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Driven front and interface of a fluid-flow model in 2+ 1 dimensions

Michael J. Leaseburg
Department ofPhysics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

R. B.Pandey
Department ofPhysics and Astronomy, University ofSouthern Mississippi, Hattiesburg, Mississippi 39406-5046

(Received 28 February 1994)

Computer simulations are performed to study the motion of the front and the growth of the interface
width in a model of fluid flow driven by a biased field in 2+1 dimensions. The initial motion of the front
is diffusive, which is followed by a nondiffusive power-law behavior in the long-time regime; the power-
law exponent is nonuniversal, varying with the strength of the driven field. The growth of the interface
width saturates in the asymptotic time regime. The saturated width W scales with both the driven field

8 as well as the transverse length I.of the sample, leading to a two-parameter scaling W-I. 8,where
a=1.25 and m=0. 17.

PACS number(s): 68.10.Jy, 73.40.—c, 47.70.—n

For several years now [1—14], the study of interfacial
dynamics and roughness growth has attracted continued
interest, with efforts directed mostly toward the deposi-
tion models. Kinetics of the roughness growth in deposi-
tion models [4,5], and the dynamics of fronts in fiuid-fiow
models [10—14], and the resulting interface, have some
common features such as a similar power-law growth,
and saturation of the interface width and its scaling with
the size of the sample. Both the deposition models as
well as the analysis of the Quid Qow are motivated by
their applications in understanding a variety of issues in
diverse systems [5,15—17] such as growth of materials,
mixing and phase separation in fluid, and wetting by im-
bibition. Fluid-flow models are particularly useful in un-
derstanding the front propagation in systems such as
viscous fingering [18], imbibition [15], transport in
porous media [19],and chemical reaction in additive po-
lymerization [20], that are relatively easier to encounter
in laboratories. A more speci6c application of our in-
terest in Quid flow is to understand the spreading of the
water from a source of a planar river front into the dry
ground. Using a microscopic simulation, we attempt to
address issues such as how fast the water front moves
into the dry land, how much wet-land area is covered due
to a specific mechanism (used here) for the frontal move-
ment, and how it depends on the size of the source. Al-
though a quantitative comparison of our results with
such macroscopic Quid Qow may not be feasible, predic-
tion of the power laws for the qualitative behavior of the
Qow and spreading in simple model systems is possible, as
we demonstrate in this paper. Furthermore, the general
application of microscopic simulations to complex hydro-
dynamic phenomena, and complementary approaches to
macroscopic hydrodynamic methods, has just begun
[21,22], and we present some results using this approach.

A few preliminary studies have recently been reported
about understanding the growth of fronts and the inter-
face width in a few Quid-Qow mode1s which are limited to

two dimensions [12—14]. While the stochastic mecha-
nism of the mobile front and evolving interface show in-
teresting power-law behaviors [12,13], the effect of the
driven bias on these properties is relatively less under-
stood. Because of major computational limitations, most
of these studies [12—14] are devoted mainly to short-time
behaviors i.e., to the temporal evolution of the interface
growth. We present, a computer simulation study of the
Quid-flow model in three dimensions, with the long-time
regime extending far beyond the temporal evolution of
the interface where the saturated interface width shows a
scaling with both the size and the driven 6eld.

We consider a three-dimensional discrete lattice of size
L„XLXL, The first . yz plane (the base of the lattice)
serves as a source of the wetting fluid which is spread into
the lattice along the x direction by mobile particles. In
the plane adjacent to the base„we randomly distribute a
fixed number of particles (the carriers) N, which are ini-

tially wet and remain so for the duration of the simula-
tion. Note that N may vary from 1 to L„XL„although
we use the large value here in order to improve our
statistics. After the initialization, the particles undergo
stochastic motion in a biased Seld according to the fol-
lowing hopping probabilities. Motion in the +y or +z
directions has the probabilities P+y P+ 6 and along
the x axis we have P+„=(1+B„)l6,where B„K[0, 1] is

the bias factor of the driven field. Thus the bias B„drives
the system of particles away from the source along the
+x direction, with no bias along the y or z axes. Our
model is thus better deemed 2+ 1 dimensional.

Movement of the mobile particles is implemented by
the following procedure. We randomly select a particle
at a site i and one of its nearest neighbor sites, say j, in
accordance with our hopping probabilities. If site j is

empty, the particle relocates to site j, which then be-
comes permanently wet, an irreversible wetting; a site
remains dry until it is visited by a particle. Periodic
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FIG. 1. Mean front position Rf vs (Monte
Carlo) time steps (MCTS) for various values of
B„ona log-log scale.
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boundary conditions are employed along the y and z axes
and a reflecting boundary condition is in efFect at the
base. L„is chosen so large that no particle traverses the
entire lattice along the x direction during the course of
the simulation (typically L„=100000}.An attempt to
move N particles once is defined as one time step. In or-
der to obtain accurate averages we would ideally repeat
this process for a large number of samples. Unfortunate-
ly, the long-time study with a large lattice results in an
excessive execution time and, therefore, a large sampling
is not feasible. We used 20 samples, each with a million
time steps, and the simulations were carried out on RISC
computer workstations.

At a time step we define the wetting front to be the
locus of furthest wet sites along the x direction, i.e.,

W'(t) =, gX,'„(t)—Rf(t),1

jk

R,', (t)= g [X,'(t)+ Y,'(t)+Z, '(t)],
f,r ~ l

R,' (t)=X,' (t)+ Y', (t)+Z', (t),
1.0—

P 0.g

0
0.8

(3)

(4)

Rf(t}= QX.k(t),1

L j

where X k(t) is the furth-est x coordinate of the wet site
(x,j,k). Thus the mean wetting front (Rf ) is the average
of the ensemble of wet sites. Notice that this definition,
while standard, does not take into account the possibility
of islands of dry sites. Also measured within each sample
are the interface width ( W), the average rms displace-
ment of each particle (R„},and that of their center of
mass (R, },which are defined as,
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FI(x. 2. The mean front exponent k of the power law Rf-t
vs B„for samples 7X7XL„,10X10XL„,and 15X15XL„,
with L„=100000. 20 independent samples were used.
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1
C.m.

P

N

N

Yc.m. Np i=1
(5)

where X, , Y;, and Z; are the coordinates of the particle i.
These four observables are then averaged again over the
number of samples. We choose L~ =L,=L and samples
with base sizes (L XL, ) 7 X7, 10X 10, and 15 X 15 were
used with values of L„aslarge as 100000. Data obtained
become less noisy as the lattice size is increased. Howev-
er, we present results for the smallest lattice where finite
size effects should be most noticeable.

Figure 1 shows a plot of the mean wetting front R&
versus time for a range of B„ona log-log scale. When
B„=O.O, the power law R&- t should exhibit a diffusive
behavior (k= —,'), and we found an average exponent
k =0.51+0.01 for our three lattice sizes. As the biased
field is increased, we find a much different behavior. In
the short-time regime, the mean front shows the same
power-law behavior for all nonzero values of B„,while in

the long-time regime the evolution of the wetting fronts
obeys different power-law relations. The relaxation time
for the crossover from short to long time (i.e., from simi-
lar to dissimilar) power-law behavior depends on the base
size and the bias field strength. We estimate the magni-
tude of the asymptotic exponent k for various fields, and
Fig. 2 shows a k versus B„plot.At B„=O.O, we observe
a diffusive behavior, with k=0.5, as previously men-
tioned. On increasing the magnitude of B„,k increases
with the field rather quickly at low biased regime. At
higher values of B„,however, the rate of increase slows
down considerably. This variation of the exponent k
with the field suggests that the asymptotic power-law
motion of the front is nonuniversal. We should mention
that the value of k appears to increase exponentially with
respect to B„,but this fit is difficult to predict more accu-
rately due to the small range over which B„varies.

Variation of the center of mass (c.m. ) of the particles
[Eqs. (4) and (5)] and their rms displacement [Eq. (3)]
with time is presented in Figs. 3(a) and 3(b), respectively.
With B„=O.O we find that the c.m. always trails the rms
displacement of each particle, and this is a product of the
diffusive nature of our system. However, for nonzero B„

B„=O.OO, R(
B„=O.OO, R,
B„=0.10, Rg
B„=0.10, R,

FIG. 4. Mean front and c.m. positions vs
MCST time for 8„=0.00 and 0.10 on a log-log
scale.

10' 10' 10'
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the differences become negligible as the system evolves.
Looking at the trends in the motion of the c.m. and wet-
ting front, we note that the c.m. lags behind the wetting
front (see Fig. 4). Also evident in the nondiffusive evolu-
tions is the speed with which the c.m. attempts to catch
up with the front, and the approach to a saturation state
for larger times. This behavior becomes more noticeable,
as it should, upon increasing the strength of the bias field.
Let us now examine the ratio Rf /R, , which is propor-
tional to time as t '. In case of diffusive behavior with
B„=0.00, we find the exponent (k —I) ranging from
0.008 to 0.015 with an average value of 0.012 for our base
sizes. This suggests that the ratio goes to infinity, as time
tends toward infinity very slowly. For B„%0.00, howev-
er, we find k —l to be negative, and k —l decreases faster
with increasing B„,i.e., at B„=0.02 the average value for
k l is——0. 139 and at B„=O.10 it is —0.045. If we view
an increase in the bias field as a method for rescaling
time, these results suggest that the limiting value for k —1

is zero, and this approach to zero occurs slowly with
respect to B„(andthus in time). If this is indeed true we
then have Rf/R, —l. In the presence of a bias field

such a ratio is expected because the c.m. should ride
along the wetting front for large times.

Lastly, we studied the growth of the interface width 8'
which is defined by W' =(RP —(Rf ) [see Eq. (2)
above]. Figure 5 is a plot of W versus time for various
values of B and two lattice sizes. %e immediately note

that the finite size effects are transparent in the long-time
regime, when the interface width saturates. In order to
reach such an asymptotic (long-time) limit we have to
resort to a smaO number of samples, which makes our
analysis difficult due to large fluctuations. Nevertheless,
it is evident, at least qualitatively, that the saturated
width depends on both the size as well as the bias field
strength.

We define the saturation width ( W, ) as the average in-
terface width over a long period of time after the satura-
tion has been achieved. Both the onset time for satura-
tion and the value for 8; appear to depend upon the base
size and the bias field strength. The former result is best
seen in the data for a sample size of 15X15. The 8',
versus B plot is presented in Fig. 6. This figure shows a
very nice linear relationship between these two quantities,
and demonstrates an obvious size dependence. The in-
crease in 8', with 8 is not surprising, however. Larger
field strengths drive the particles to traverse the lattice
more rapidly, resulting in larger fluctuations of the wet-
ting front. Even with large error bars in the average esti-
mates of the saturated widths, its dependence on the field
strength and the base size is relatively easier to evaluate.
This led us to consider the possibility of a scaling
behavior. It is rather difficult to devise a two-parameter
scaling for the saturated width. However, since 8',
varies with B and base size, it is natural to examine our
results as a scaling W, —A f(B„),where A=L XL,

C
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FIG. 5. Interface width vs time step on a

log-log scale for various values of B„withsam-

ples 7X7XL„and15X15XL,; L =100000.
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FIG. 6. Saturated width 8', vs B„for three base sizes (same
statistics as Fig. 2). The last data points at the biased field

strength 0.1 for each sample are 4.5+0.6 (7X7), 9.1+1.0
(10X10),and 20.8+1.9 (15X 15), to give an idea about the sta-
tistical errors in the saturated width.

and f is some function of the bias field strength. We find
that a=1.25+0. 10. f seems to scale with the bias field
B„witha slope m =0.170+0.004, as we see from Fig. 7,
where ( W, /A ) is plotted against 8„.The scaling
behavior is rather good considering the limitations on the
sample sizes and fluctuations in the data. These simula-
tions took about 1200 hours of CPU on RISC machines.

In summary, in our three dimensional fluid-flow model,
we observe a difFusive behavior for the front in short
time, followed by a nonuniversal power-law behavior for
the front propagation at low values of the driven fields.
The interface width saturates in the asymptotic regime.
The saturated width scales with the cross-sectional area
of the system with an exponent a=1.25, and with the

FIG. 7. Scaled saturated width (8', /L ) vs the bias field
strength B„for different sample sizes L.

bias field strength with an exponent m =0.17. Thus,
with our idealized model for the spreading of the fluid
from a source (a planar river front), we are able to predict
how fast the wet front moves into the dry (unsaturated)
land: a slow (diffusive) propagation is followed by a faster
invasion which depends on the pressure gradient (i.e., the
bias). This study also shows that the spread in the frontal
wetland area (interface width) will eventually attain a
constant value (saturated width) which depends on the
size of the source.

Computer simulations were performed on a SGI
RISC-3000 computer at the Mississippi Center for Super-
computing Research, and IBM RISC-6000 (550 and 320)
at USM's Center for Academic Computing and Program
in Scientific Computing. Financial support from a NSF-
EPSCoR grant is also acknowledged.
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