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 RADIALLY SYMMETRIC FLOW OF REACTING LIQUID WITH

 CHANGING VISCOSITY*

 S. E. SOLOVYOVt, V. A. VOLPERTt, AND S. P. DAVTYAN?

 Abstract. Frontal regimens for one-dimensional flow of reacting liquid with changing viscosity are studied.

 Stationary solutions are investigated for the case of narrow reaction zones that shrink to a front. The results of
 numerical solution of the nonstationary problem are presented. Complex oscillations resulting from period-

 doubling bifurcations are found.

 Key words. reacting liquid, frontal regimes, changing viscosity, oscillations, period doubling

 AMS(MOS) subject classifications. 34B 1 5, 49G99, 80A25

 1. Introduction. In this work, we investigate frontal regimes of an exothermic re-

 action with radially symmetric injection of reactants. We consider a reactor for which
 the reaction zone is located between two porous infinite coaxial cylinders. A reactive
 liquid is injected through the inner cylinder and removed through the outer one. The

 reactants are driven by an externally applied pressure gradient, with the pressure difference

 between the outer and inner cylinders assumed to be given. This model has various

 applications. We apply it to investigate polymerization processes. Therefore we take into
 account some specific features of these processes. We suppose that the species are in the
 liquid phase throughout the reactor and their viscosity changes due to the reaction. The

 density of the reactants is assumed to be constant, since its change is small for a number

 of polymerization processes. Moreover, we neglect the diffusion of the reactants since
 diffusion for many monomer-polymer systems is very slow. Such assumptions are con-

 ventional in polymer science [ 1] - [ 8 ].
 Under these assumptions, the conservation laws for energy, mass fraction, momen-

 tum, and mass for one-step irreversible reaction in a one-dimensional flow can be written
 in polar coordinates as

 aT cl/ 2T I l T\ c
 (1.1) t- = K + r-r V-V-+qK(T)(l- a),

 dlt r2+r 9r / 9r

 (1.2) V- =-V - + K(T)(l -a),

 (dV 9V\ ap Il f V \ (1.3) p-+ V-Y V- + - r+7 - r 2
 At r ar rr d9r r2 r ar

 dv V

 ( 1.4) +r r
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 Here T is the temperature, a is the degree of conversion, r is the radial coordinate (ro?

 r < rI), K is the thermal diffusivity, q is the adiabatic heat release, and p is the density of
 the reactants. We take K( T) to have the Arrhenius form

 K(T) = ko exp (-E/ROT),

 where E is the activation energy, Ro is the universal gas constant, and ko is preexponential
 factor. It is assumed that the velocity V of the medium and the pressure p, as well as T

 and a, depend on the radial coordinate only. The viscosity q is a function of T and a.
 Its form will be discussed below.

 The boundary conditions are

 r = ro: T = T1, a = 0; r = r1: aT/Ir = 0.
 We consider the reactants to be premixed. They do not react before they enter the reactor

 because their temperature is low. We also assume that the reaction zone is not very close

 to the outer cylinder, so that a 1 for r = r1.
 There are a number of works devoted to the model presented above in the case

 when the velocity at the inlet of the reactor is given. Stationary solutions, their stability
 and two-dimensional solutions resulting from instabilities of stationary solutions are

 studied in [ 3 ] - [ 5 ]. More complex chemistry is considered in [7], while [ 8 ] deals with
 hydrodynamical stability of the reaction front.

 In this work, we consider the value Ap = p, - po to be prescribed. Here po and p,
 are the values of the pressure for r = rO and r = rl, respectively. In this case, the velocity
 at the entrance of the reactor is unknown and should be found as part of the solution of

 the problem.
 From (1.4), we have

 (1.5) V(r, t) =Vo(t) O,
 r

 where VO(t) is the velocity at the entrance of the reactor. Substituting ( 1.5) into ( 1.3)
 and integrating ( 1.3) from rO to rl, we obtain

 alv0 I / r,T 1 9)n\
 (1.6) --p p+ 2VOro I dri

 at pro ln (r/ro) Jr r2 ar /

 We have omitted the quadratic term here since the Reynolds number is sufficiently

 small [1].

 Thus we consider the system of equations ( 1.1), ( 1.2), ( 1.6). Section 2 is devoted
 to the analytical investigation of the stationary problem. We discuss the results of nu-
 merical computations for the nonstationary problem in ? 3.

 2. Stationary regimes. In this section, we apply the narrow reaction zone approx-

 imation developed by Zeldovich and Frank-Kamenetskii (see [9], [101) to find a solution
 of the stationary problem. We denote by R the radius of the reaction zone and solve the
 linear equations

 d dT\ ro dT ro da (2.1) K - tr-_ Vo--= 0, Vo- 0
 r dr \dr r dr r dr

 for rO < r < R and R < r < rl. These solutions should be matched at r = R as follows:

 (2.2) TIRo = TIR+o, dT dr TR+O KR
 (dr R-0 dr ) KR

 dT\ dT q T(r)
 (2.3) - -;-)+ J, K(T) dT.
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 SYMMETRIC FLOW OF REACTING LIQUID 909

 From (2.1) and (2.2), we have

 r Tb-q+q(r/R)voro/K ro-r?R
 T(r) =

 Tb, R-< r-r1,

 Tb = To + q - q(ro/R)voro/K

 0, ro-< r-R
 a(r) =

 1l R <r-<rl,

 where Tb is the temperature in the reaction zone. From (2.3), we obtain the equation
 for R,

 (2.4) ( ro) = K K(T) dT.

 Using the Frank-Kamenetskii transform [10]

 Tb ROT 2

 K(T) dT ko F exp ( OTE)

 and denoting

 w =V?vUS= Vn =(-ko ?ETaexp (R Ta))

 q E(Ta -Tj) R
 Ta =T,+q, ,

 Ta' 2R0Ta rO

 we rewrite (2.4) in the form

 (2.5) s = w I + W,/ ) exp Sw/s -

 We note that Vn is an approximate value of the normal velocity of the front in an unmoving
 medium for first-order reactions [11]; w and s are the dimensionless velocity at the
 entrance of the reactor and the radius of the reaction zone, respectively.

 To simplify (2.5), we consider the case when sw/l >? a. This inequality is specific
 for the process under consideration if the reaction zone is not very close to the entrance
 of the reactor. Thus we can replace (2.5) by

 (2.6) s = w exp (Zs-w/).

 This allows us to find s as a function of w for various values of Z and &. This function
 -has been studied in detail in [ 3 ], and we do not study it here.

 Thus we have the system of two equations ( 1.6), (2.6) from which w and s can be

 found. In the approximate analysis, we consider 7 as a piecewise constant function,

 No, a = 0,

 X,71, a= 1.

 This means that 7 = 70 for ro?r-< R and ,7 = ?7, for R <r r- . We can take 7 in this
 form, since the dependence of polymer viscosity on the degree of conversion is much
 stronger than its dependence on temperature [12], [13]. Moreover, computations for
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 FIG. 1. Dependence w(T) for a fixed 6 (in In - In coordinates): 6 = 1.2, 1.-Z = 1, 2.-2, 3-3, 4.-4,
 5.-5,6.-6,7.-7, 8-8.

 the nonstationary problem show that the specific form of the function 7( a, T) is not
 very important (see ? 3). Thus we have

 rrl I d7 dr - A77
 f r2 d dr R 2

 where An = 7, - 70. From ( 1.6), we obtain

 (2.7) s=rw 1/2
 where

 ( 2 Vn? 1/2
 AprO

 From (2.6), (2.7), we numerically find w as a function of X for various 6 and Z (Figs. 1
 and 2). We see that there is only one solution for r < r (6, Z) and r > T2(6, Z), while
 there are three solutions for rI ( 6, Z ) - r -T2 (6, Z ). For w sufficiently large, (2.6 ) can
 be rewritten approximately as s = w. Thus we obtain the asymptotic result w 2 for
 large i.

 5 lnw

 0 - - - - - - - - - - - - - - - -

 -5 ------- ---- ------ ---

 -10 --- ------- ----- ----- ------ --------

 I I~~~~n I : I I I
 -3 -2 1 0n7ri 1 2n2 3 3

 FIG. 2. Dependence w(T) for a fixed Z (in In -In coordinates: Z = 3.88, 1.-b = 0.25, 2.-I, 3-1.5,
 4.-2,5.-2.5.
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 SYMMETRIC FLOW OF REACTING LIQUID 911

 3. Numerical results.

 3.1. Numerical method. For the numerical computations, a conservative finite-dif-

 ference scheme with upwind differences was used. We applied the Thomas algorithm for
 inversion of tridiagonal matrices and used an adaptive space mesh with at least 15-20

 grid points in the reaction zone. The accuracy of the simulations was verified by increasing

 the number of the grid points and by decreasing the timestep, which was taken to be
 constant.

 3.2. Viscosity formula. We have considered three different forms of the function

 77(a, T) in the numerical simulations

 no(, rO-< r R,
 (3.1) 77= 4

 I71, R < r ri,

 (3.2) r7 = no + (i - n1o)a ,

 (3.3) n = no + Anoa'k, exp (-El /RoT).

 Here R is the radius of the reaction zone. In the numerical simulations, we find R as the

 distance from the point r = 0 to the point where the degree of conversion equals 0.5.
 We take the values of the parameters specific for methylmetacrilate polymerization [ 3 1,

 [13]: K = 0.3 cm2/min, Ti = 300 K, q = 170 K, E = 20 kcal/mol, no = 0.1 Pa sec,
 m7 = 1000 Pa- sec. The value of n is varied from 1 to 10, and k1 is taken in such a way
 that k, exp (-RI /RoTb) = 1.

 The simulations show that the qualitative behavior of the solutions depends on the

 form of the function 7( a, T) only weakly, though the duration of the transition period
 and other quantitative characteristics of the observed modes can depend on it. In the

 case when 77, >? n, which is specific for polymerization processes, we can approximate
 An by 7, which is a basic parameter that characterizes the viscosity as a function of the
 temperature and the degree of conversion.

 3.3. Results and discussion. We note that different stationary regimes can exist in
 plug-flow reactors: high-temperature, low-temperature, and intermediate (see, for example,

 [3]). In the model under consideration, there are from one to three high-temperature
 regimes (Figs. 1 and 2). The numerical simulations show that these stationary modes
 are unstable but the type of the instability is different for the different branches of the

 curve w( r). If the initial conditions are chosen in such a way that they are close to the
 stationary solution on the second branch, then an oscillatory instability occurs. We de-
 scribe the observed modes below. If the initial conditions are close to the stationary
 solutions on the third branch, then the reaction zone leaves the reactor and the low-
 temperature mode appears instead of the high-temperature one, or a transition to the
 oscillations mentioned above occurs. Finally, if the initial conditions are taken corre-
 sponding to the first branch, then we also observe a transition to the oscillations around
 the second branch or the reaction zone tends toward the entrance of the reactor. In the
 last case, the width of the reaction zone increases considerably and the maximal tem-
 perature in the reactor decreases. This is another form of the transition to the low-

 temperature regime.
 Thus we conclude that the stationary solutions on the first and third branches are

 unstable, corresponding to a real eigenvalue crossing into the right half plane. Solutions
 on the second branch are unstable, corresponding to a pair of complex conjugate eigen-
 values crossing into the right half plane.

 We discuss now the oscillations observed in the numerical simulations. We varied

 ko and Ap while the other parameters were fixed. Namely, for each chosen value of ko,
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 FIG. 3. Double-period oscillations: (a) the radius of the reaction zone versuis time, (b) the velocity at the
 entrance of the reactor versus time, a = 0.79, T = 3.98.

 we performed a series of simulations for various values of Ap. The variation of ko and
 z?p is equivalent to the variation of 6 and -r. For 6 and T sufficiently small (3 < 0.5), the
 velocity exhibits harmonic oscillations that develop into relaxation oscillations as T in-
 creases.

 For higher values of 3 (3 = 0.79), period-doubled oscillations are observed for
 3.74 < r < 9.12 and for T> 25.2. Figure 3 shows the radius of the reaction zone and

 the velocity at the entrance of the reactor as a function of time. Figure 4 shows the
 amplitude of the velocity oscillations for a single period mode and two amplitudes (for
 each half-period) for the double-period oscillations, in the T - w plane. We note that the
 oscillations are observed for values of T for which stationary solutions are not found by
 the analytical approach.

 When 3 increases, period four (3 = 1.73, T = 5.84, see Fig. 5), period eight (3 =
 1.9, r = 5.62), and aperiodic oscillations (3 > 2.5) are observed. Thus we conclude that
 this is a sequence of period-doubling bifurcations that leads to chaos. The critical values

 of the parameters here depend on the form of the function 77(a, T).

 Inw
 4 -

 2 m

 -6- ,,,,,,, 4,,, l,,,,,,,, >X?,, Inr
 0 1 2 3 4

 FIG. 4. Comparison of the analytical and numerical results: 1, 2 analytical solution, Z = 3.88, 1. 3 =
 0.36, 2.-0.79; li and h,, i = 1, 2-minimal and maximal values of the velocity, respectively, during one period
 (simulations). Doubled-valued branch of the curve h2 corresponds to period-two oscillations.
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 FIG. 5. Period- four oscillations: (a) the radius of the reaction zone versus time, (b) the velocity at the
 entrance of the reactor versus time, a = 1.73, T = 5.84.

 Period doubling and irregular oscillations have been found for combustion waves

 traveling along a sample [ 14 ] - [171 and for gaseous combustion in a flow with a complex
 chemical reaction [ 18 ]. In the first case, these effects are caused by the interaction of the
 heat release and the heat transfer processes while in the second case by the salient features

 of consecutive reactions. Here we have found one more model for which a sequence of

 period-doubling bifurcations is observed. In this case, the complex oscillations are caused
 by the dependence of the flow velocity on the location of the reaction zone.

 Qualitatively the mechanism of the instability can be explained as follows. If we

 perturb the radius of the reaction front so that it is, for example, greater than its value
 for the stationary solution, then the flow velocity increases (see ( 1.6)). There are then
 two possibilities. If thermal relaxation is slow, the velocity increase leads to further increase

 of the radius and the perturbation grows. In contrast, if thermal relaxation is fast, then
 each value of the velocity determines a fixed radius R of the reaction front, which is just

 a function of VO (see (2.4)), and system ( 1.1), ( 1.2), ( 1.6) can be reduced to the single
 equation

 a _o AP + 2VrA
 A) t pro ln (ri/ro) + 2VorA)

 (For simplicity, we take 77(a, T) in the form (3.1).) In this case, the perturbation decays.
 Thus we can formulate a qualitative condition for instability. If the characteristic

 time of perturbation growth t,, which is proportional to - 7z/ /p, is less than the char-
 acteristic time of thermal relaxation, t2 - K/V 2, then the stationary solution is unstable.
 We note that t2/tl - S/1T2. Hence, increasing 6 makes the stationary solution more
 unstable, and the oscillations become increasingly complex. This conclusion is in accor-
 dance with the results of the numerical computations presented in this paper.
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