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IMPROVED KANSA RBF METHOD FOR THE SOLUTION OF NONLINEAR
BOUNDARY VALUE PROBLEMS

MALGORZATA A. JANKOWSKA, ANDREAS KARAGEORGHIS, AND C. S. CHEN

Abstract. We apply the Kansa–radial basis function (RBF) collocation method to two–dimensional
nonlinear boundary value problems. In it, the solution is approximated by a linear combination
of RBFs and the governing equation and boundary conditions are satisfied in a collocation sense
at interior and boundary points, respectively. The nonlinear system of equations resulting from
the Kansa–RBF discretization for the unknown coefficients in the RBF approximation is solved by
directly applying a standard nonlinear solver. In a natural way, the value of the shape parameter
in the RBFs employed in the approximation may be included in the unknowns to be determined.
The numerical results of several examples are presented and analyzed.

1. Introduction

Radial basis function (RBF) methods have become popular in recent years in approximation theory
as well as in the numerical solution of partial differential equations. The most widely used RBF
method for the latter class of problems is the RBF collocation method due to Kansa [13], known
as the Kansa method. The popularity of this method is due to its meshlessness which means that
only a set of points is required in the discretization of the continuous problem. This renders the
implementation of the method particularly easy, especially for problems in complex geometries
and/or in three dimensions. A disadvantage of the method is the (unknown) optimal choice
of the shape parameter which is found in most RBFs. Various techniques have been proposed
for the determination of an appropriate value of the shape parameter, see e.g. [5, 14, 15, 18,
20, 24]. In addition, the RBF collocation methods discretization leads to highly ill-conditioned
matrices and this has limited the accuracy to a certain level. Traditionally, RBF expansions
have been augmented with linear combinations of low degree polynomial basis functions primarily
for theoretical reasons. This approach, however, leads to little or no improvement in accuracy
and has therefore been largely ignored in most applications. Recently, however, Yao et. al [30]
discovered that the accuracy can be significantly improved if the RBF approximations are enriched
with higher degree polynomial basis functions. Although, in general, high degree polynomials are
numerically notoriously unstable, when coupled with RBFs, this instability is somehow tamed.
From numerical observations, if the RBF expansion is augmented with low degree polynomial
basis functions, the major contribution to the accuracy of the approximation is due to the RBFs.
In contrast, when the expansion is augmented with higher degree polynomial basis functions, it
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is the polynomials that gradually take over as the major contributors to the accuracy and RBFs
play the (minor) role of merely stabilizing the system. In this paper, we adopt this new modified
RBF collocation approach of enriching the RBF expansions with polynomial basis functions to
improve the accuracy. In [12] we presented some preliminary results for the solution of second
order nonlinear boundary value problems using the Kansa method. In the method proposed in [12]
the solution is expressed as a linear combination of only radial basis functions (see (2.2) below)
without the inclusion of the polynomial basis as proposed in the current study. The latter improved
Kansa approximation (see (2.5) below) yields considerably superior accuracy than the approach
used in [12]. Furthermore, in this paper we also consider the case of using a predetermined shape
parameter instead of determining it from the nonlinear solver.

In this work we shall consider the solution of boundary value problems for nonlinear partial
differential equations. The RBF discretization of these problems invariably leads to systems of
nonlinear equations which we shall solve using standard software. In particular, we shall be using
the MATLAB c⃝ optimization toolbox routines fsolve and lsqnonlin. Since we shall be solving
nonlinear problems it seems natural to include the (unknown) value of the shape parameter in the
set of unknowns of the problem. Thus the solution of the nonlinear problem yields not only the
coefficients in the RBF approximation to the solution but, also, an appropriate value of the shape
parameter. As mentioned earlier, when the RBF expansions are augmented with high degree
polynomial basis functions, the RBFs play a merely stabilizing (and minor) role with regard to
accuracy and the shape parameter can be chosen more freely. This provides another alternative
for choosing the shape parameter. Moreover, one of the main attractions of the proposed method
is its simplicity and the ease with which it can be implemented.

The paper is organized as follows. In Section 2 we present the type of second order boundary
value problems considered and describe the formulation of the Kansa method for their solution.
The results of three numerical examples are presented in Section 3. In Section 4 we describe the
formulation of the proposed method to fourth order boundary value problems and in Section 5
present the results of two further numerical examples. Finally, some concluding remarks are
provided in Section 6.

2. The Kansa method

2.1. The problem. We consider the boundary value problem in R2

Lu = f in Ω, (2.1a)

subject to the boundary condition
Bu = g on ∂Ω, (2.1b)

where L is a second order nonlinear elliptic operator and B is a linear (or nonlinear) operator
describing the boundary condition.



KANSA RBF METHOD 3

2.2. The method. In Kansa’s method [13] we approximate the solution u of boundary value
problem (2.1) by a linear combination of RBFs.

uN(x, y) =
N∑

n=1

an ϕn(x, y), (x, y) ∈ Ω. (2.2)

The RBFs ϕn(x, y), n = 1, . . . ,N, can be expressed in the form

ϕn(x, y) = Φ(rn), where r2n = (x− xn)
2 + (y − yn)

2. (2.3)

Thus each RBF ϕn is associated with a point (xn, yn). These points {(xn, yn)}Nn=1 are usually
referred to as centers. We shall assume that we have Nint interior centres {(xn, yn)}Nint

n=1 and Nbry

boundary centres {(xn, yn)}
Nint+Nbry
n=Nint+1 . We take N = Nint + Nbry.

In [29], for scattered data interpolation problems, expansions of certain types of conditionally
positive definite RBFs were augmented by low degree polynomial basis functions to ensure the
invertibility of the resultant matrices. In the case of the Kansa method, Hon and Schaback
[11] indicated that the corresponding resultant matrices may be singular in only very rare cases.
More recently, Fasshauer [8] proposed a modification of the Kansa method, based on Hermite
collocation, to ensure the invertibility of the resulting coefficient matrix. However, because of the
complexity of the implementation of RBF Hermite collocation, this approach has apparently not
been well received and, despite the invertibility issue, the Kansa method remains very popular.
Furthermore, in terms of accuracy there is no evidence of an obvious benefit in adding these terms
and, therefore, in most applications they have been ignored. Recently, in [30] it was shown that
the addition of higher degree polynomial basis functions in the method of particular solutions
(MPS) lead to a significant improvement in accuracy. As will we described in the sequel, the same
approach is also equally effective for the Kansa method.

Let Pp be the set of bivariate polynomials of degree up to p and {pk}Kk=1 be a basis of Pp [11, 30].
It is known that the number of polynomial terms for degree p is K = (p + 1)(p + 2)/2. The
polynomial basis is thus

pk(x, y) = xi−jyj, 0 ≤ j ≤ i, 0 ≤ i ≤ p, for k = 1, . . . ,K. (2.4)

In the modified Kansa method with an augmented polynomial basis, the approximation (2.2) of
the solution of boundary value problem (2.1) is thus replaced by

uN(x, y) =
N∑

n=1

an ϕn(x, y) +
K∑

k=1

aN+k pk(x, y), (x, y) ∈ Ω. (2.5)

An example of an RBF is the normalized multiquadric basis function (MQ)

ϕn(x, y) = Φ(rn) =
√

(crn)2 + 1, (2.6)

where c is the shape parameter. Such shape parameters are often present in RBFs and the
determination of their optimal value remains a major challenge.
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Alternatively, one may use polyharmonic splines (PS) given by

ϕn(x, y) = Φ(rn) =

{
r2ℓ−1
n , in 3D,

r2ℓn log rn, in 2D,
ℓ = 1, 2, 3, . . . (2.7)

The RBFs r2n−1 are also known as the radial power RBFs [9] and may be used for problems in
all (both even and odd) dimensions. Clearly, the advantage of PS and radial power RBFs is the
absence of a shape parameter.

In addition to the centres we consider the collocation points {(xm, ym)}Mm=1 ∈ Ω. Of these,
we have Mint interior collocation points {(xm, ym)}Mint

m=1 and Mbry boundary collocation points
{(xm, ym)}

Mint+Mbry
m=Mint+1 . We take M = Mint +Mbry.

Note that the number of centres is normally taken to be less than the number of collocation points.
The coefficients {an}N+K

n=1 in equation (2.5) are determined from the collocation equations

LuN(xm, ym) = f(xm, ym), m = 1, . . . ,Mint, (2.8a)
BuN(xm, ym) = g(xm, ym), m = Mint + 1, . . . ,Mint +Mbry. (2.8b)

In addition to (2.8a)-(2.8b) we impose the standard insolvency conditions [9, Chapter 6], see also
[3],

Nint∑
n=1

an {L pk} (xn, yn) = 0, k = 1, . . . ,K, (2.8c)

and

N∑
n=Nint+1

an {B pk} (xn, yn) = 0, k = 1, . . . ,K. (2.8d)

In fact we may combine (2.8c) and (2.8d) as

Nint∑
n=1

an {L pk} (xn, yn) +
N∑

n=Nint+1

an {B pk} (xn, yn) = 0, k = 1, . . . ,K. (2.8e)

We have M+ K equations in N+ K unknown coefficients a = [a1, a2, . . . , aN+K]
T and we therefore

take M ≥ N.
In case the shape parameter is included in the unknowns then the number of unknowns becomes
N+ K+ 1 consisting of a and c and we need to take M ≥ N+ 1.
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Since the operator L is nonlinear, the system of M + K equations (2.8a), (2.8b) and (2.8e) is
nonlinear and can be written in the form

F (a, c) :=


F1

F2
...

FM+K

 =



LuN(x1, y1)− f(x1, y1)
...

LuN(xMint , yMint)− f(xMint , yMint)
BuN(xMint+1, yMint+1)− g(xMint+1, yMint+1)

...
BuN(xM, yM)− g(xM, yM)

Nint∑
n=1

an {L p1} (xn, yn) +
N∑

n=Nint+1

an {B p1} (xn, yn)

...
Nint∑
n=1

an {L pK} (xn, yn) +
N∑

n=Nint+1

an {B pK} (xn, yn)



= 0. (2.9)

The nonlinear system (2.9) may be solved with the MATLAB c⃝ [21] optimization toolbox routine
fsolve. The algorithm used is either a trust-region-dogleg/reflective or the Levenberg-Marquardt
algorithm. The routine fsolve does not require the user to provide the gradient. When the
system is not square, i.e. the number of equations is larger than the number of unknowns, which
is the case in the current problem, the routine uses the Levenberg–Marquardt algorithm.

Alternatively, the solution of the nonlinear system (2.9) may be recast as a nonlinear least squares
minimization problem by setting

S(a, c) :=
M+K∑
m=1

F 2
m, (2.10)

where the {Fm}M+K
m=1 are defined in (2.9). The functional S(a, c) is minimized using the MATLAB c⃝

[21] optimization toolbox routine lsqnonlin which solves nonlinear least squares problems using,
like fsolve, either a subspace trust region method or the Levenberg-Marquardt algorithm. The
routine lsqnonlin does not require the user to provide the gradient and, in addition, it offers the
option of imposing lower and upper bounds on the elements of the vector of unknowns x = [a, c]T

through the vectors lb and up. We can thus easily impose the constraints on the values of the
coefficients and in particular on the values of the shape parameter. It should be noted that both
lsqnonlin and fsolve might give only local solutions. Note that when the shape parameter c is
not taken to be one of the unknowns, F (a, c) and S(a, c) become F (a) and S(a), respectively.
The MATLAB c⃝ nonlinear solvers perform a number of iterations that generally depends on a
solver’s stopping criteria including prescribed tolerances and other conditions. The routine stops
when one of the criteria is met. The stopping criteria for fsolve and lsqnonlin may be summa-
rized by the following user-prescribed quantities (i.e. the iterative process stops when these are
reached):

(i) the maximum number of iterations that the algorithm performs (MaxIter),



6 MALGORZATA A. JANKOWSKA, ANDREAS KARAGEORGHIS, AND C. S. CHEN

(ii) the maximum number of evaluations of the objective function (MaxFunEvals),
(iii) the termination tolerance for the vector of unknowns x (TolX),
(iv) the termination tolerance for the objective function value (TolFun).
On the other hand, an important optimality measure is the first-order optimality which is a
measure that shows how close x is to being optimal. It is a necessary condition but not a sufficient
one. This measure must be zero at a minimum, but on the other hand a final x is not necessarily
a minimum. The definition of first-order optimality differs for different algorithms. For further
details see e.g. [23].
In the current study we set TolX=TolFun=10−14, MaxFunEvals=2000000 and controlled the con-
vergence with appropriate values of MaxIter. In most cases the process stopped when MaxIter
was exhausted but in some instances the tolerance TolX was reached.
After extensive experimentation with both lsqnonlin and fsolve we concluded that their per-
formance for the problems considered in this study is very similar. The results presented in the
first four examples were obtained with fsolve, while in Example 5, lsqnonlin is used.

In all subsequent examples, the number of iterations used is denoted by niter. The initial value
of the shape parameter is denoted by c0 and we took the initial value of a to be a0 = 0.

3. Numerical examples for second order problems

In the numerical examples considered in this section, we calculated the approximate solution uN
at L test points on a grid in Ω. In the case of Examples 1 and 2 the analytical solution is known.
Hence, we calculated the maximum relative error E defined by

E =
||u− uN||∞,Ω

||u||∞,Ω

(3.1)

and the root mean square error (RMSE) E from

E =

√√√√ 1

L

L∑
ℓ=1

[u(xℓ, yℓ)− uN(xℓ, yℓ)]
2 . (3.2)

In some cases, for comparison purposes, as well as E and E , we calculated the maximum error e
defined as

e = ||u− uN||∞,Ω. (3.3)
In the numerical examples presented in this work, we used MQ RBFs (2.6) and PS (2.7).

3.1. Example 1. We first consider an example from [26, 27] where the governing equation is

Lu = ∆u− 4u3 = 0 in Ω, (3.4)

subject to Dirichlet boundary conditions corresponding to the exact solution

u(x, y) =
1

4 + x+ y
.
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The computational domain Ω is peanut shaped and its boundary ∂Ω is defined parametrically by

x = r(ϑ) cosϑ, y = r(ϑ) sinϑ, where r(ϑ) = 0.3

√
cos 2ϑ+

√
1.1− sin2 2ϑ, 0 ≤ ϑ ≤ 2π. (3.5)

A uniform distribution of the boundary collocation points is obtained as follows, see e.g [19]. We
first calculate the length of the boundary curve from

S =

∫ 2π

0

√
r(ϑ)2 + r′(ϑ)2dϑ, (3.6)

which may be evaluated using the MATLAB c⃝ routine quadl which evaluates an integral using
adaptive Lobatto quadrature within a user–prescribed accuracy. Since there will be Mbry collo-
cation points on the boundary, we take the length of each subsegment to be S/Mbry. The angles
ϑk which give such a distribution are obtained by choosing ϑ1 = 0 and then solving, serially for
k = 1, . . . ,Mϑ − 1, the nonlinear equations

F (t) =

√
(r(t) cos t− r(ϑk) cosϑk)

2 + (r(t) sin t− r(ϑk) sinϑk)
2 − S

Mbry
= 0, (3.7)

to yield t = ϑk, k = 2, . . . ,Mbry, respectively. The solution of the nonlinear equations may be
carried out using the MATLAB c⃝ routine fzero. The angles ϑk, k = 1, . . . ,Mbry, define equally
spaced points on the boundary curve and the boundary collocation points are now distributed as
follows:

(xMint+i, yMint+i) = 0.3

√
cos 2ϑi +

√
1.1− sin2 2ϑi (cosϑi, sinϑi) , i = 1, . . . ,Mbry.

The interior collocation points (xi, yi) , i = 1, . . . ,Mint, are taken to be the Halton points [9,
Appendix A.1]. The corresponding boundary and interior centres are obtained in a similar way.
Finally, we chose a set of L = 300 interior Halton points to be the set of test points. A typical
distribution of collocation points is presented in Figure 1.
In Table 1 we present some typical numerical results for various p using MQ RBFs. We observe
that as we increase the number of auxiliary basis functions the accuracy improves considerably.
The corresponding results obtained using the PS r3 are presented in Table 2. While it is well–
known that the convergence rate of MQ is superior to that of r3, from Tables 1 and 2, their
accuracy is similar when higher degree polynomials are included. This is an indication that in the
computational process the higher degree polynomials have prevailed over the RBFs in expansion
(2.5).

p c0 c niter CPU (secs) E E
0 4 1.665 51 4.31 1.130(-3) 8.315(-5)
4 4 3.489 51 4.80 1.158(-6) 1.271(-7)
8 4 3.992 26 3.42 4.381(-11) 2.160(-12)
12 4 4.000 25 4.55 8.224(-15) 4.887(-16)

Table 1. Example 1: Results for various p using MQ with Mint=200, M = 300,
Nint = 50, N = 70.
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Figure 1. Example 1. Computational domain and typical distribution of colloca-
tion points.

p niter CPU (secs) E E
0 15 0.40 4.064(-2) 5.382(-3)
4 7 0.28 2.468(-6) 1.842(-7)
8 17 0.61 3.138(-10) 2.296(-11)
12 26 1.04 3.133(-15) 2.320(-16)

Table 2. Example 1: Results for various p using the PS r3 and Mint = 200, M = 300,
Nint = 50, N = 70.

3.2. Example 2. We next consider an example from [7, 10] where

Lu = −ε2∆u− u+ u3 in Ω,

subject to the homogeneous Dirichlet boundary condition

Bu = u = 0 on ∂Ω,

where Ω = (0, 1)× (0, 1), the exact solution is given by

u(x, y) =
(
1 + e−1/ε − e−x/ε − e(x−1)/ε

) (
1 + e−1/ε − e−y/ε − e(y−1)/ε

)
, (3.8)

and ε is a known constant. Clearly, the function f in (2.1a) is obtained by calculating Lu for u
given in (3.8).
We chose Mbry uniformly distributed collocation points on the boundary. We also chose Mint
interior collocation points using the Halton points. Similarly, we chose Nbry boundary centres and
Nint interior centres. Finally, we chose a set of L = 50 interior Halton points to be the set of test
points. A typical distribution of collocation points is presented in Figure 2.
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Figure 2. Example 2. Computational domain and typical distribution of colloca-
tion points.

3.2.1. Case ε = 1. In this case the solution is quite flat and convergence is rapid. In Table 3
we present typical results obtained using MQ RBFs with various p. As the number of auxiliary
polynomial basis functions increases, the convergence becomes more rapid.

p c0 c niter CPU (secs) E E
0 4 3.098 51 11.85 2.018(-1) 2.427(-3)
4 4 3.209 51 12.96 4.436(-4) 3.321(-6)
8 4 3.784 51 15.63 1.330(-8) 8.000(-11)
12 4 3.944 26 10.11 1.844(-14) 1.239(-16)

Table 3. Example 2: Results for ε = 1 with Mint=200, M=276, Nint = 100, N = 140.

3.2.2. Case ε = 0.25. In this case the solution is not as flat and convergence is no as rapid as for
ε = 1. In Table 4 we present typical results obtained using MQ RBFs with various p. Again, as
the number of auxiliary polynomial basis functions increases the convergence becomes more rapid.
A larger value of c0 is taken and more iterations are required to obtain satisfactory accuracy.

p c0 c niter CPU (secs) E E
0 100 48.863 101 24.32 1.429(-1) 3.392(-2)
4 100 141.612 101 26.97 8.564(-3) 1.837(-3)
8 100 98.024 39 12.59 1.232(-4) 3.265(-5)
12 100 135.346 101 41.18 2.263(-6) 3.596(-7)

Table 4. Example 2: Results for ε = 0.25 with Mint=200, M=276, Nint = 100, N = 140.
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3.2.3. Case ε = 0.1. In this more difficult case, we need to take more degrees of freedom as well
as many more iterations as convergence is much slower. In Table 5 we present results obtained
using MQ RBFs with various p and different numbers of degrees of freedom. From this table, as
expected because of the increased number of degrees of freedom and iterations, we observe that
the solution of the problem is considerably computationally more expensive. As the number of
auxiliary polynomial basis functions increases the convergence becomes more rapid.

Mint M Nint N p c0 c niter CPU (secs) E E
300 376 150 190 8 100 174.581 201 151.72 1.633 6.365(-1)

10 100 161.987 201 188.44 2.133(-2) 5.128(-3)
12 100 185.140 201 181.36 6.027(-3) 1.717(-3)

300 376 150 190 8 100 492.396 601 441.69 1.615 6.198(-1)
10 100 413.713 601 463.22 1.275(-2) 2.610(-3)
12 100 67.810 601 510.68 1.666(-3) 5.256(-4)

400 496 200 256 8 100 187.601 201 420.82 1.361(-2) 4.402(-3)
10 100 130.277 201 444.85 1.274(-2) 5.143(-3)
12 100 192.610 201 506.45 1.248(-2) 2.964(-3)

400 496 200 256 8 100 561.853 601 1439.18 9.984(-3) 1.903(-3)
10 100 326.881 601 1419.78 7.297(-3) 1.279(-3)
12 100 119.708 601 1402.47 2.399(-3) 4.618(-4)

Table 5. Example 2: Results for ε = 0.1.

For this difficult case, we consider an alternative approach by fixing the value of the shape param-
eter and not including it as one of the unknowns in the nonlinear solver. We first examined the
effect of the number of iterations on the accuracy. As can be observed from Table 6, the accuracy
remains practically the same after 20 iterations and, hence, we shall limit the number of iterations
to no more than 50 (for this example).
Next, we study the effect of the value of the MQ shape parameter on the accuracy when a high
degree polynomial basis is used in expansion (2.5). As may be observed from Table 7, the accuracy
does not appear to depend much on the value of the MQ shape parameter. This provides greater

niter CPU (secs) E E
10 2.01 5.851(-3) 6.213(-4)
20 3.86 5.273(-3) 3.935(-4)
50 9.37 4.910(-3) 3.372(-4)
100 17.99 4.876(-3) 3.364(-4)
200 35.41 4.816(-3) 3.328(-4)
300 53.03 4.760(-3) 3.296(-4)

Table 6. Example 2: Results of the number of iterations and the accuracy for
ε = 0.1 with c = 100, p = 12 Mint=400, M=496, Nint = 200, N = 256.
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c E E
50 6.918(-3) 4.056(-4)
100 4.910(-3) 3.372(-4)
150 3.770(-3) 3.112(-4)
200 3.488(-3) 3.139(-4)
250 2.853(-3) 2.762(-4)
300 5.340(-3) 7.023(-4)

Table 7. Example 2: The shape parameter versus the accuracy for ε = 0.1 with
p = 12, Mint=400, M=496, Nint = 200, N = 256.

freedom in choosing the value of the shape parameter without affecting the accuracy. The benefit
of coupling RBFs and polynomial basis functions in (2.5) is thus mutual. On the one hand, the
presence of RBFs helps to contain the notorious ill-conditioning problems occurring when high
degree polynomials are used, while, on the other hand, the inclusion of the polynomials facilitates
the task of selecting an appropriate value of the shape parameter in the RBFs. Overall, in terms
of accuracy, the results obtained by fixing the shape parameter are similar to the ones obtained
in Table 5. The only difference is clearly the computational cost. The inclusion of the value of
the shape parameter as one of the unknowns renders an already difficult nonlinear problem even
more difficult which requires much more CPU time. For the easier cases ε = 1 and 0.25, since
the process converges very fast, there is no significant difference in terms of either accuracy or
efficiency between the two approaches.

3.3. Example 3. Next, we consider an elastoplastic torsion problem in the case of a prismatic
rod [2, 17, 22] with a square cross section. The governing equation for Prandtl’s stress function ψ
is proposed in [17] and its formulation in non–dimensional coordinates is

Lψ = 0 in Ω, (3.9)

where

Lψ = ∆ψ +
1

1 + κ τ̃n

{
2 θ̃ + κn τ̃n−2

[(
∂ψ

∂x

)2
∂2ψ

∂x2
+ 2

∂ψ

∂x

∂ψ

∂y

∂2ψ

∂x∂y
+

(
∂ψ

∂y

)2
∂2ψ

∂y2

]}
and where θ̃ is the non–dimensional angle of twist, n, κ are the non–dimensional material param-
eters and τ̃ = τ̃(x, y) is the non–dimensional resultant shear stress given by

τ̃ =

[(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2
]1/2

.

In the torsion problem considered, the lateral surface of the bar is stress–free. Hence, the boundary
curve is a line on which the stress function is constant. For a simply connected cross section,
we may take ψ = 0 on ∂Ω. The computational domain Ω is shown in Figure 3, where a is a
characteristic dimension of the cross section (we subsequently take a = 1). Note that because of
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symmetry we may consider only one repeated element of it (e.g. the region ABCD in Figure 3).
In such a case, the governing equation (3.9) is subject to the boundary conditions

ψ = 0 on BC and CD, (3.10)
∂ψ

∂y
= 0 on AB and

∂ψ

∂x
= 0 on AD. (3.11)

Figure 3. Example 3. The square cross section of the prismatic bar.

Having determined the stress function ψ, we can compute the non–dimensional torsional moment
defined as

M̃T = 2

∫∫
Ω

ψ dx dy. (3.12)

We shall present the numerical results obtained with the proposed algorithm for n = 3.83,
κ = 0.023552997 and 0.1 ≤ θ̃ ≤ 5. The torsional moment is then computed for each θ̃ considered.

We chose an M×M grid of interior collocation points in Ω together with 4M boundary collocation
points and, similarly, an N×N grid of interior centre points in Ω and 4N boundary centre points.
In this way the total number of collocation points is equal to M = Mint +Mbry, where Mint =M2

and Mbry = 4M . Similarly, we have N = Nint + Nbry centres, where Nint = N2 and Nbry = 4N .
For the set of L = Lint + Lbry test points we took Lint = 224 interior Halton points and Lbry = 76
uniformly distributed boundary points and we chose c0 = 3.

The approximate value of the integral given in (3.12) was obtained with the MATLAB c⃝ build-in
routine trapz which approximates integrals using the trapezoidal rule.

After computing the solution ψ of problem (3.9)–(3.11), we calculated the maximum error e
(3.3) and the RMSE E (3.2) at a total number Lbry of test points located on the boundary.
The boundary value problem considered was also solved with the Finite Element Method (FEM)
package COMSOL Multiphysics R⃝ software [6]. Thus, we could measure the difference between
the approximate solutions obtained with the proposed method and the FEM at a total number L



KANSA RBF METHOD 13

of test points in Ω. We used the formulæ (3.3) and (3.2) and denote by d and D the maximum
difference and the root mean square difference, respectively (cf. e and E in (3.3) and (3.2),
respectively). The reference solution u in (3.2)–(3.3) is the approximate solution obtained with
the FEM. Finally, we computed the relative difference DM̃T

= |M̃ (K)
T −M̃ (F )

T |/|M̃ (F )
T |, where M̃ (K)

T

and M̃
(F )
T are the torsion moments obtained with the nonlinear Kansa method and the FEM,

respectively.

We subsequently performed two kinds of tests. First, we took a sequence of twist angles θ̃ and com-
puted the appropriate values of the stress function ψ and corresponding torsional moments M̃T . We
applied the proposed Kansa method for M = 15, N = 14, M = 285, N = 252, p = 0, 2, 4, . . . , 20,
and niter = 50. The results obtained for various values of p are presented in Table 8 and for
p = 20 in Table 9. In Figure 4 we can see the torsional moment M̃T corresponding to given values
of the twist angle θ̃ obtained with both the nonlinear Kansa method for K = 0 and the FEM. The
corresponding plots obtained with p = 0, 2, 4, . . . , 20, are indistinguishable from Figure 4.
Furthermore, the distributions of the stress ψ in the prismatic rod for the twist angles
θ̃ = 0.5, 1, 2, 3, 4, 5, obtained using the proposed Kansa method for p = 12 are presented in
Figure 5.

Secondly, we examined how increasing the maximum number of iterations niter and the number
of degrees of freedom of the proposed Kansa method for p = 12 influences the accuracy of the
solution. The results corresponding to the selected values of the theta angle θ̃ = 1, 3, 5 are given
in Table 10.

0 1 2 3 4 5
θ̃

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M̃
T

Nonlinear Kansa Finite Element Method

Figure 4. Example 3. The torsional moment M̃T vs. the twist angle θ̃ obtained
with the nonlinear Kansa method and the FEM.



14 MALGORZATA A. JANKOWSKA, ANDREAS KARAGEORGHIS, AND C. S. CHEN

(a) θ̃ = 1

p c M̃
(K)
T M̃

(F )
T DM̃T

e E d D
0 2.653 0.552666 0.551872 1.438(-3) 3.646(-3) 7.777(-4) 3.646(-3) 7.073(-4)
4 2.938 0.552638 0.551872 1.387(-3) 2.029(-3) 4.811(-4) 2.029(-3) 5.818(-4)
8 2.996 0.550787 0.551872 1.967(-3) 5.028(-4) 1.152(-4) 2.449(-3) 8.261(-4)
12 3.000 0.551762 0.551872 2.009(-4) 2.196(-4) 4.871(-5) 2.196(-4) 7.644(-5)
16 3.000 0.551842 0.551872 5.493(-5) 1.778(-4) 3.903(-5) 1.778(-4) 2.388(-5)
20 3.000 0.551860 0.551872 2.243(-5) 1.062(-4) 2.188(-5) 1.062(-4) 1.155(-5)

(b) θ̃ = 3

p c M̃
(K)
T M̃

(F )
T DM̃T

e E d D
0 2.941 1.263626 1.262388 9.810(-4) 1.155(-2) 2.504(-3) 1.155(-2) 1.795(-3)
4 2.955 1.262359 1.262388 2.269(-5) 9.501(-3) 2.058(-3) 9.501(-3) 1.147(-3)
8 3.011 1.261203 1.262388 9.388(-4) 7.517(-3) 1.594(-3) 7.517(-3) 1.329(-3)
12 3.016 1.261580 1.262388 6.404(-4) 1.257(-2) 2.523(-3) 1.257(-2) 1.761(-3)
16 3.019 1.261912 1.262388 3.767(-4) 8.785(-3) 1.740(-3) 8.785(-3) 1.198(-3)
20 3.034 1.263486 1.262388 8.700(-4) 6.643(-3) 1.683(-3) 6.643(-3) 1.151(-3)

(c) θ̃ = 5

p c M̃
(K)
T M̃

(F )
T DM̃T

e E d D
0 2.999 1.602900 1.601834 6.655(-4) 2.620(-2) 4.984(-3) 2.620(-2) 2.829(-3)
4 3.041 1.601989 1.601834 9.643(-5) 2.522(-2) 4.849(-3) 2.522(-2) 2.688(-3)
8 3.010 1.602746 1.601834 5.695(-4) 3.019(-2) 5.668(-3) 3.019(-2) 3.270(-3)
12 3.005 1.602640 1.601834 5.029(-4) 3.174(-2) 6.249(-3) 3.174(-2) 3.568(-3)
16 3.007 1.602738 1.601834 5.644(-4) 3.207(-2) 6.331(-3) 3.207(-2) 3.620(-3)
20 3.006 1.600608 1.601834 7.653(-4) 2.760(-2) 5.310(-3) 2.760(-2) 3.074(-3)
Table 8. Example 3: The relative difference DM̃T

, the error measure for the satis-
faction of the boundary conditions and the difference between the solution obtained
for selected values of the twist angle θ̃ with the nonlinear Kansa method and the
FEM vs. the degree p of the auxiliary polynomial.
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θ̃ c M̃
(K)
T M̃

(F )
T drelM̃T e E d D

0.1 3.000 0.056230 0.056231 1.530(-5) 5.190(-6) 1.266(-6) 5.190(-6) 7.153(-7)
0.5 3.000 0.280732 0.280738 2.344(-5) 5.975(-5) 1.252(-5) 5.975(-5) 6.527(-6)
1.0 3.000 0.551860 0.551872 2.243(-5) 1.062(-4) 2.188(-5) 1.062(-4) 1.155(-5)
2.0 3.011 0.982323 0.982374 5.146(-5) 3.108(-4) 8.032(-5) 5.549(-4) 1.895(-4)
3.0 3.034 1.263486 1.262388 8.700(-4) 6.643(-3) 1.683(-3) 6.643(-3) 1.151(-3)
4.0 3.011 1.457466 1.456156 8.994(-4) 1.778(-2) 3.778(-3) 1.778(-2) 2.336(-3)
5.0 3.006 1.600608 1.601834 7.653(-4) 2.760(-2) 5.310(-3) 2.760(-2) 3.074(-3)

Table 9. Example 3: The torsional moment M̃T , the shape parameter c, the error
measure for the satisfaction of the boundary conditions and the difference between
the solution obtained with the nonlinear Kansa method and the FEM for selected
values of the twist angle θ̃.
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(a) θ̃ = 1

M N M N niter c e E d D
9 8 117 96 10 3.001 7.087(-4) 1.181(-4) 7.087(-4) 7.963(-5)

30 3.001 6.903(-4) 1.142(-4) 6.903(-4) 7.632(-5)
50 3.001 6.815(-4) 1.125(-4) 6.815(-4) 7.340(-5)
100 3.001 6.750(-4) 1.113(-4) 6.750(-4) 7.189(-5)

17 16 357 320 10 3.000 3.540(-4) 1.018(-4) 3.540(-4) 5.961(-5)
30 3.001 1.647(-4) 4.630(-5) 1.865(-4) 6.154(-5)
50 3.001 1.514(-4) 4.270(-5) 1.568(-4) 5.928(-5)
100 3.001 1.497(-4) 4.220(-5) 1.497(-4) 5.742(-5)

(b) θ̃ = 3

M N M N niter c e E d D
9 8 117 96 10 3.021 3.572(-3) 1.009(-3) 9.299(-3) 4.816(-3)

30 3.136 5.522(-3) 1.234(-3) 2.810(-2) 9.977(-3)
50 3.218 5.822(-3) 1.249(-3) 3.085(-2) 1.072(-2)
100 3.349 1.838(-2) 3.624(-3) 5.636(-2) 1.743(-2)

17 16 357 320 10 3.005 1.785(-2) 3.655(-3) 1.785(-2) 2.059(-3)
30 3.009 1.428(-2) 2.946(-3) 1.428(-2) 1.787(-3)
50 3.011 1.318(-2) 2.717(-3) 1.318(-2) 1.768(-3)
100 3.013 1.201(-2) 2.458(-3) 1.201(-2) 1.784(-3)

(c) θ̃ = 5

M N M N niter c e E d D
9 8 117 96 10 3.090 7.003(-2) 1.449(-2) 7.003(-2) 9.609(-3)

30 3.130 4.583(-2) 1.178(-2) 4.583(-2) 6.948(-3)
50 3.154 4.925(-2) 1.242(-2) 4.390(-2) 8.091(-3)
100 3.185 5.255(-2) 1.246(-2) 4.174(-2) 9.064(-3)

17 16 357 320 10 3.001 3.722(-2) 7.513(-3) 3.722(-2) 4.478(-3)
30 3.004 3.220(-2) 6.464(-3) 3.220(-2) 3.927(-3)
50 3.005 3.215(-2) 6.443(-3) 3.215(-2) 3.900(-3)
100 3.006 3.213(-2) 6.427(-3) 3.213(-2) 3.887(-3)

Table 10. Example 3: The error measure for the satisfaction of the boundary con-
ditions and the difference between the solution obtained with the nonlinear Kansa
method and the FEM for selected values of the twist angle θ̃ vs. the maximum
number of iterations niter and degrees of freedom M, N.
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(a) θ̃ = 0.5 (b) θ̃ = 1

(c) θ̃ = 2 (d) θ̃ = 3

(e) θ̃ = 4 (f) θ̃ = 5

Figure 5. Example 3: The distribution of the stress ψ in the prismatic rod for
selected values of the twist angle θ̃.
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4. Fourth order problems

4.1. The problem. We now consider the boundary value problem in R2

Lu = f in Ω, (4.1a)

subject to the boundary conditions

B1 u = g1 and B2 u = g2 on ∂Ω, (4.1b)

where L is a fourth order nonlinear elliptic operator and B1,B2 are linear (or nonlinear) operators
describing the boundary conditions.

4.2. The method. We approximate the solution u of boundary value problem (4.1) by (2.5) and
consider the same collocation points {(xm, ym)}Mm=1 ∈ Ω as in the second order case, of which Mint
are interior collocation points and Mbry are boundary collocation points. We shall also consider
the interior centres {(xn, yn)}Nint

n=1 and the boundary centres {(xn, yn)}
Nint+Nbry
n=Nint+1 .

Now, however, we take N = Nint + 2Nbry.

The coefficients {an}N+K
n=1 are determined from the collocation equations

LuN(xm, ym) = f(xm, ym), m = 1, . . . ,Mint, (4.2a)

B1uN(xm, ym) = g1(xm, ym), m = Mint + 1, . . . ,Mint +Mbry, (4.2b)
B2uN(xm, ym) = g2(xm, ym), m = Mint + 1, . . . ,Mint +Mbry. (4.2c)

In addition to (4.2a)-(4.2c) we impose the standard insolvency conditions
Nint∑
n=1

an {L pk} (xn, yn) = 0, k = 1, . . . ,K, (4.2d)

Nint+Nbry∑
n=Nint+1

an {B1 pk} (xn, yn) = 0, k = 1, . . . ,K, (4.2e)

and
Nint+2Nbry∑

n=Nint+Nbry+1

an {B2 pk} (xn, yn) = 0, k = 1, . . . ,K. (4.2f)

As before, we may combine (4.2d), (4.2e) and (4.2f) as
Nint∑
n=1

an {L pk} (xn, yn) +
Nint+Nbry∑
n=Nint+1

an {B1 pk} (xn, yn)

+

Nint+2Nbry∑
n=Nint+Nbry+1

an {B2 pk} (xn, yn) = 0, k = 1, . . . ,K. (4.2g)

In order to ensure we have at least as many equations as unknowns we thus need to take Mint +
2Mbry + K ≥ Nint + 2Nbry + K
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In case the shape parameter is included in the unknowns then the number of unknowns becomes
Nint + 2Nbry + K+ 1 consisting of a and c.

Since the operator L is nonlinear, the system of Mint + 2Mbry + K equations (4.2a), (4.2b), (4.2c)
and (4.2g) is nonlinear and can be written in the form

F (a, c) :=


F1

F2
...

FMint+2Mbry+K



=



LuN(x1, y1)− f(x1, y1)
...

LuN(xMint , yMint)− f(xMint , yMint)
B1uN(xMint+1, yMint+1)− g1(xMint+1, yMint+1)

...
B1uN(xMint+Mbry , yMint+Mbry)− g1(xMint+Mbry , yMint+Mbry)

B2uN(xMint+1, yMint+1)− g2(xMint+1, yMint+1)
...

B2uN(xMint+Mbry , yMint+Mbry)− g2(xMint+Mbry , yMint+Mbry)
Nint∑
n=1

an {L p1} (xn, yn) +
Nint+Nbry∑
n=Nint+1

an {B1 p1} (xn, yn) +
Nint+2Nbry∑
Nint+Nbry+1

an {B2 p1} (xn, yn)

...
Nint∑
n=1

an {L pK} (xn, yn) +
Nint+Nbry∑
n=Nint+1

an {B1 pK} (xn, yn) +
Nint+2Nbry∑
Nint+Nbry+1

an {B2 pK} (xn, yn).



= 0.

(4.3)

Note that in equations (4.2f), (4.2g) and (4.3) we have used the convention {(xn, yn)}
Nint+2Nbry
n=Nint+Nbry+1 =

{(xn, yn)}
Nint+Nbry
n=Nint+1 .

5. Numerical examples for fourth order problems

5.1. Example 4. We next consider the boundary value problem

Lu = ∆2u− 96u5 = 0 in Ω, (5.1)

subject to boundary conditions for u and ∂u/∂n corresponding to the exact solution

u(x, y) =
1

4 + x+ y
.
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The computational domain Ω is peanut shaped and its boundary ∂Ω is defined by (3.5). The
discretization of the domain is identical to the one described in Example 2. In the implementation
of the method we shall need the outward unit normal vector to the boundary. This is defined by

n =
1√

r2(ϑ) + r′2(ϑ)

(
r′(ϑ) sinϑ+ r(ϑ) cosϑ, r(ϑ) sinϑ− r′(ϑ) cosϑ

)
where r is given in (3.5).
In Table 11 we present some typical numerical results for various p using MQ RBFs. We observe
that as we increase the number of auxiliary basis functions the accuracy improves considerably.
The corresponding results obtained using the PS r5 are presented in Table 12.

p c0 c niter CPU (secs) E E
0 4.2 1.245 51 12.01 5.678(-3) 1.166(-3)
4 4.0 3.067 51 14.79 1.059(-5) 1.286(-6)
8 4.0 3.855 51 19.07 6.800(-9) 4.623(-10)
12 4.0 4.000 20 10.76 3.419(-12) 2.111(-13)

Table 11. Example 4: Results for various numbers of degrees of freedom using
MQ RBFs with Mint = 200, M = 300 Nint = 50, Nint + Nbry = 70.

p niter CPU (secs) E E
0 14 5.42 1.044(-1) 1.551(-2)
4 33 13.94 1.235(-5) 1.442(-6)
8 21 11.81 4.546(-7) 4.061(-8)
12 33 25.86 1.893(-10) 1.131(-11)

Table 12. Example 4: Results for various numbers of degrees of freedom using the
PS r5 with Mint = 200, M = 300 Nint = 50, Nint + Nbry = 70.
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5.2. Example 5. We finally consider the stream–function formulation on the Navier–Stokes equa-
tions for laminar viscous flow in a wavy channel [16, 25, 28]. From [16] the governing equation for
the stream–function ψ is

Lψ = ∆2ψ − Re

(
∂ψ

∂y

∂∆ψ

∂x
− ∂ψ

∂x

∂∆ψ

∂y

)
= 0 in Ω, (5.2a)

where Re is the Reynolds number, subject to the boundary conditions

ψ = 0 and
∂2ψ

∂y2
= 0 on AB, (5.2b)

ψ = 1,
∂ψ

∂n
= 0 on CD, (5.2c)

ψ =
3 (H − E)2 y − y3

2 (H − E)3
and

∂ψ

∂x
= 0 on BC and DA. (5.2d)

Ω

 A  B

 C D

 E

 H

(a) Computational domain

Ω

 A  B

 C D

(b) Distribution of Grid points

Figure 6. Example 5. The profiles of computational domain and typical distribu-
tion of collocation points.

The computational domain Ω is shown in Figure 6(a). Note that the length AB = 1 and the wavy
surface CD is given by y = H − E cos(2πx). Therefore, in (5.2c)

∂ψ

∂n
=

1√
1 + 4π2E2 sin2(2πx)

(
∂ψ

∂y
− 2πE sin(2πx)

∂ψ

∂x

)
.

We took M = Mint + Mbry collocation points, where Mint is the number of interior points and
Mbry = Mbryc + 3Mbrys is the number of boundary points. We denote by Mbryc the number of
collocation points located on a curved boundary CD and by Mbrys the number of collocation
points located on each other side AB, BC and DA, respectively. The centres are distributed in
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the similar way and we thus have a total number of N = Nint + Nbry centres, where Nint is the
number of interior centres and Nbry = Nbryc + 3Nbrys is the number of boundary centres. A typical
distribution of collocation points is presented in Figure 6(b). For the set of L = Lint + Lbry test
points we take Lint = 224 interior Halton points and Lbry = 76 uniformly distributed boundary
points.

The solution of the problem (5.2) was obtained with the proposed Kansa method, where we used
the logarithmic PS r2 log r. We took M = 281 collocation points, N = 280 centres, p = 20 and
niter = 200. The results obtained were compared with the corresponding results obtained using
the FEM package COMSOL Multiphysics R⃝ and the RMSE E calculated over a set of points in
Ω was found to be of O(10−3). In Figure 7 we present the contour plots for the stream function
for Re = 20, 40, 60, 80 and H = 1, E = 0.2. These are in good agreement with the corresponding
figures presented in [16] obtained using a combination of the method of fundamental solutions and
RBFs and a Picard iterative method and the figures obtained using the FEM package COMSOL
Multiphysics R⃝ .

6. Conclusions

A Kansa–RBF collocation method has been applied for the solution of boundary value problems
for second and fourth order nonlinear partial differential equations. The linear combination of
RBFs in the approximation of the solution was enriched by linear combinations of polynomial
basis functions (and the corresponding insolvency conditions). The Kansa–RBF discretization of
these problems leads to systems of nonlinear equations which are solved using either the nonlin-
ear MATLAB c⃝ routine fsolve or the nonlinear least–squares minimization MATLAB c⃝ routine
lsqnonlin. The main advantage of the proposed technique is the ease with which it can be
implemented while the results of several numerical experiments reveal that it leads to accurate
numerical results with a relatively small number of iterations. An attempt to resolve the issue
of obtaining an appropriate value of the shape parameter, which remains a challenging problem
in the application of Kansa–RBF collocation methods, is made by taking the unknown value of
the shape parameter to be part of the unknowns in fsolve or lsqnonlin. The extension of the
proposed technique to three–dimensional problems will be the subject of future research.
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