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The Method of Approximate Particular Solutions for
Solving Elliptic Problems with Variable Coefficients

C.S. Chen∗, C.M. Fan†, P.H. Wen‡

Abstract
A new version of the method of approximate particular solutions using radial

basis functions has been proposed for solving a general class of elliptic partial
differential equations. In the solution process, the Laplacian is kept on the left-hand
side as a main differential operator. The other terms are moved to the right-hand
side and treated as part of the forcing term. In this way the close-form particular
solution is easy to obtain using various radial basis functions. The numerical scheme
of the new method of approximate particular solutions is simple to implement and
yet very accurate. Three numerical examples are given and the results are compared
to Kansa’s method and the method of fundamental solutions.

Key words : Radial basis functions, particular solution, homogeneous solution, meshless
method, elliptic partial differential equations.

1 Introduction

The particular solution has traditionally played an important role for solving ordinary
and partial differential equations. The particular solution is known as the solution that
satisfies the given differential equation in the infinite domain without the consideration
of boundary conditions. In 1967 Fox, Henrici, and Moler [7] first proposed the method
of particular solutions (MPS) to solve Laplace eigenvalue problem ∆u = −λu in Ω and
u = 0 on ∂Ω where Ω is L–shape domain. The basic idea of the original MPS is to choose
a set of basis functions φi(x, y) that satisfy the eigenvalue equation. We then try to find
a solution of the following form

u(x, y) =
∞∑
i=1

aiφi(x, y) (1)
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which is also zero on the boundary ∂Ω. In [7], the basis functions are the combination
of Bessel functions and sine functions. The solution procedure of the MPS is similar to
the method of fundamental solutions (MFS) [6, 8] which was proposed by Kupradze and
Aleksidze [10] in 1964. In the MFS, the solution can be written as a linear combination
of the fundamental solution which satisfies the given homogeneous equation. The fun-
damental solution is in fact a special type of particular solution. Similar to the MPS,
we need only to impose the boundary condition for the MFS to solve the homogeneous
equation. Both of the MPS and MFS were developed in the 1960’s but later received less
attention in the science and engineering communities. One of the reasons for these two
methods fading away is that both methods are restricted for solving very specific type
of problems. In contrast, during the same period of time the finite element method and
finite difference method became very popular due to their ability to solve a large class
of partial differential equations. The aim of this paper is to develop a meshless method
using the concept similar to the MPS through the use of the radial basis functions to
solve general types of partial differential equations. To distinguish our approach of us-
ing approximate particular solution from the original MPS in [7], we call our proposed
numerical scheme as the method of approximate particular solutions (MAPS).

In general, the analytic particular solution is only available for a very limited class of
differential equations with forcing term. As a result, numerical schemes are required for
obtaining the approximate particular solutions. It is known that the particular solution
for a given differential equation is not unique. In recent years a rich variety of numerical
techniques have been developed for this purpose [1, 4, 5, 8, 12]. Among them, radial
basis functions (RBFs) have been very popular due to their effectiveness and simplicity
of implementation [8]. In the past, obtaining the particular solution has been just part
of the solution procedure. To obtain the full solution of the original differential equation,
the homogeneous solution is required. Recently the method of fundamental solutions
(MFS) has coupled with the particular solution approach to form a one-stage approach
to solve the partial differential equations with variable coefficients [2, 14]. In the MFS,
the fictitious boundary is required in the solution process. However, it is not trivial how
to place the fictitious boundary so that the optimal numerical results can be obtained.
The location of the source points on the fictitious boundary is still an outstand research
problem. To alleviate this difficulty, a newly developed method of approximate particular
solutions (MAPS) [3] is proposed without the use of the MFS. However, it can only
be used to solve linear partial differential equations with the availability of close-form
particular solution for the chosen RBF. Despite the recent advancement in obtaining the
close-form particular solutions for various types of differential operators [4, 8, 13], we
are still restricted to solve the linear partial differential equations. As shown in [2], the
fundamental solution and the particular solution are put together as a one-stage approach.
As a result, we are able to combine the basic concept of these two approaches to form a
new MAPS that enables us to solve a general class of partial differential equations. This
approach is somehow similar to the dual reciprocity boundary element method (DRBEM)
[11] which is very popular in the area of boundary element methods.
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The structure of this paper is as follows. In Section 2, we provide the detail of the
formulation of the proposed MAPS. In Section 3, we test our proposed method on three
examples. We also make comparison of our approach with Kansa’s method and the MFS.
In Section 4, we draw the conclusion and give the potential applications of the MAPS.

2 The Method of Approximate Particular Solutions

The idea to extend the MAPS in [3] to more general types of equations which includes the
variable coefficients is similar to the formulation of the DRBEM [11] where the Laplacian
is kept on the left-hand side as the main differential operator and all the other terms
containing reaction and convection terms are moved to right-hand side and become part
of the forcing term. To avoid the domain integration, DRBEM is a very effective method
for handling inhomogeneous problems and widely appears in the literature of boundary
element methods. The success of the DRBEM depends on how the forcing term is
approximated. RBFs have played an important role in this regard. In our proposed
MPS, no domain or boundary integration is required. Extensive reviewed articles for
numerical methods involving the particular solution have been given in the literature
[5, 8]. We refer readers to these papers for further details.

We consider the following elliptic partial differential equation in 2D

∆u+ α(x, y)
∂u

∂x
+ β(x, y)

∂u

∂y
+ γ(x, y)u = f(x, y), (x, y) ∈ Ω, (2)

Bu = g(x, y), (x, y) ∈ ∂Ω, (3)

where α(x, y), β(x, y), γ(x, y), f(x, y), and g(x, y) are given functions. B is a boundary
differential operator.

The key idea of the DRBEM and the new proposed MAPS is to rearrange (2) into
Poisson-type equation; i.e.,

∆u(x, y) = h

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
, (x, y)∈Ω, (4)

where

h

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= −α(x, y)

∂u

∂x
− β(x, y)

∂u

∂y
− γ(x, y)u+ f(x, y). (5)

Using RBFs, φ, to approximate h, we have

h

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
=

n∑
i=1

aiφ(ri), (6)

where ri = ‖(x, y)− (xi, yi)‖ and {(xi, yi)}n1 are called the centers or trial points and
φ : R+ → R is a univariate function.
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Using RBF, an approximate particular solution to (2) is given by

ûp(x) =
n∑
i=1

aiΦ(ri), (7)

where Φ is obtained by analytically solving

∆Φ = φ. (8)

Φ in (8) can be obtained by repeated integration of φ [8]. Three commonly used
RBFs φ and their corresponding particular solutions Φ are shown in Table 1.

Table 1: Radial basis functions and their corresponding particular solutions.

ϕ Φ
√
r2 + c2

1

9

(
4c2 + r2

)√
r2 + c2 − c3

3
ln
(
c+
√
r2 + c2

)

r2m ln r
r2m+2 ln r

4(m+ 1)2
− r2m+2

4(m+ 1)3

r2m−1 r2m+1

(2m+ 1)2

Let us assume the solution of (2) – (3) can be approximated by

u(x, y) ' û(x, y) =
n∑
i=1

aiΦ(ri), (9)

Then from (8) we have

∆u ' ∆û =
n∑
i=1

ai∆Φ(ri) =
n∑
i=1

aiφ(ri), in Ω. (10)

From (6) and (10), we have

n∑
i=1

aiφ(ri) = −α(x, y)
∂û

∂x
− β(x, y)

∂û

∂y
− γ(x, y)û+ f(x, y), for (x, y) ∈ Ω, (11)

where

∂u

∂x
' ∂û

∂x
=

n∑
i=1

ai
∂Φ

∂x
(ri), (12)

∂u

∂y
' ∂û

∂y
=

n∑
i=1

ai
∂Φ

∂y
(ri). (13)
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(11) can be reformulated as follows:

n∑
i=1

ai

(
φ(ri) + α(x, y)

∂Φ(ri)

∂x
+ β(x, y)

∂Φ(ri)

∂y
+ γ(x, y)Φ(ri)

)
= f(x, y), for (x, y) ∈ Ω.

(14)
On the other hand, the boundary condition in (3) becomes

n∑
i=1

aiBΦ(ri) = g(x, y), (x, y) ∈ ∂Ω. (15)

Ω

∂Ω

Figure 1: Interpolation points (∗), and boundary collocation points (•) in the computa-
tional domain.

For the numerical implementation, we need to choose two sets of interpolation points
as shown in Figure 1. We let ni be the number of interior points (∗), {(xj, yj)}ni1 , and

nb the number of boundary points (•), {(xj, yj)}ni+nbni+1 . Furthermore, n denotes the total
number of points; i.e., n = ni + nb. By collocation method, from (14)–(15) we have

n∑
i=1

aiΨ(rij) = f(xj, yj), 1 ≤ j ≤ ni, (16)

n∑
i=1

aiBΦ(rij) = g(xj, yj), ni + 1 ≤ k ≤ n, (17)

where

Ψ(rij) = φ(rij) + α(xj, yj)
∂Φ(rij)

∂x
+ β(xj, yj)

∂Φ(rij)

∂y
+ γ(xj, yj)Φ(rij), (18)
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and rij = ‖(xj, yj)− (xi, yi)‖. The above system of equations can be easily solved by
standard matrix solver. Once {ai}n1 is determined, the approximate particular solution
in (9) becomes the approximate solution û of (2)–(3); i.e.,

û(x, y) =
n∑
i=1

aiΦ(ri). (19)

The above approach not only avoids the calculation of homogeneous solution but
also extends the MAPS to solving partial differential equation with variable coefficients.
Moreover, the corresponding particular solution of a given RBF can be obtained easily
since the differential operator has been reduced to Laplacian as shown in (4). The solution
procedure is fairly simple which is another advantage of our proposed method.

3 Numerical Results

To demonstrate the efficacy and consistency of the proposed MAPS, three numerical
examples are considered in this section. We examined possible factors that will affect
the accuracy, such as the number of nodes, the different type of RBF, the order of RBF,
etc. The numerical results are compared with the analytical solution, Kansa’s method
[9], and the MFS [2, 8]. In addition, we examine a practical guide for determining the
optimal shape parameter of multiquadric (MQ), c, by tracking the residual with the
known boundary conditions.

In order to evaluate the numerical errors, we adopted the root-mean-square error
(RMSE) and the root-mean-square error of the derivative with respect to x (RMSEx),
which are defined as follows:

RMSE =

√√√√ 1

nt

nt∑
j=1

(ûj − uj)2, (20)

RMSEx =

√√√√ 1

nt

nt∑
j=1

(
∂ûj
∂x
− ∂uj

∂x

)2

, (21)

where nt is the number of testing nodes chosen randomly in the domain. ûj denotes the
approximate solution at the jth node. Note that we did not show the numerical results
of RMSEy since they are very similar to RMSEx.

It is not trivial to determine the optimal shape parameter of MQ. In this paper we
will follow the numerical scheme proposed in [3] to identify the optimal shape parameter
by tracking the given boundary conditions. The definition of the residual of Dirichlet
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and Neumann boundary conditions are defined as follows:

ResidualD =
1

nr

nr∑
j=1

|ûj − gj| , (22)

ResidualN =
1

nr

nr∑
j=1

∣∣∣∣
∂ûj
∂n
− gj

∣∣∣∣ , (23)

where nr is the number of test nodes on the boundary, ∂Ω, and gj is the given boundary
condition at the jth node.

Example 1 First, we consider the convection-diffusion-reaction equation with Dirichlet
boundary condition as follows:

k∆u+
(
x2 + y2

)
u+ y cos (y)

∂u

∂x
+ sinh (x)

∂u

∂y
= f (x, y) , (x, y) ∈ Ω, (24)

u = g(x, y), (x, y) ∈ ∂Ω, (25)

where f(x, y) and g(x, y) are given according to the following analytical solution:

u (x, y) = sin (πx) cosh (y)− cos (πx) sinh (y) . (26)

The domain is defined by the following star shape parametric equation:

Ω = {(x, y) | x =
(
1 + cos2 (4θ)

)
cos θ, y =

(
1 + cos2 (4θ)

)
sin θ, 0 ≤ θ < 2π}. (27)

The computational domain and the profile of the solution in the extended domain are
shown in Figure 2. Unless otherwise specified, the following data are adopted through
all of the tests in this example: ni = 212, nb = 100, k = 1, nt = 193 and nr = 80.

Let us first consider the MQ as the basis function in our proposed scheme. The
optimal shape parameter, c, is determined by tracking the residual of the known boundary
condition [3]. In Figure 3, the RMSE and ResidualD are obtained with respect to
various shape parameter, c. The optimal shape parameter is chosen when the minimum
ResidualD appears. The close resemblance between these two curves is readily seen.
Since the boundary condition is already known, we can determine the optimal c through
ResidualD.

Based on the above scheme for choosing optimal shape parameter, Table 2 shows the
results of several tests. We note that the optimal shape parameter changed systematically
for MAPS as the number of nodes increases. In Kansa’s method it is more difficult to
determine the optimal shape parameter. In addition, the results of MAPS are compared
with Kansa’s method. Both methods produce good results for using the optimal shape
parameter. The MAPS, however, outperforms Kansa’s method in the evaluation of the
derivative.

The optimal shape parameter, RMSE, and RMSEx for various k are shown in Table
3. In general, the smaller k is more difficult for the numerical simulation. In this table,
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Figure 2: Computational domain (left) and profile of solution (right) in the extended
domain.
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Figure 3: Profiles of RMSE and ResidualD with respect to different shape parameter, c.

the value of k varies from 0.001 to 1, 000 and little difference is observed. Hence the
proposed meshless scheme is very stable for a large range of values of k.

To avoid the difficulty of choosing the optimal shape parameter, we choose the con-
ical RBF, r2m−1, in the proposed scheme, and the results of different order of RBF are
obtained as shown in Table 4. Three combinations of nodes are used to validate the
consistency of the scheme and the higher-order RBF can acquire better solutions. Fur-
thermore, the results are compared with the MFS in this table. The MAPS can produce
comparable solution with the MFS. Also no fictitious source points are required.
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Table 2: Optimal shape parameter of MQ, RMSE and RMSEx obtained by different
number of boundary nodes, nb, and interpolation nodes, ni.

RMSE RMSEx

ni nb MAPS Kansa’s MAPS Kansa’s

method method

113 50 6.24E − 4 4.44E − 5 8.70E − 3 2.44E − 2

(c = 1.97) (c = 0.03)

212 100 2.72E − 5 1.33E − 6 7.07E − 4 2.88E − 3

(c = 1.74) (c = 0.35)

317 150 8.95E − 6 6.64E − 7 9.98E − 5 1.21E − 3

(c = 1.18) (c = 0.33)

Table 3: Optimal shape parameter of MQ, RMSE and RMSEx with respect to different
k.

k c RMSE RMSEx

0.001 1.68 6.32E − 5 7.02E − 4

0.01 1.80 6.13E − 5 1.02E − 3

0.1 1.62 4.43E − 5 7.67E − 4

1 1.74 2.72E − 5 7.07E − 4

10 1.77 3.12E − 5 5.94E − 4

100 1.73 3.06E − 5 9.04E − 4

1, 000 1.65 2.80E − 5 7.86E − 4

Example 2 In the second example we consider the convection-diffusion equation as
follows:

k∆u+
(
x2y
)
u+

(
y2 + cos x

) ∂u
∂x
− y sinx

∂u

∂y
= f (x, y), (x, y) ∈ Ω, (28)

u = sin
(
y2 + x

)− cos
(
y − x2

)
, (x, y) ∈ ∂ΩD, (29)

∂u

∂n
=
[∇ (sin (y2 + x

)− cos
(
y − x2

))] · −→n , (x, y) ∈ ∂ΩN , (30)

where −→n is the unit normal vector and f(x, y) depends upon the analytical solution,

9



Table 4: RMSE and RMSEx obtained by different order of conical RBF, r2m−1.

RMSE RMSEx

ni nb MAPS MFS MAPS MFS

r7

113 50 4.63E − 3 6.76E − 3 4.29E − 2 4.91E − 2

212 100 2.95E − 4 2.32E − 4 8.13E − 3 4.05E − 3

317 150 6.52E − 5 6.95E − 5 9.11E − 4 7.52E − 4

r9

113 50 3.27E − 3 4.25E − 3 4.61E − 2 3.11E − 2

212 100 1.31E − 4 2.02E − 4 3.21E − 3 2.80E − 3

317 150 2.17E − 5 3.36E − 5 1.92E − 4 4.24E − 4

r11

113 50 2.24E − 3 2.23E − 3 2.90E − 3 2.53E − 2

212 100 5.61E − 5 4.72E − 4 1.37E − 3 3.69E − 3

317 150 4.97E − 5 1.31E − 5 6.56E − 4 2.21E − 4

which is given as follows:

u = sin
(
y2 + x

)− cos
(
y − x2

)
. (31)

Let ∂ΩD and ∂ΩN be the boundaries subjected to Dirichlet and Neumann boundary
conditions respectively and ∂Ω = ∂ΩD ∪ ∂ΩN . The portion of boundary above the x-
axis has the Dirithlet boundary condition and the other portion is given the Neumann
boundary condition.

The domain is defined by the following parametric equation:

Ω = {(x, y) | x = ρ cos θ, y = ρ sin θ, 0 ≤ θ ≤ 2π}, (32)

where

ρ =

(
cos (2θ) +

√
1.1− sin2 (2θ)

)
. (33)

The computational domain and the profile of the solution in the extended domain are
shown in Figure 4. The following data are used in all of the tests through this example:
ni = 101, nb = 40, k = 1, nr = 200, and nt = 352. We calculated the RMSE, ResidualN
and ResidualD separately and plotted them in Figure 5. We observe that the profiles
of these curves are similar. Therefore we can obtain the minimum RMSE through the
test of ResidualN and ResidualD on the boundary.
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Figure 4: Computational domain (left) and profile of solution (right) in the extended
domain.
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Figure 5: Profiles of RMSE, ResidualD and ResidualN with respect to different shape
parameter, c.

The optimal shape parameter, RMSE, and RMSEx obtained by using different
numbers of nodes are given in Table 5.

We also examine the performance of the scheme for different k. The results are given
in Table 6. We observe that there is little difference in accuracy for various value of k.

Since we use the RBF for the Laplacian operator, we have many choices for the
interpolating RBF. Here we use the conical RBF instead of MQ to avoid the difficulty
of finding the optimal shape parameter. The RMSE and RMSEx obtained by different
orders of RBF and different numbers of nodes are given in Tables 7 and 8. Increasing
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Table 5: Optimal shape parameter of MQ, RMSE and RMSEx obtained by different
number of boundary nodes, nb, and interpolation nodes, ni.

ni 52 101 145

nb 20 40 60

c 1.76 1.53 1.31

RMSE 2.33E − 4 4.35E − 6 3.51E − 6

RMSEx 1.87E − 3 1.98E − 5 1.23E − 5

Table 6: Optimal shape parameter of MQ, RMSE and RMSEx obtained by adopting
different k.

k c RMSE RMSEx

0.001 1.49 3.17E − 6 1.65E − 5

0.01 1.36 1.52E − 6 1.69E − 5

0.1 1.46 2.21E − 6 1.48E − 5

1 1.53 4.35E − 6 1.98E − 5

10 1.50 5.20E − 6 1.90E − 5

100 1.50 4.76E − 6 1.90E − 5

1, 000 1.47 4.93E − 6 1.82E − 5

either the order of RBF or the numbers of nodes can have the effect of improving the
accuracy.

Table 7: RMSE obtained by different order of conical RBF, r2m−1.

ni nb r5 r7 r9 r11

101 40 8.35E − 4 1.40E − 4 2.71E − 4 2.86E − 4

145 60 1.95E − 4 6.39E − 5 2.54E − 5 2.10E − 5

202 80 2.29E − 4 4.55E − 5 4.22E − 6 3.48E − 6

Example 3 For the third example, we consider the following elliptic equation with vari-

12



Table 8: RMSEx obtained by different order of conical RBF, r2m−1.

ni nb r5 r7 r9 r11

101 40 1.63E − 3 5.89E − 4 8.29E − 4 1.30E − 3

145 60 4.00E − 4 1.44E − 4 6.84E − 5 9.73E − 5

202 80 3.92E − 4 9.44E − 5 1.57E − 5 1.66E − 5

able coefficients:

∆u+ sin (x+ y)u+
(
xy + x2

) ∂u
∂x

+ x sinh (y)
∂u

∂y
= f (x, y) , (x, y) ∈ Ω, (34)

where f(x, y) is given according to the following analytical solution:

u = y sin (πx) + x cos (πy) . (35)

The computational domain and the profile of the solution in the square domain are
shown in Figure 6. We use this example to show the convergence of the proposed method.
We choose the conical RBF as the interpolating function instead of MQ so that no shape
parameter is required. The boundary nodes and interior nodes are uniformly distributed
in the domain and the minimum distance between two nodes are denoted as dh. nt is set
equal to 500.
Case I:
For the first test, we consider the Dirichlet boundary condition on the whole boundary
of the square domain. The results of RMSE and RMSEx using different density of nodes
are shown in Figure 7. The order of RBF, m, is set as 1, 2, and 3. From this figure we
have results similar to those in the previous examples. Better accuracy can be obtained
by either increasing the number of nodes or the order of RBF.
Case II:
Next, we consider the Neumann boundary condition along y = 0. It is more challenging
to solve such mixed-type boundary conditions than the previous case. The result of
RMSE and RMSEx using different orders of RBF are shown in Figure 8. Overall, we
observe the similar pattern in terms of convergence.

4 Conclusions

A two-stage numerical scheme using the MFS and the MAPS has been simplified. In the
new approach, we do not require to find the homogeneous solution. The new proposed
method uses the particular solution only to approximate the numerical solution of the
given differential equation. Coupled with the idea from DRBEM, the MAPS is further

13
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Figure 7: RMSE (left) and RMSEx (right) obtained by different order of conical RBF,
r2m−1, for the Dirichlet-boundary-condition problem.
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Figure 8: RMSE (left) and RMSEx (right) obtained by different order of conical RBF,
r2m−1, for mixed-boundary-condition problem.
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extended to solving more challenging problems. Similar to Kansa’s method, our proposed
method is very simple and direct. The proposed method can be easily applied to time-
dependent problems and nonlinear problems. Since the global RBFs are used in the
solution process, the ill-conditioning of the resultant matrix is an issue for solving large-
scaled problems. Our next goal is to investigate our current method using local RBFs so
that we can solve large-scaled problems in science and engineering.
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