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ABSTRACT

A data assimilation approach to specify open boundary conditions is proposed. The boundary values are
determined from the solution of the special optimization problem: minimization of the difference between the
model and reference boundary values under the integral constraints on the open boundary. These constraints
represent the energy, momentum, and mass fluxes through the open boundary. Reference values represent the
a priori knowledge about the boundary values. They might be derived from observations, results of another
model run, or from another approach to the specification of open boundary conditions. Optimized open boundary
conditions are presented in detail for the barotropic case and when only one integral constraint is considered:
energy flux through the open boundary. It is shown that well-known radiation-type boundary conditions intro-
duced by Reid and Bodine, and Flather, are special cases of the derived optimized conditions. The results of
application of the proposed boundary conditions are demonstrated in the modeling of tidal and wind-driven
circulation for a channel and for the northern part of the Adriatic Sea. The results of studies of the model
predictions’ sensitivity to errors in the reference values used in the boundary conditions are presented. The
applications of optimized open boundary conditions show a significant reduction in errors when compared to
the commonly used, nonoptimized schemes.

1. Introduction

With the rapidly increasing amount of available ob-
servations, results of model simulations, and newly
gained knowledge of physical processes, the develop-
ment of data assimilation methods is in great demand.
One of the areas of application of data assimilation
methods is the specification of open boundary condi-
tions (OBCs) for limited-area models. The use of data
assimilation techniques improves the model predictions
and avoids the ill-posed, point-wise treatment of OBCs
(Bennett 1992, 1994; Oliger and Sundstrom 1978). In
many data assimilation techniques of specifying OBCs,
the latter are considered as control parameters. In this
case, OBCs are chosen in such a way as to simulta-
neously provide the best fit to the governing equations
and to the observations (e.g., Bennett 1992, 1994; Zou
et al. 1993; Seiler 1993, etc.). The best fit means the
minimization of the norm of the deviation between mod-
el results and observations. Thus, the interior solution
and the available observations are used to calculate the
variables on the open boundary. The main restriction of
this approach is the need for significant amounts of com-
puter time and memory.

In Shulman and Lewis (1994, 1995), OBCs are cho-
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Building 1103, Rm. 249, Stennis Space Center, MS 39529.

sen by combining the model dynamics with the data
assimilation only on the open boundary and its vicinity.
It was shown that many well-known, radiation-type
OBCs are special cases of the optimized OBCs obtained.
The solution of this local data assimilation scheme was
easily derived. Therefore, this approach does not sig-
nificantly impact the computational time and the re-
quired memory. At the same time, the comparison be-
tween the Reid and Bodine formulation and the opti-
mized version of this condition showed that optimiza-
tion provides much better results in modeling tidal
constituents.

In section 2, we describe the general formulation of
the local data assimilation approach to specification of
OBCs and provide the detailed description of the bar-
otropic case. The applications of optimized OBCs are
demonstrated for the cases of the idealized channel and
the Adriatic Sea. The results of tidal and wind-driven
simulations as well as sensitivity studies are presented
and discussed in sections 3 and 4.

2. Derivation of the optimized open boundary
conditions

Let vector X be the variables that we are to specify
on the open boundary (sea surface height, velocity, tem-
perature, salinity, etc.). Suppose we know some refer-
ence value of vector X, which we denote as vector Xo.
The reference values of boundary variables in Xo can
be estimated from available observations, another nu-
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FIG. 1. Analytical solution and results of channel simulations with RB and ORB conditions (top) and FL and OFL
conditions (bottom). Curve A is the analytical solution, curve B is the result of application of the RB (top) and the
FL (bottom) conditions, and curve C is the result of application of the ORB (top) and the OFL (bottom) conditions.

merical simulation, and approximations based on the
governing physics. We introduce the function J(X, Xo)
$ 0, which represents the difference between model
and reference values of variables on the open boundary.
Let Pt be the energy flux through an open boundary,
which results from the difference in values of vectors
X and Xo. Accordingly, let Mt be the mass flux and Ft

be the momentum flux through the open boundary,
which results from the difference in values of vectors
X and Xo. If we suppose that we know some estimates
of Pt, Mt, and Ft, we might choose the boundary values
(vector X) from the following optimization problem:

omin J(X, X ), (1)
X

oA(X, X ) 5 P , (2)t

oB(X, X ) 5 M , (3)t

oC(X, X ) 5 F , (4)t

where A, B, and C are operators for calculating energy,
mass, and momentum fluxes. Thus, we choose open
boundary values by minimizing the deviation between
the reference and model boundary values under the in-

tegral constraints representing the energy, mass, and mo-
mentum fluxes. Solving (1)–(4) is a very complicated
problem, and different approaches can be used. Each of
these approaches has to take into account that the esti-
mated Pt, Mt, Ft, and reference values may contain errors.

In this paper, we consider the minimization of (1) under
only constraint (2) for vertically averaged, hydrostatic
equations. Let S is the open boundary of the model do-
main D, un and h are the vertically averaged outward
normal velocity and the sea surface elevation on the open
boundary, H is the depth, and g is the gravitational con-
stant. Suppose that we have some reference values of sea
surface elevation on the open boundary in the form of
ho and some reference values of the outward normal
velocity in the form of . For the vertically averaged,oun

hydrostatic problem, the minimization of (1) under con-
straint (2) can be written in the following form:

g
1/2 o 2min J 5 (gH) (h 2 h ) ds , (5)E[ ]2h S

o o2g H(h 2 h )(u 2 u ) ds 5 P , (6)E n n t

S
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FIG. 2. Analytical solution and results of channel simulations with FL and OFL conditions. The amplitude of the
reference velocity is increased by 50% (top) and reduced by 50% (bottom). Curve A is the analytical solution, B isoun

the result of application of the FL condition, and C is the result of application of the OFL condition.

where Pt is as previously defined and (6) is the energy
flux resulting from the differences in model and refer-
ence values of sea surface elevation and velocity. In a
real-world situation, Pt, ho, and contain some errors.oun

For this reason, to solve problems (5) and (6), we em-
ploy the regularization method (Sabatier 1987; Parker
1994). This approach provides the determination of the
solutions of (5) and (6) that will be stable with respect
to the above-mentioned errors. In this case, problems
(5) and (6) are reduced to the following minimization
problem:

2
1

o omin P 1 g H(h 2 h )(u 2 u ) dst E n n5 [ ]2h S

g
1/2 o 21 g (gH) (h 2 h ) ds , (7)E 62 S

where g is a parameter of regularization. The solution
of (7) has the following form:

1/2 og (h 2 h )
ou 2 u 5 , (8)n n 1 2H lt

where

Ptl 5 2 . (9)t

1/2 3/2 o 2g H (u 2 u ) ds 1 gE n n

S

To determine boundary conditions from (8) and (9), we
have to choose a value for the parameter g. There are
many different approaches to choosing g. Most of them
rely on the estimate of the error in the input data. In
most cases, we do not know the norms of the errors in
the estimates of Pt and the reference values. Moreover,
these norms will change from time to time. Therefore,
the attractive approaches are the ones that do not require
the a priori knowledge of the error norms. In the ap-
pendix, we briefly describe an approach of choosing the
value of g that provides the maximum of the entropy
integral. This approach was used in this study.

Condition (8) can be considered as a method of
boundary value relaxation toward the reference values.
The condition has a coefficient of relaxation lt that
changes over time and provides the adaptation of the
boundary values to the change in the energy flux through
the open boundary. Condition (8) is a modification of
the boundary condition introduced in Flather (1976),
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FIG. 3. Analytical solution and results of channel simulations with FL and OFL conditions. The phase shift of the
reference velocity with respect to the reference sea surface height ho is equal to 458 (top) and 08 (bottom). Curveoun

A is the analytical solution, B is the result of application of the FL condition, and C is the result of application of the
OFL condition.

when lt 5 1. This condition has been employed by many
researchers (e.g., Oey and Chen 1992; Davies and Law-
rence 1994; etc.).

When 5 0, condition (8) becomesoun

1/2 og (h 2 h )
u 5 . (10)n 1 2H lt

Note that condition (10), when lt 5 1, is a modification
of the boundary condition introduced by Reid and Bod-
ine (1968). Below, the conditions (8) and (10), when lt

is calculated from (9), are called optimized versions of
the Flather and the Reid and Bodine boundary condi-
tions and denoted correspondingly as OFL and ORB.
The standard versions of the Flather and Reid and Bod-
ine conditions are denoted as FL and RB.

3. Channel simulations with optimized OBCs

Consider a flat-bottom, frictionless, channel closed at
one end (Shulman and Lewis 1994, 1995). The channel
is forced at the other end by surface height oscillations
at the M2 tidal frequency with the amplitude of 1 m

[function ho in (8) and (10)]. The length of the channel
is 335 km and the depth is 50 m. There are 23 grid
points along the channel (23rd is a wall). In Fig. 1 (top)
we reproduced the analytical solution plus the results
of the simulations for RB and ORB presented in Shul-
man and Lewis (1995). One can see that the error in
predicting the amplitude is around 60% and the phase
offset is around 608 for the RB condition. At the same
time, the ORB condition almost entirely eliminated er-
rors in predicted amplitudes while more than halving
the errors in predicted phases. We conducted the same
experiments with the FL and OFL conditions. The func-
tion was calculated from the analytical solution foroun

this problem (Officer 1976). The results of the simu-
lations are shown in Fig. 1 (bottom), and they are very
close for both FL and OFL conditions.

The results of the simulations with the RB condition
can be interpreted as the results of an application of the
FL condition with the estimate of the being equal tooun

zero [see (8) and (10), when lt 5 1]. This suggests that
the FL condition may be sensitive to errors in data used
to construct the reference values of the sea surface el-
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FIG. 4. Time series of sea surface elevation at four locations in the channel. The solid line is
the analytical solution, and the dashed line is the model result with the application of the RB
condition (top) and the ORB (bottom).

evation and velocity (functions ho and ). To test thisoun

we conducted four experiments. In the first experiment,
the amplitude of the reference velocity is increasedoun

by 50%. The results of simulations with FL and OFL
conditions are shown in Fig. 2 (top). The maximum error
in predicting the amplitudes reaches 41.5% for FL. At
the same time, the optimized version of the Flather con-
dition has a maximum error of only 6.4%. In the second
experiment, the amplitude of is reduced by 50%. Theoun

results of simulations are shown in Fig. 2 (bottom), and
the maximum error of predicted amplitudes is 30.3%
for FL but only 5.3% for OFL.

From the analytical solution (Officer 1976), the correct
phase shift for with respect to ho is 908. In the thirdoun

and fourth experiments, we introduced errors in the phase
of . The results of simulations with FL and OFL con-oun

ditions when the phase shift of with respect to ho equalsoun

08 and 458 are shown in Fig. 3. The use of the FL con-
dition produces the maximum phase offset from the an-
alytical solution equaling 608. However, the maximum
phase offset is only 128 when we use the OFL condition.

The results of the numerical simulations clearly show
that predictions using the FL condition are very sensitive
to the errors in reference values of the sea surface ele-
vation and velocity. But, the application of the optimized
Flather condition results in much smaller errors.

To test the optimized OBCs for reproducing wind-
driven circulation, we conducted a simulation for the
channel with some simple wind forcing. Let us consider
the following simple analytical problem to get an idea
about the results expected. Suppose we have the same
channel as before, but closed at both sides. Neglecting
the nonlinear terms and bottom friction, the flow can
be described by the following system of equations:

]u ]h W
5 2g 1 , (11)

]t ]x Hr

]h ]u
5 2H , (12)

]t ]x

where W is the wind stress. We have the following initial
and boundary conditions:
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FIG. 5. Same as Fig. 4 but the dashed line is the model result with the application of the FL
condition (top) and the OFL (bottom).

TABLE 1. Observed and model-predicted amplitudes (cm) and phases (degrees, relative to UTC) for the M2 tide in the northern Adriatic
Sea based on a simulation using the finer grid model of the Mediterranean Sea.

Station

Model

Amplitude Phase

Observed

Amplitude Phase

Difference (%)

Amplitude Phase

P. P. Vecchia
Rovinj
P. Corsini
Pesaro
Ancona
Pula

19.7
15.2
13.8

9.4
5.2

10.9

260.9
241.4
270.6
285.1
304.4
231.7

22.3
19.3
15.5
12.8

6.0
15.1

257.0
242.5
274.0
288.0
316.0
236.3

212.1
221.2
210.9
226.6
213.3
227.8

1.5
20.5
21.2
21.0
11.6

22.0

TABLE 2. Observed and model-predicted amplitudes (cm) and phases (degrees, relative to UTC) for the M2 tide in the northern Adriatic
Sea based on a simulation using the coarser grid model of the Mediterranean Sea.

Station

Model

Amplitude Phase

Observed

Amplitude Phase

Difference (%)

Amplitude Phase

P. P. Vecchia
Rovinj
P. Corsini
Pesaro
Ancona
Pula

53.5
51.3
27.4
17.3

6.3
25.5

275.2
265.5
289.7
304.1

33.6
246.2

22.3
19.3
15.5
12.8

6.0
15.1

257.0
242.5
274.0
288.0
316.0
236.3

140.0
166.0

76.7
35.1

5.0
68.8

7.1
9.5
5.7
5.6

24.6
4.1
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u| 5 0, u| 5 0, (13)x50 x5L

u(x, 0) 5 h(x, 0) 5 0, (14)

where L is the length of the channel and r is the water
density. Suppose that W has the following form:

px
W(x, t) 5 f(t) sin , (15)

L

where

at, t # e
f(t) 5 5ae, e # t # T.

Therefore, we have the wind linearly increasing with
time and then constant after time e. The analytical so-
lution of problem (11)–(15) has the following form:

px
u(x, t) 5 u(t) sin , (16)

L

a(1 2 cosbt)
, t # e

2(Hrb )
u(t) 5

2a sin(be/2) sinb(t 2 e/2)5 , e # t # T
2(Hrb )

px
h(x, t) 5 c(t) cos , (17)

L

2 3(2pat/Lrb ) 1 (ap/Lrb ) sinbt, t # e
c(t) 5

2 35(2pae)/(Lrb ) 1 2ap sin(be/2) cosb(t 2 e/2)/(Lrb ), e # t # T,

where

p
1/2b 5 (gH) .

L

We choose the following values for the unknown pa-
rameters: L 5 335 000 m, r 5 1025 kg m23, H 5 50
m, e 5 ½ day 5 43 200 s, T 5 4 days, a 5 1.7 3 1024.
The value of a corresponds to wind stress linearly in-
creasing from zero to 7.35 N m22 during a half day [if
we suppose the drag coefficient is 2.6 3 1023 (Hell-
erman and Rosenstein 1983), the maximum wind speed
is around 48 m s21].

The model run reproduced reasonably well the ana-
lytical solution for the closed channel. To test the op-
timized OBCs, we cut our computational domain on one
side, removed five grid cells, and considered a sixth
point as the open boundary. On the open boundary, the
reference values of the sea surface elevation ho and
velocity were taken from the analytical solutions inoun

(16) and (17). The analytical solution at four grid points
along the channel and the results of the simulations with
the RB, ORB, FL, and OFL conditions are shown in
Figs. 4 and 5. The optimized versions of boundary con-
ditions reproduced the analytical solution very well, and
the results are very close for both optimized conditions.
At the same time, the usual versions of the Reid and
Bodine and Flather conditions produced significant de-
viations from the analytical solution.

4. Modeling tidal and wind-driven circulation in
the northern part of the Adriatic Sea

The model used in this study is the s-coordinate,
explicit version of the Princeton ocean model (Blumberg
and Mellor 1987). This model is a three-dimensional,
free-surface, primitive equations model. It includes the
Mellor–Yamada turbulence closure submodel, and Sma-
gorinsky diffusivity scheme for horizontal diffusion.
The model uses a mode-splitting technique: the sepa-
ration of vertically integrated equations (external, bar-
otropic mode) from the vertical structure equations (in-
ternal, baroclinic mode). In this study, the simulations
were conducted using only the barotropic mode of the
model. For additional information on the model, the
reader is referred to Blumberg and Mellor (1987).

Two orthogonal curvilinear grids were used that cover
the entire Mediterranean Sea. The first grid had a rel-
atively fine mesh with 441 3 141 grid points in the
horizontal and a grid size ranging from 8 to 12 km in
the Adriatic Sea. The second grid had a relatively coarse
mesh (221 3 71 grid points) with a grid size ranging
from 32 to 61 km in the Adriatic Sea area. The com-
parison of tidal observations in the region of the north-
ern Adriatic Sea with the results of the simulation using
the fine grid model are shown in Table 1. These results
provide a good approximation of the observations at six
tidal stations: Porto Piave Vecchia, 45.298N, 12.348E;
Rovinj, 45.058N, 13.388E; Porto Corsini, 44.308N,
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FIG. 6. Limited-area model of the northern part of the Adriatic
Sea.

FIG. 7. Observed and model-predicted amplitudes and phases for the M2 tide based on a simulation using a limited-
area model of the northern Adriatic Sea: the circle is observed amplitudes and phases, the diamond is the results of
the application of RB condition, and the star is the results of the application of ORB condition.

12.178E; Pesaro, 43.558N, 12.558E; Ancona, 43.378N,
13.308E; and Pula, 44.528N, 13.508E. To quantify the
errors, we use a weighted average percent error for these
six northern Adriatic Sea stations. The average error is
18.6% for amplitudes and 1.7% for phase. The predic-
tions of M2 tides in the northern Adriatic using the coars-
er grid model are considerably worse (see Table 2). The
average error in overestimating the tidal amplitude is
99%.

To test the OBCs in coupling coarse- and fine-reso-
lution models, a limited-area model (LAM) of the north-
ern part of the Adriatic Sea was produced, based on a
portion of the fine grid of the Mediterranean Sea model
(Fig. 6). The output from the coarse-resolution model
run was interpolated to the open boundary of the LAM
to create reference values of sea surface elevation ho

and velocity for the OBCs. The results of the LAMoun

simulations with RB, ORB, FL, and OFL conditions are
shown in Figs. 7 and 8. Using the RB condition, the
LAM predictions have an average error of 57% for the
M2 tidal amplitudes and 4.4% for phases. The results of
simulations with ORB showed much better agreement
with the observations (see Fig. 7), with an average error
of 12% for amplitudes and 0.9% for phases.

The worst results in predicting tidal amplitudes occur
when using the FL condition (Fig. 8). The average error
is 106%; this is close to the error of the coarse grid run,
the results of which were used to construct the reference
values for ho and . The use of OFL reduced the erroroun

by half to around 47%. This has the following expla-
nation. The use of ho and calculated from the coarseoun

grid run provides too large an input of energy into the
LAM when we use the standard FL condition. In the
optimized version of this condition, the input from the
coarse grid is corrected by the energy flux generated by
the interior domain of the LAM. Calculating lt in OFL
and ORB provides the adaptation of the boundary con-
dition to the energy flux generated by the LAM. One
can see that the results of simulations with the optimized
OBCs showed much better agreement with the obser-
vations than their standard versions.

The next set of experiments was conducted with the
wind forcing also included. The mean (Hellerman and
Rosenstein 1983) wind stress for February was in-
creased 10 times to get a stronger model response to
the wind forcing. To establish the ‘‘truth’’ for later com-
parisons, the fine grid model of the Mediterranean Sea
was forced for 25 days with this wind and M2 tides. The
values of the sea surface elevation and velocity on the
open boundary of the LAM were stored as reference
values of sea surface elevation ho and velocity . Tooun

test the sensitivity of the considered OBCs to the errors
in functions ho and , we ran an experiment with theoun

amplitudes of ho reduced by 20% and reduced byoun

50%. The results of the LAM simulations were com-
pared with the results of the Mediterranean Sea fine grid
model run. We calculated the averaged errors in pre-
dicting sea surface amplitudes and phases. These errors
are 45% for amplitude and 0.8% for phase for the FL
condition, 16% for amplitude and 2.6% for phase for
OFL, and 22% for amplitude and 4.4% for phase for
ORB. Errors in the prediction of the current ellipses for
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FIG. 8. Observed and model-predicted amplitudes and phases for the M2 tide based on a simulation using a limited
area model of the northern Adriatic Sea: the circle is observed amplitudes and phases, the diamond is the results of
the application of FL condition, and the star is the results of the application of OFL condition.

TABLE 3. The results of LAM simulations when amplitude of ho is reduced by 20% and by 50%. Relative errors in prediction of M2
oun

current ellipse parameters: major axis and orientation of major axis (u).

Station

FL

Major (%) u (%)

OFL

Major (%) u (%)

ORB

Major (%) u (%)

P. P. Vecchia
Rovinj
P. Corsini
Pesaro
Ancona
Pula

45.6
44.9
44.8
44.4
43.3
46.4

1.1
5.0
1.0
2.8
2.3
6.0

18.5
16.6
14.5
15.6
18.2
17.1

0.5
1.9
0.3
1.0
1.0
2.2

23.0
21.5
23.5
23.8
30.2
20.0

0.6
2.4
0.5
1.5
1.6
2.6

the six tidal station locations are shown in Table 3.
Optimized versions of the OBCs have an average error
in predicting major axis amplitude of less than 20%. At
the same time, the FL condition has an average error
of 45%, which is close to the error introduced into the
values of (50%). In our next experiment, we testedoun

the sensitivity of FL and OFL to errors in the phase of
the reference velocity . We shifted the values of theoun

reference velocity by 3 h (which corresponds to the
phase shift for M2 tides, equaling 878). The results are
shown in Table 4. The averaged errors of the major axis
predictions are 24.6% for FL and 14.8% for OFL. The
predictions of phases are reasonably good for both
boundary conditions.

5. Conclusions

The local data assimilation approach for specifying
open boundary conditions for limited-area models is
proposed. This approach provides the methodology for
an optimized determination of variables on the open
boundary based on available reference information
about boundary values and dynamics of the model near
the open boundary. The optimization problem is con-
strained by the physics of flux of energy through the
open boundary. The reference boundary values can be

derived from observations, another coarser-resolution
model run, and/or from another specification of open
boundary conditions. For the barotropic models, the pro-
posed optimized open boundary conditions have a sound
physical interpretation as optimized versions of well-
known radiation-type open boundary conditions (Reid
and Bodine 1968; Flather 1976). The results of tidal and
wind-driven simulations for the idealized channel and
the northern part of the Adriatic Sea show that the ap-
plication of the optimized open boundary conditions
reduces significantly the error of model predictions com-
pared to the use of nonoptimized counterparts. There-
fore, the proposed local data assimilation schemes of
specifying open boundary conditions can provide an
improvement in the accuracy in simulating model in-
terior flow. Coupling of a coarser-resolution model and
a finer-resolution limited-area model and sensitivity
studies show that radiation-type open boundary con-
ditions transmit the level of errors in the reference values
into the interior domain. This can result in either over-
estimating or underestimating the amplitudes of sea sur-
face elevation and velocity. But the optimized versions
of these conditions correct the energy input from the
reference values into the limited-area domain, and thus
result in a reduction in errors. Overall, the results of
simulations show that optimized open boundary con-



1418 VOLUME 14J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

TABLE 4. The results of LAM simulations when the reference ve-
locity was shifted by 3 h. Relative errors in prediction of M2 currentoun

ellipse parameters: major axis and orientation of major axis (u).

Station

FL

Major (%) u (%)

OFL

Major (%) u (%)

P. P. Vecchia
Rovinj
P. Corsini
Pesaro
Ancona
Pula

25.0
26.0
22.2
20.6

8.2
32.3

0.6
2.9
0.5
1.3
0.4
4.2

15.2
16.2

9.5
11.7
13.3
17.1

0.4
1.8
0.2
0.7
0.7
2.2

ditions can be used to force barotropic models or the
barotropic mode of three-dimensional models (such as
the Princeton Ocean Model). Our future research will
be focused on extending the proposed local data assim-
ilation techniques to the baroclinic case.
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APPENDIX

Regularization of Optimized Open Boundary
Conditions

Below we describe the approach to choose the value
of the regularization parameter g. We introduce the fol-
lowing notation:

g
m 5 , (A1)

1/2 3/2 o 2g H (u 2 u ) dsE n n

G

and we will discuss the value of the nondimensional
parameter m. Suppose that the sea surface elevation hex

is a solution of the optimization problem when Pt and
un are the exact values for the energy flux and velocity.
We do not know the function hex, but we have the func-
tion h(m) from (8) and (9). Some norm of the product
m]h/]m [corresponding to the first member of the Taylor
series of the difference between h(m) and hex] can be
used to estimate the difference between h(m) and hex

and to estimate the optimal value of m and g. Let us
introduce the following norm:

2
]h

2 3/2 1/2w 5 g H m ds.E 1 2]m
G

According to (A1), we have

2 2P mt2w 5 . (A2)
4(1 1 m)

1/2 3/2 o 2g H (u 2 u ) dsE n n

S

Let us introduce the normalized distribution function:
2w (m)

f (m) 5 ,
`

2w (m) dmE
0

which is, according to (A2), equal to
2m

f (m) 5 3 .
4(1 1 m)

We choose the value for m according to the maximum
entropy method:

max[2 f (m) ln f (m)]. (A3)
m

In this case, by maximizing entropy over all values of
m, we are picking one that makes the fewest unnecessary
assumptions (most cautious hypothesis). The solution
for (A3) is

m 5 1 (A4)

or

1/2 3/2 o 2g 5 g H (u 2 u ) ds. (A5)E n n

S

REFERENCES

Bennett, A., 1992: Inverse Methods in Physical Oceanography. Cam-
bridge University Press, 346 pp.
, and B. S. Chua, 1994: Open-ocean modeling as an inverse
problem: The primitive equations. Mon. Wea. Rev., 122, 1326–
1336.

Blumberg, A., and G. L. Mellor, 1987: A description of a three-
dimensional coastal ocean circulation model. Three Dimensional
Coastal Models, N.S. Heaps, Ed., Coastal and Estuarine Sci-
ences, Vol. 4, Amer. Geophys. Union, 1–16.

Davies, A. M., and J. Lawrence, 1994: A three-dimensional model
of the M4 tide in the Irish Sea: The importance of open boundary
conditions and influence of wind. J. Geophys. Res., 99, 16 197–
16 227.

Flather, R. A., 1976: A tidal model of the northwest European con-
tinental shelf. Mern. Soc. Roy. Sci. Liege, Ser. 6, 10, 141–164.

Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress
over the world ocean with error estimates. J. Phys. Oceanogr.,
13, 1093–1104.

Oey, L.-Y., and P. Chen, 1992: A model simulation of circulation in
the north-east Atlantic shelves and seas. J. Geophys. Res., 97,
20 087–20 115.

Officer, C. B., 1976: Physical Oceanography of Estuaries and As-
sociated Coastal Waters, Wiley and Sons, 456 pp.

Oliger, J., and A. Sundstrom, 1978: Theoretical and practical aspects
of some initial boundary value problems in fluid dynamics. SIAM
J. Appl. Math., 35(3), 419–446.

Parker, R. L., 1994: Geophysical Inverse Theory. Princeton Press,
386 pp.



DECEMBER 1997 1419S H U L M A N

Reid, R. O., and B. R. Bodine, 1968: Numerical model for storm
surges in Galveston Bay. ASCE, J. Water W. Harbors. Coastal
Eng. Div., 94, 33–57.

Sabatier, P. C., Ed., 1987: Basic concepts and methods of inverse
problems. Basic Methods of Tomography and Inverse Problems,
P. C. Sabatier, Ed., Adam Hilger, 471–643.

Seiler, U., 1993: Estimation of the open boundary conditions with
the adjoint method. J. Geophys. Res., 98(C12), 22 855–22 870.

Shulman, I., and J. Lewis, 1994: Modeling open boundary conditions
by using the optimization approach. TR-1/95, Center for Ocean

and Atmospheric Modeling, University of Southern Mississippi,
13 pp. [Available from Institute of Marine Sciences, University
of Southern Mississippi, Bldg. 1103, Room 249, Stennis Space
Center, MS 39529.]
, and , 1995: Optimization approach to the treatment of
open boundary conditions. J. Phys. Oceanogr., 25, 1006–1011.

Zou, X., I. M. Navon, M. Berger, P. K. Phua, T. Schlick, and F. X.
LeDimet, 1993: Numerical experience with limited memory qua-
si-Newton methods for large-scale unconstrained nonlinear min-
imization. SIAM J. Optimization, 3 (3), 582–608.



Copyright of Journal of Atmospheric & Oceanic Technology is the property of American Meteorological

Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the

copyright holder's express written permission. However, users may print, download, or email articles for

individual use.


	The University of Southern Mississippi
	The Aquila Digital Community
	12-1-1997

	Local Data Assimilation in Specification of Open Boundary Conditions
	Igor Shulman
	Recommended Citation


	15_209.1409_1419

