because of nonlinear instabil-

ities. However, it does not improve the accuracy of TLA

and may degrade it even further (Fig. 2). As a rule, TLA

breakdown causes certain difficulties in the performance

of descent algorithms, making the adjoint 4DVAR in-

efficient after several iterations.

c. Simulated observations

Observations c*kn were picked from the first-guess

solutions at tn51,2,3 5 15, 30, and 45 days at the spatial

locations specified by ‘‘sparse’’ and ‘‘dense’’ measure-

ment arrays (Fig. 1) and contaminated by white noise

«c whose rms variation «kcrefk/(VT) was varied (« 5

0, 0.1, 0.3). To regularize the problem we also specified

the ‘‘bogus data set’’ D2c 5 0 at tn 5 0, 15, 30, and

45 days. The corresponding cost function is

J5
1

2

ð
V

�
3

n51
�
K

k51
[Ô

k
c(t

n
)�c

k,n
* ]2

1W
s
�

3

n50
[D2c(t

n
)]2

8<
:

9=
;dV,

where Ôk projects c(tn) on the kth observation point,

K 5 16(64) is the number of observation points at time

layer n, and Ws 5 0.03dx4 is the smoothing weight. The

dimension of the observational space (including both

real and bogus datapoints) is no 5 312 3 4 1 3N 5

3N 1 3844.

Following the notation of section 2b, the observa-

tional operator for n 5 l, 2, 3 is represented in the matrix

form:

G5
�
K

k51
Ô

kffiffiffiffiffi
W
p

s
D2

2
664

3
775[D�R�2

d E]�1,

where E is the identity matrix. For n 5 0 the observa-

tional operator is Q 5
ffiffiffiffiffi
W
p

s
D2(D� R�2

d E)�1. The cor-

responding term of the cost function can be interpreted

as the background term with qb 5 0 and the inverse

background error covariance B 5 QTQ.

We performed two sets of the twin-data assimilation

experiments: with the stable (n 5 500 m2 s21) and un-

stable (n 5 50 m2 s21) adjoint models. Within each set

we varied the number of observations N 5 {16, 64} and

FIG. 2. TLA errors F(«) of the model solutions.
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the noise level in the data « 5 {0, 0.1, 0.3}. In the

R4DVAR assimilation experiments we also varied the

dimension of K
m m 5 {8, 15} and the type of EOF

decomposition in the process of generation of the

Krylov spaces (section 2b). In the R4DVAR analysis

the value of m is limited by the number of the time

samples N. To bypass this limitation the model fields

sampled at t n were augmented with additional samples

taken daily between observations.

To assess the R4DVAR performance we checked its

convergence rate against 4DVAR for every set of pa-

rameters. In the unstable case (n 5 50 m2 s21) the ad-

joint model was stabilized by setting n 5 500 m2 s21,

otherwise it was impossible to find a minimum of J with

a reasonable accuracy.

The quality of reconstruction of the reference solu-

tions was gauged by the error parameter:

e2
c5

c�cref
		 		
jjcrefjj

.

d. First-guess solutions

To obtain the first-guess set of basis functions in the

R4DVAR case we used the following procedure: first,

the values of c*k,n, n 5 1, . . . , 3 were linearly interpolated

on the model grid; second, the interpolated fields ck(x, y)

were smoothed by a biharmonic filter, whose transfer

function was tuned to suppress the interpolation noise

and noise in the data; third, potential vorticity distri-

butions qk(x, y) were computed as qk 5 (D 2 R22
d )ck;

forth, q1(x, y) and q2(x, y) were integrated for 30 and

15 days, respectively, and subsampled with 3-day dis-

cretization; finally, q3(x, y) was added to 17 samples

obtained from the integrations and the whole set of

18 fields was subjected to EOF analysis.

Figure 3 shows comparison of the qref, q1 and the

spectra EOF(qref), EOF(q1. . .18) of the first-guess sam-

ples retrieved from the ‘‘dense’’ data with « 5 0, 0.1, and

0.3 in the unstable case. It is seen that the reference

solution can be described with a relatively high preci-

sion using only 15–20 eigenmodes of the covariance

function qref(x, y, t)qref(x9, y9, t), whereas the first-guess

spectra differ considerably in their properties from the

reference one (right panel in Fig. 3). The difference is

caused by the dominance of the large-scale modes and

exhibits itself in much steeper decay of the spectra. As a

consequence, the first-guess solutions are well approxi-

mated by only five–seven eigenmodes of the respective

covariance functions. The corresponding values of e
c1

,

however, are rather large and vary in between 0.42 for

« 5 0 and 0.51 for the « 5 0.3.

4. Results

We conducted a series of 60 twin-data assimilation

experiments using the adjoint and R4DVAR assimila-

tion techniques. The major purpose was to compare the

convergence rates of both methods and estimate their

potential ability to retrieve the reference state from

the data. Results of the experiments are assembled in

Tables 1 and 2.

In the R4DVAR analyses we also compared the per-

formance of the two methods of generating the Krylov

subspaces outlined in section 2b. The first one is based

on EOF decomposition of the sample covariance matrix

C (experiments labeled E8,15), whereas the second one

also accounts for the background covariance and the

FIG. 3. Potential vorticity q of the (left) reference and (right) first-guess (K 5 64, «c 5 0.3) solutions at t 5 0. The contour interval (CI)

is 1025 s21. (right) The normalized EOF spectra of the reference solution and of the first-guess samples retrieved from the data with

different noise levels. Dashed line shows the approximation error of the reference solution as a function of the number of eigenmodes used.
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structure of the observation operators (experiments

E8,15
H ). Because 4DVAR method failed to converge in

the unstable case because of the breakdown of the TLN

approximation, we prescribed n 5 500 m2 s21 in the ad-

joint model for both stable and unstable runs. In 4DVAR

experiments the limited-memory quasi-Newtonian de-

scent algorithm of Byrd et al. (1995) was used. Iterations

were terminated when either the relative reduction of

the cost function was less than machine precision 10210,

or the number of iterations exceeded 3000. In the

R4DVAR experiments we performed several H21 pre-

conditioned iterations [Eq. (7)]. As a rule, convergence

was fast, and never required more than three iterations

of the internal minimization loop.

After some tuning we found that the best overall

convergence rate was achieved when the control sub-

space was updated as soon as the gradient in the inner

loop reduced more than 50 times in magnitude. This

criterion was used in to compute the values listed in

Tables 1 and 2, which compare ec and the relative re-

duction of the cost function J/J0 between the assimila-

tion experiments. As seen from the tables, R4DVAR

outperforms 4DVAR, in most cases providing better fit

to the reference state and greater reduction of the cost

function. The only exception is the case of dense ob-

servational array with perfect observations (first line in

Table 1).

Comparing columns 2–4 and 3–5 in both tables also

shows that performance of R4DVAR is better for m 5 15

eigenfunctions. Experiments with larger m (not shown)

did not improve the rate of convergence. We attribute

this to the spectral properties of the reference solution,

which show that qref can be approximated by 15 eigen-

modes with an error of 7% (dashed line in Fig. 3c).

Differences in the values of ec and J/J0 in columns 2–3

and 4–5 indicate that EH experiments provide a some-

what better convergence rate: the final values of J/J0 are

lower, when compared with those obtained using EOF

analysis of C. The advantage is particularly evident for

« 5 0 and 0.1 with m 5 15 in the unstable case and m 5 8

in the stable case. In terms of ec the difference in per-

formance between the methods is less evident, espe-

cially for sparse observations and « 5 0.3. This can be

partly explained by a tendency to data overfitting by the

EH method, which tends to converge faster, whereas

Ws was not fine tuned to adequately account for the

noise level.

Figures 4 and 5 compare convergence rates of the

R4DVAR technique and the 4DVAR method. To

simplify the comparison, the number of 4DVAR itera-

tions is shown below the horizontal axis whereas the

equivalent (in CPU terms) number of R4DVAR inner

loop iterations is shown above the axis. Since the value

of m is low, the CPU time required by EOF analysis and

covariance estimation contributes only a small fraction

to the total computational cost of the R4DVAR, which

is almost entirely determined by the number of model

runs (m 1 1) required for gradient estimation. The ad-

joint code in our case required 10% more CPU time

than the direct run, so that one R4DVAR iteration was

approximately equivalent to 5 4DVAR iterations for

m 5 8 and 8 iterations for m 5 15.

TABLE 1. Results of the assimilation experiments with the stable adjoint model (n 5 500 m2 s21).

«c dx

Adjoint E8
H E8 E15

H E15

ec J/J0 (3103) ec J/J0 (3103) ec J/J0 (3103) ec J/J0 (3103) ec J/J0 (3103)

0.0 4 0.034 0.44 0.040 1.25 0.037 1.32 0.040 1.07 0.038 1.08

8 0.196 3.61 0.156 3.74 0.193 4.97 0.122 2.62 0.116 2.75

0.1 4 0.086 8.52 0.103 8.74 0.107 10.1 0.059 7.13 0.058 7.21

8 0.192 11.8 0.143 5.89 0.174 7.63 0.139 5.65 0.144 5.79

0.3 4 0.181 60.1 0.145 56.2 0.164 57.8 0.136 53.8 0.136 53.9

8 0.257 52.1 0.271 38.9 0.280 39.9 0.297 33.4 0.308 35.6

TABLE 2. As in Table 1, but for the unstable adjoint model (n 5 50 m2 s21).

«c dx

Adjoint E8
H E8 E15

H E15

ec J/J0 (3103) ec J/J0 (3103) ec J/J0 (3103) ec J/J0 (3103) ec J/J0 (3103)

0.0 4 0.182 41.1 0.099 11.9 0.106 12.1 0.089 10.1 0.095 10.5

8 0.391 56.3 0.341 29.6 0.339 29.9 0.224 14.6 0.278 20.3

0.1 4 0.242 59.5 0.128 18.5 0.135 19.3 0.129 16.8 0.125 16.9

8 0.389 70.0 0.288 26.3 0.272 26.9 0.265 17.4 0.304 24.1

0.3 4 0.252 105. 0.174 55.1 0.182 60.0 0.167 51.2 0.168 51.4

8 0.376 102. 0.424 62.1 0.417 64.7 0.356 46.0 0.328 47.3
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Figures 4 and 5 show that 4DVAR demonstrates

faster convergence at the initial stages of assimilation

when the number of 4DVAR iterations is i # m.

However, the R4DVAR catches up after m–4m itera-

tions, performs similarly for the stable case (Fig. 4), and

outperforms 4DVAR in the case when TLA is broken

(Fig. 5). The effect becomes more visible at higher noise

levels and sparser sampling: in these cases J has a larger

number of local minima, and the 4DVAR algorithm in

the stable case tends to terminate as soon as it en-

counters the first one (Figs. 4b,c). R4DVAR has a ca-

pability to search over the surroundings and eventually

find a deeper minimum. The sparsely sampled unstable

experiment with zero noise (Fig. 5c) provides an inter-

esting example of this property: the 4DVAR scheme

failed at the 76th iteration because of the loss of the de-

scent direction, providing a ‘‘suboptimal’’ initial condition

shown in the left panel of Fig. 6. The R4DVAR scheme

proceeded further, and was able to retrieve an anticy-

clonic eddy in the northwestern corner of the domain

(middle panel in Fig. 6). Note that this eddy is barely

captured by the observational grid only at the last day of

the model run (Fig. 1, rightmost panel in the top row).

As it is seen from Table 2 and Fig. 5, the R4DVAR

technique is especially advantageous in the unstable

case, mostly because of its robustness with respect to

dynamical instabilities. In contrast, the 4DVAR algo-

rithm terminated because of the line search failure in all

the unstable cases. At sparser sampling and higher noise

levels the termination occurred much earlier, often after

less than 100 iterations (Figs. 5b,c).

Finally, building the Krylov subspaces using model–

data projection G and B (experiments EH) proves to be

advantageous in terms of convergence rates, especially

at the late stages of the assimilation process when sparse

and/or noisy data are assimilated (Figs. 4c and 5). At

these stages prior statistics imposed by the smoothness

constraint begins to play its role, as the contribution of

FIG. 4. Relative reduction of the cost function J/J0 for experiments with the stable model. (middle) Evolution of ec with iterations.

FIG. 5. Error in the approximation of the reference solution «c for experiments with the unstable model.
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the smoothness term to the cost function becomes

comparable with the term, penalizing misfit with the

real data. As a consequence, directions toward the

minimum of the cost function obtained by the standard

EOF expansion become more and more distorted by the

‘‘observed’’ zero values of D2c. One may expect that in

the case of nonlocal model–data projection operators

the effect could be visible at the earlier stages as well.

5. Discussion and conclusions

In this paper, a version of the reduced control space

4DVAR data assimilation method is proposed. In con-

trast to previous studies (e.g., Robert et al. 2006; Daescu

and Navon 2007; Qiu et al. 2007; Liu et al. 2008), which

utilized a fixed EOF-generated subspace for optimization,

our algorithm employs a sequence of low-dimensional

subspaces that are iteratively updated in the process

of finding a minimum of the cost function. A similar

optimization technique was utilized by Vermeulen and

Heemink (2006), Cao et al. (2007), and Fang et al. (2009),

but their approach involved construction of the reduced

model and its adjoint, which are not required in our case.

The algorithm is tested in the framework of twin-data

assimilation experiments with a nonlinear quasigeo-

strophic model controlled by the initial distribution of

potential vorticity. Robustness of the method is com-

pared with the standard 4DVAR technique based on the

adjoint code. Our results can be summarized as follows:

1) Compared to 4DVAR, the proposed method provides

similar or better reduction of the cost function after

several updates of the search subspace. In terms of the

computational cost, R4DVAR performs similarly with

4DVAR if the latter is terminated after more than

2m–4m iterations, where m is the (fixed) dimension of

the reduced control subspaces (Figs. 4 and 5).

2) The proposed method gains substantial advantage

over 4DVAR when the dynamical constraints have

strong nonlinear instabilities, which cause the break-

down of TLA.

3) Compared to 4DVAR, the proposed method gains

extra efficiency when observations become more

sparse and/or noisy.

The proposed technique is based on application of the

Krylov subspace method targeted on the specific type of

cost functions encountered in 4DVAR problems. The

technique has a lot in common with the GMRESm al-

gorithm and appears to be equivalent to GMRES in the

limit m 5 M under the conditions specified in section 2.

The distinct feature of our approach is construction of

the low-dimensional subspaces not on the powers of H,

but on the approximations to the operators entering its

square root in (6). Because these operators are pro-

portional to the powers of the dynamical operator, we

employ the EOF analysis of the model trajectories built

on the control space residuals to extract the functions

spanning the low-dimensional search spaces K
m.

Similar to other R4DVAR methods, the proposed

technique does not require development and mainte-

nance of the adjoint code. It is also very efficient in

terms of parallelization, since the major portion of CPU

time is consumed by m-independent model runs required

for gradient computation in the Krylov subspaces. Re-

garding parallelization, one may expect an additional

10%–30% gain in computational cost of the R4DVAR

method when it is applied to state-of-the-art OGCMs,

whose parallelization efficiency scales nonlinearly with

an increase of the number of processors.

FIG. 6. Optimized streamfunction at t 5 0 obtained by the (left) 4DVAR and (middle) R4DVAR methods for the unstable case at sparse

resolution. (right) The reference solution is shown. The CI is 3000 m2 s21.
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Another potential CPU time gain in OGCM appli-

cations should be acquired if we consider computational

efficiency of the adjoint models. As a rule, adjoint codes

of the community OGCMs with 4DVAR capabilities

(especially those generated by automatic compilers)

require 2–5 times more CPU time than the direct codes,

whereas the adjoint of our simple model is only 10%

slower than the direct one.

One particular advantage of the R4DVAR approach

is that it eliminates the necessity to ‘‘stabilize’’ the ad-

joint model in the presence of nonlinear instabilities

(e.g., Zhu and Kamachi 2000; Zhu et al. 2002) by sim-

plification and/or modification of the numerical scheme.

These approximations lead to a certain loss of accuracy

of the tangent linear approximation (Fig. 3) and degrade

the performance of descent algorithms.

Another benefit of the method is that it implicitly

regularizes the problem through the ranking of the

search subspaces in the course of assimilation: during

the first iterations the smoothest approximations to

initial conditions are recovered, they are later refined in

subspaces containing higher-order spatial harmonics. In

fact, results of R4DVAR assimilation were weakly

sensitive to the magnitude of Ws, especially in the cases

of dense observations and moderate noise levels.

Our numerical experiments have also shown that the

efficiency of the proposed technique is sensitive to the

quality of the first-guess subspace K0. For instance,

when K0 is generated by an ensemble of white noise

perturbations as proposed by Qiu et al. (2007), the de-

scent became inefficient and required an order in

magnitude increase either in the subspace dimension or

in the number of iterations needed to achieve the con-

vergence. This phenomenon can be explained by a small

projection of the seed perturbations on the optimal

state. A similar effect has been observed in the twin-

data experiments of Qiu et al. 2007, who considered a

smooth background state of a 2D shallow-water model

on the 44 3 44 grid but had to use 150 ensemble

members for a reasonably accurate assimilation.

In that respect it is necessary to note that in the limiting

case of ‘‘zero quality’’ of the first-guess state (x0 is H-

orthogonal to b, section 2d), the proposed algorithm will

fail in the linear case. This is not necessarily true in the

nonlinear case, because in the process of model inte-

gration nonlinearities may generate state vector compo-

nents that are not present in the first-guess solution.

These components affect the composition of K
m and

may eventually span b with iterations. In operational

applications the very bad quality of the background state

seems to be unlikely, because a reasonably good ap-

proximation to reality is already available either from

previous assimilation cycles or from the preliminary data

analysis (simulated in section 3d). Note that in all the

reported R4DVAR experiments we did not use any prior

information on the solution except that contained in the

data itself and in a simple smoothness constraint.

Further improvements of the method can be done in

several directions. First of all, a better approximation to

ST could be developed. In this study we used the back-

ground error covariance to project Gk
TGkAkr on the state

space. In many applications, however, the background

error covariance is rank deficient as it is approximated by

n ;50–100 leading eigenmodes, emerging from statistical

analysis. In such situations the condition of Hayami et al.

(2007) may be violated, causing inability of the scheme to

retrieve data components not present in the spectrum of

B. More secure adjointless projections could be sug-

gested, that involve replacing AT by A or by its ‘‘non-

linear approximation.’’ The latter can be obtained, for

example, by reversing the sign of the odd-order differ-

ential operators in A. These projections may seem more

robust as compared to the one with low-rank B because

dimensions of their null spaces are much smaller than

M – n, and their structure may differ only marginally

from the null space of AT. Another possible improve-

ment that could be done is augmenting the Krylov

matrices with projections of the residuals on the certain

eigenfunctions of B, if the latter are readily available.

There is also a room for increasing the computational

efficiency of the proposed algorithm. One of the direc-

tions is applying more sophisticated methods for

extracting the basis in K
m, such as direct SVD de-

composition of the Krylov matrices. Another improve-

ment could be obtained by adaptive adjustment of the

Krylov space dimensions. One of the possible strategies

in that respect is the entropy analysis of the Hessian

spectra in K
m (Uzunoglu et al. 2007).

The most urgent development, however, is to test the

method with the multivariate state vectors of a state-

of-the-art OGCM. This is the subject of our present

research.
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