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Power-Law Exponents for a Spreading Front and Growing Interface in an Irreversible Wetting

Evan Willett and Ras Pandey
Department of Physics and Astronomy, University of Southern MississippiH, atliesburg, Mississippi 39406

(Received 30 July 1990)

Using computer simulations, the power-law behavior of the interface growth of a spreading fluid is
studied in a two-dimensional lattice model. The interface width exponent v and the dynamical exponent
k for the evolution of the front are consistent with their dynamical scaling relation. The magnitude of
these exponents seems to depend upon the nature of the substrate and the concentration of the carriers
of the ~etting fluid.

PACS numbers: 61.50.Cj, 05.70.Ln, 68.10.Gw, 68.35.Fx

To describe the evolution of the growing interface in a
granular deposit, Edwards and Wilkinson ' have studied
the Langevin equation for the surface profile. Kardar,
Parisi, and Zhang (KPZ) have extended it to model the
driven interface growth by adding a lowest-order non-

linear term to the Langevin equation, i.e., by the Burgers
equation,

't)h/Bt =DV h + (X/2 ) (Vh ) + g (x, t ),
where the height h(x, t) represents the interface profile,
D is the difl'usion constant, g(x, t) is the random noise
with zero mean, and X is the coefficient of the nonlinear
term. Using a renormalization scaling, KPZ predicted
a remarkable relation between the exponents of the
dynamical scaling for the interface width,

W(R, t) =(h ') —(h) ' =R'Wo(t/R. ), (2)

with

2g=(2 —d)+(2 —
ri

—z), (3)

where R is the linear size of the substrate, z and g are
the dynamic and hydrodynamic exponents, respectively,
and d is the spatial dimensionality. For nonzero A. , KPZ
have predicted the growth exponents g = —' and z =

2 .
Applicability of these results and their verifications to a
variety of growth models by computer simulations have
attracted considerable interest in recent years. ' We
study a computer-simulation model of an irreversible
wetting front and we find that the exponents g/z and 1/z
are consistent with relation (3) but their magnitude may
depend on the microscopic details such as the nature of
the substrate and the concentration of the carriers.

We consider a two-dimensional discrete lattice of size

L, xL, One end of the lattice, say, the first column, is

connected by a source of the wetting fluid while the op-
posite end, the L,th column, by an absorbing sink. A
fraction p of the lattice site is randomly occupied by par-
ticles (the carriers of the wetting fluid) which are in con-
stant stochastic motion. Initially, all the particles and
lattice sites are dry, except those in contact with the
source where the particles are supersaturated and the oc-

cupied sites are wet. A particle becomes supersaturated
as soon as it comes in contact with the source. A super-
saturated particle wets all the sites along its trajectory
and becomes dry when it hits the sink. A dry particle
cannot wet a dry site; however, a wet site remains per-
manently wet —an irreversible wetting. Thus, as the
particles execute their stochastic motion, some of them
become supersaturated on contact with the source and
spread the wetting fluid along their trails. An interface
between the wet phase (from the source side) and the
dry phase develops as the noisy fluid front moves into the
dry lattice. The stochastic geometry of the carrier trails
may depend on the concentration of the carriers, their in-
teraction with the host, and the nature of the substrate.
Here we address questions such as: How does the inter-
face evolve? How does the front move? How do the mi-
croscopic details (the nature of the substrate and the car-
riers) afl'ect the interface growth and the front motion?

Two types of substrates are considered: (1) the
smooth substrate in which there is no interaction be-
tween a particle (supersaturated or dry) and its neigh-
boring empty sites and (2) the rough substrate in which
the empty sites attract their neighboring supersaturated
particles. The wetting density of a supersaturated (dry)
particle is assumed to be unity (zero) and, therefore, the
total number of supersaturated particles N, is a measure
of humidity; the wetting density of a supersaturated par-
ticle is assumed to be unity. To maintain a zero level of
humidity, each empty site is assigned a superdry density
p„= N, /N„where N, —is the number of empty sites.
Apart from the hard-core interaction among the parti-
cles, they interact with their neighboring particles and
empty sites with a nearest-neighbor interaction which is
equal to the product of their densities (see below). Thus,
while a supersaturated particle is attracted towards emp-
ty dry sites, there is no force between a dry particle and
an empty site. A particle and an empty site can inter-
change their positions if it is energetically possible, as in
most Monte Carlo (MC) simulations. ' The empty
sites, in this model, act as the background medium that
aff'ects the movement of the supersaturated carriers.
Such a repulsive interaction among the supersaturated
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carriers and an attractive interaction between the super-
saturated particles and the substrate, along with the ran-
dom distribution of particles and empty sites, may take
into account the eff'ects of the viscous and the capillary
forces for the transient spreading trail of the supersa-
turated carriers. Thus, the wetting fluid spreads along
the ramified trails as the capillary forces compete with

viscosity which should depend on the concentration of
the carriers in this model.

The active zone for the irreversible wetting is the locus
of sites on the frontiers of the spreading fluid which is
diff'erent from the diA'usive front of particles in a gra-
dient percolation. ' One may expect that the width of
the interface between the wet and the dry phases (i.e.,

the roughness of the wet surface) and the growth of the
front position R should follow the dynamical scaling (2)
which has been remarkably successful in understanding a

variety of growth models such as ballistic deposition
and the Eden model at least in two dimensions. Simu-
lation results on our irreversible wetting model seem con-
sistent with the KPZ predictions and the dynamical scal-
ing; however, the magnitude of g/z and 1/z exhibits a
variation as a function of carrier concentration (at least
on a rough substrate).

We have used various sample sizes at almost all car-
rier concentrations (p=0. 1-0.9). We use the following
method for the hopping mechanism of the particles. A

particle at site i and one of its neighboring site j are
selected randomly. If site j is empty, then we calculate
(a) the interaction energy Eo with the particle at site i,

Eo =pIZpt
k

(4)

where the index k runs over all the neighboring particles
and empty sites; and (b) the interaction energy E I for a
configuration in which the position of the particle is in-

terchanged with the randomly selected empty site. If the
change in energy hE =E

~ Ep & 0, then the particle is

moved from site i to site j; if hE =0, then the particle's
move is allowed with half probability. On the other
hand, if site j is occupied, then an attempt to move the
particle from site i to site j fails and the particle remains
at site i. An attempt to move each particle, once ir-
respective of their success to hop, is defined as one
Monte Carlo time step (MCS). A periodic boundary
condition is used for the particle's hop along the trans-
verse (y) direction and the open boundary condition
along the longitudinal (x) direction at the source and at
the sink. Initially, those particles are supersaturated
which are in contact with the source (at the first column)
where the wetting front begins; all other particles have

zero wetting density. As stochastic motion proceeds,
more particles become supersaturated (or charged with

the wetting fluid) on contact with the source; a supersa-
turated carrier becomes dry (or discharged) with zero
wetting density on contact with the sink. Since all the
particles (except those in contact with the source) are in-
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FIG. l. Exponents for the front motion k (0) and for the in-

terface width v (o) vs carrier concentration p. The sample size
100x50 is used with 300 independent runs; statistical error
bars are within or comparable to the size of the symbols.

itially dry, the probability of fluid transfer from the
source is high and the probability of fluid discharge (i.e.,

the evaporation) at the sink is very low.
The nonequilibrium state of the fluid flow is sustained

throughout the simulation as we limit ourselves to the
time regime in which the interface width grows; we dis-
card all the data beyond a time step when the active zone
hits the opposite end (the sink) where the interface width

begins to decay. In other words, the lattice sites beyond
the wetting front (and, therefore, the lattice size along
the direction of front propagation) do not restrict the in-

terface growth in our analysis. In our study, the spread-
ing of the fluid is governed by the position of the front
and, therefore, the average position of the front R serves
as the limiting size, as far as the interface growth is con-
cerned. A number of independent samples (300-500)
are used to evaluate the mean front position and the
mean interface width (2).

Now, if the dynamical scaling (2) is valid here, then
the exponent k with R-t", k =1/z, can be evaluated
from the slope of the logarithm of the front position
versus the logarithm of the time plot. A plot of the esti-
mate of k versus carrier concentration is presented in

Fig. l. As we see that the magnitude of the exponent k
lies between 0.60 (around p =0.5-0.7) and 0.66 at the
extreme concentrations (p =0.1 and 0.9), while the pre-
dicted value is 3 for other growth models. One should,
however, note a nonmonotonic trend in the behavior of
the exponent k, a systematic decline followed by a regu-
lar increase with p (Fig. 1). The interface width ex-
ponent v in 8'-t' can also be evaluated from the log-

3414



VOLUME 65, NUMBER 27 PHYSICAL REVIEW LETTERS 31 DECEMBER 1990

TABLE I. Exponent relation g+z =(1+v)/k for smooth
and rough substrates at various carrier concentrations p with

sample size 100x50; these data are taken from Figs. 1 and 3
and have the same error bars.

Smooth
k (1+v)/k

Rough
k (1 + v)/k

0. 1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.32
0.33
0.34
0.34
0.36
0.33
0.32
0.30

0.66
0.63
0.62
0.62
0.60
0.60
0.60
0.63

2.00
2.10
2.17
2.17
2.25
2.22
2.20
2.08

0.33
0.31
0.29
0.33
0.31
0.26
0.27
0.25

0.63
0.56
0.57
0.58
0.60
0.61
0.64
0.71

2. 1 1

2.32
2.25
2.30
2.20
2.09
1.98
1.78

4.0—

log plot of the width versus time. With the scaling rela-
tion (2), v g/z and the predicted value, g/z = —,

' . Fluc-
tuations in the magnitude of these effective exponents
may be due to long relaxation time (especially at high
carrier concentrations). Overall, the dynamical scaling
relation (3) for d =2, i.e., @+z= (1+v)/k = 2, seems to
be valid (see Table I).

A similar analysis for the interface growth is also car-
ried out on the rough substrate where empty sites attract
their neighboring supersaturated particles. Figure 2
shows the variation of the mean front position with time
for the whole concentration range. The relaxation time
increases with increasing carrier concentration as the
substrate becomes rougher; i.e., the viscosity of the medi-

um increases with the concentration. Therefore, one has
to be careful in selecting the data points here for evaluat-
ing the effective exponent k in the asymptotic regime.
Our estimates of k are presented in Fig. 3, which shows a
similar nonmonotonic behavior with the concentration p
as in the case of the smooth substrate. The interaction
between the substrate and the carriers, however, leads to
a more pronounced effect here with a minimum value of
k ( =0.48 ~ 0.02) around p -0.4 and a maximum
(=0.71 ~0.01) at about p-0.8. The log-log plot of the
interface width versus time, on the other hand, does not
show a systematic growth with the concentration; varia-
tion of the corresponding exponent v is presented in Fig.
3. It is hard to estimate the exponent v at the concentra-
tion p =0.20 (see Figs. 2 and 3) and, therefore, its mag-
nitude may not be reliable. The relaxation regime ex-
pands with increasing carrier concentration p. We have
observed a systematic decay in the magnitude of k from
0.48 ~ 0.02 (at t =450 MCS) to 0.25+'0.02 (at t =2700
MCS) at a high concentration (p =0.8). The magnitude
of g+z =(1+v)/k shows more fluctuation here than
that for the smooth substrate; nevertheless, it remains
around 2 over the whole concentration regime (see Table
I).

In summary, we have studied the growth of the rough-
ness of an irreversible wetting front in two model sub-
strates. We have evaluated the exponent k for the
motion of the spreading front and exponent v for the
growth of the interface width. We find that the exponent
k depends, nonmonotonically, on the concentration of the
carriers of the wetting fluid. The estimate of the ex-
ponent k for the spread of the front position ranges from
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FIG. 2. Logarithm of the mean front position vs logarithm
of time for the wetting on a rough substrate. The sample size
100x50 is used with 300 independent runs at carrier concen-
tration p =0.10 (0), 0. 15 (o), 0.20 (a), 0.25 (+), 0.30 (x),
0.40 (v), 0.50 (0 ), 0.60 (a), 0.70 (+), 0.80 (o), and 0.90 (0).
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FIG. 3. The exponents for the front motion k with samples
100x50 (O) and 100x100 (&) and for the interface width v

with samples 100x 50 (a) and 100&& 100 (+) on the rough sub-
strate for the same statistics as in Fig. 2.
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0.48 + 0.02 to 0.71 ~ 0.02. The interface-width ex-

ponent v, within the fluctuations, is consistent with its

su per universal value & for the fluid spread on the

smooth substrate, where the dynamical scaling relation
g+z = 2 seems valid. This relation (3) is also valid for
a rough substrate. The variation of the eff'ective ex-
ponents v and k with carrier concentration suggests that
the evolution of the interface in our irreversible fluid

spreading may depend on microscopic details (i.e. , the
nature of the substrate and carrier concentration).
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