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A computer simulation model is used to study the permeability of polymer chains driven by a biased
flow field through a porous medium in two dimensions. The chains are modeled by constrained self-
avoiding walks, which reptate through the heterogeneous medium with a biased probability imposed by
the driven field. A linear response description is used to evaluate an effective permeability. The permea-
bility o shows an unusual decay behavior on reducing the porosity p,. We find that the permeability de-
creases on increasing the bias above a characteristic value B.. This characteristic bias shows a logarith-
mic decay on reducing the porosity, B, ~ — ¥ In(1—p;), with ¥ ~0.35. The permeability decays with the
length (L.) of the chains; at low polymer concentration it shows a power-law decay, o ~ L, %, the ex-
ponent « is nonuniversal and depends on both the porosity as well as the biased field (a¢~1.64-3.73).
We find that the biased field B and porosity p; affect the conformation of the chains. The radius of gyra-
tion R, of the chains increases with increasing biased field in high porosity, while it decreases on de-
creasing the porosity at high field bias. In high porosity and low polymer concentrations, the radius of
gyration shows a power-law dependence on the chain length, R, ~ L/, with v depending on the biased
field (v=~=0.84-0.94). In order to explain the deviations from the Darcy Law for the polymer flow, a
plausible nonlinear response theory via a power-law response formula is suggested; we point out the as-

sociated complexities involved in addressing the flow problems in driven polymers.

PACS number(s): 47.55.Mh, 05.60.+w, 82.45.+-z, 83.10.Nn

I. INTRODUCTION

Studying the permeability of porous media [1,2] has at-
tracted considerable interest from ion and mass transport
in complex polymer mixtures and molecular permeation
in gels (electrophoresis) [3] at small scales to fluid flow
through the porous sediments in marine geosciences [4,5]
with varied applications such as oil exploration, sedimen-
tation processes, spreading of hazardous waste on the sea
floor, etc., at large scale. It is now well known that the
shape and size distribution of the pores determine the
physical and chemical properties such as permeability
and viscoelastic nature of the host porous media. Study-
ing the transport properties of porous media by analytical
methods has been severely limited due to their intracta-
bilities in solving the transport equations in highly
ramified structures. Computer simulations, on the other
hand, are useful in taking into account some of the
structural nonlinearities, though they are limited to ideal-
ized model systems.

Several attempts [1-10] have recently been made to
study the transport properties of interacting particles by
lattice gas approaches such as cellular automata,
Boltzmann, interacting lattice gas, and hybrid methods.
These particulate methods deal with the pointlike parti-
cles to study the fluid flow through a porous medium or
the conductivity of a heterogeneous material. We know
that the transport properties of a heterogeneous media
not only depend on the type of the host media (i.e., de-
gree of ramification and porosity) but also on the specific
details such as shape, size, mass, etc., of the mobile con-
stituents. Particularly in polymer mixtures, the shape
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and size of the molecular species become very important
in studying their transport properties [11,12]. To our
knowledge, there is no computer-simulation study that
has addressed the dependence of permeability on the size
and shape of the mobile particles. In this paper we
present a computer-simulation model to study the per-
meability of the constrained self-avoiding chains driven
by a biased field through a porous medium. The model is
described in the next section which is followed by results
and discussion.

II. MODEL

We consider a two dimensional discrete lattice of size
L X L. We model the polymer chain of size L, by a con-
strained self-avoiding walk which is generated on the trail
of a nonintersecting nonreversible random walk of L,
steps; this creates a polymer chain of L,+1 nodes con-
nected by L. links. A site cannot be occupied by more
than one node. The polymer-fluid concentration p is
defined as a fraction of sites occupied by the polymer
chains. Thus in order to generate a fluid concentration p
of polymer chains on a square lattice of N =L? sites we
distribute N, chains randomly on the lattice where
N, =pXN/(L,+1).

Monodisperse barrier particles are distributed random-
ly in the empty lattice sites with no more than one parti-
cle per lattice site. These barrier particles remain immo-
bile throughout the simulation. The empty sites along
with the polymer chains, i.e., the sites which are not oc-
cupied by the barriers constitute the pores. Thus the ran-
dom distribution of immobile barrier particles generates a

5738 ©1995 The American Physical Society
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rigid porous media in which the size of the pores depends
on the concentration (i.e., the volume fraction) p, of the
barriers. The volume fraction of the pore space p,=1—p,
(i.e., the porosity) is defined as the ratio of the number of
pore sites to the total number of lattice sites. The larger
the p,, the larger the probability of forming the large
pores. At smaller p, not only do we obtain smaller pores,
but the pores become isolated if we reduce p, below a cer-
tain value—the percolation threshold p,. of the pore
sites. The size and shape of the pores and related geome-
trical quantities depend on the percolation mechanism.
We will, however, restrict ourselves here to the rigid
pores formed by the random distribution of the mono-
disperse immobile barrier particles.

In the pore space, chains execute their stochastic
motion by a “slithering-snake” (reptation [13-15]) algo-
rithm reptating back and forth via both ends (head and
tail) selected randomly. An external bias (B) is, however,
imposed to drive the chains preferentially which is imple-
mented by selecting the hopping probabilities
7. =(1+3B)/4, 7_,=(1—B)/4, 7.,=(1—B)/4 along
the *+x and ty directions. The bias probability B is intro-
duced to capture the effects of a flow field which may be
caused by a pressure gradient. A periodic boundary con-
dition is used to reptate the chains across the boundaries.
An attempt to reptate both ends of each chain once is
defined as one Monte Carlo step (MCS). This reptation
procedure is performed for a sufficiently long time during
which we evaluate the mass flux of the polymer chains
across the boundaries along the x direction. For a fixed
porosity and polymer concentration p, the simulation is
repeated for a number of independent samples to obtain a
reliable estimate of the average flux.

At a nonzero value of the bias B, there is a net flux of
the polymer mass along the direction of the biased field.
The rate of change of the flux leads to a mass current (i)
with the current density j =i/L. We attempt to analyze
the rate of mass transfer of the polymer chains in the
frame of linear response description [16], i.e., Darcy’s
law,

J=L,Ap, (1

where Ap is the pressure difference across the sample, and
L, is the hydrodynamic permeability. The same relation
is also used to study the permeability of the solvent
through a membrane in a solution consisting of solvent
and solute; in this case Ap corresponds to osmotic pres-
sure resulting from a concentration difference of the sol-
vent. Note that this permeability L, is constant only for
slow flow in the former and for dilute solution in the
later. In complex systems like ours one may question the
validity of such linear response theory. However, for
simplicity we analyze our data in the framework of an
effective linear response. We assume that in the steady
state

j=oB, 2)

where B is the bias probability and o is an effective per-
meability. We should point out that the bias probability
is proportional to the pressure difference, and that the
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proportionality constant is absorbed in our effective per-
meability . The analysis of o should exhibit the non-
linear effects of our driven polymer systems, as we will
see in the following section.

Thus by calculating the current density at fixed values
of the biased field and barrier concentration, we can
evaluate the dependence of the permeability on the poly-
mer concentration (p) and the size of the chains. With
fixed chain length and concentration, we study the depen-
dence of the permeability on barrier concentration and
field bias. The biased field and barriers also affect the
conformation of the polymer chains and we investigate
their effects on the radius of gyration R,. The simulations
took approximately 1800 h on the Cray-YMP supercom-
puter.

III. RESULTS AND DISCUSSION

We use different size lattices to check the finite size
effects of our simulations. Most of the production runs
were made on a 100X 100 lattice with 50 independent
samples for each polymer concentration p of mono-
disperse chains of length L. at a fixed porosity p,. Figure
1 shows a typical snapshot at a biased field B =0.5,
porosity p, =0.9, and polymer concentration p =0.4. The
system has reached the steady state and the chains have
already relaxed. Because of the biased field, some
stretching of the chains is expected as is seen in this
figure. Figure 2 shows a typical plot of the flux mass
versus time for various bias probabilities B at different
porosities p;. The time taken by the system to reach
steady state depends on biased field, porosity, chain
length, and concentration. From the slope of the linear
plots we evaluate the effective permeability. The permea-
bility versus polymer concentration plot is presented in
Fig. 3(a). In a homogeneous system (i.e., porosity p,=1),
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FIG. 1. Snapshot of the system at bias probability B =0.5
and barrier concentration p,=0.1, with polymer chains of
length L, =10 and concentration p =0.4.
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FIG. 2. Flux of mass vs time for various bias B =0.20, 0.50,
0.80 at porosity p, =1.00, 0.90, 0.80 on a 100X 100 lattice with
50 independent samples. Chains of length L. =10 with the po-
lymer concentration p =0.06 were used.
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FIG. 3. (a) Permeability o vs polymer concentration p,. (b)
Permeability per polymer o, versus polymer concentration, for
the barrier concentrations p, =0.0-0.2 with various values of
bias B. Fifty samples were used with chain length L, =10 on a
100X 100 lattice.
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at the bias B =0.2, we see that the permeability increases
on increasing the polymer concentration until it reaches
at a characteristic value p, ~0.4. At p above p, the per-
meability decreases on increasing the polymer concentra-
tion as the presence of more polymer chains act as mobile
barriers. On increasing the bias (B =0.5, 0.8), we ob-
serve similar nonmonotonic dependence of the permeabil-
ity on the polymer concentration p with a maximum at
their characteristic value (p,==0.4). The magnitude of
the permeability, however, increases on increasing the
bias at p,=1 (p, =0), for the entire range of polymer
concentration.

At a lower porosity, we also observe a similar non-
monotonic dependence of the permeability on the poly-
mer concentration. However, reducing the porosity
affects the permeability and its behavior significantly as
the biased field competes with the barriers at the pore
boundaries: (1) The magnitude of the permeability de-
creases on reducing the porosity. (2) The permeability is
no longer a monotonic increasing function of the bias
field. It decreases on increasing the bias at p,=0.9, 0.8.
We believe that there is a characteristic value of bias, B,
at each porosity. On increasing the bias, the permeability
increases until B reaches B, beyond which it begins to de-
cay at p, <1 for a fixed polymer concentration. (3) The
characteristic concentration (p.) at which the permeabili-
ty exhibits a maximum decreases on reducing the porosi-
ty.

Let us analyze the data for the permeability per poly-
mer chain, 0,=0/N,. Figure 3(b) shows the o, versus
polymer concentration plot. We note that o, decays with
the polymer concentration for all values of p, and B. In
this figure, we do not have data at very low polymer con-
centration (p close to zero), where we expect o, to be-
come a constant. The decay of o, even at low polymer
concentration (p=0.1-0.2) in the absence of barriers
(p, =0) is not unexpected, as the chains begin to interfere
with each other in the semidilute regime [14]. The criti-
cal concentration (a percolation threshold) at which the
chains begin to interfere with each other decreases with
the chain length [4]. So the chains will begin to interfere
at relatively low polymer concentration for longer chains.
The decay of o, depends strongly on both the bias as well
as the porosity. A universal functional dependence is,
however, hard to predict from this figure. In the follow-
ing, we consider polymer chains of fixed length and con-
centration where these permeabilities 0, and o are pro-
portional to each other. Therefore, we consider only the
permeability o of the whole polymer system.

The variation of the permeability with the concentra-
tion of the barriers at a polymer concentration p =0.2 is
presented in Fig. 4 for various biased fields. The permea-
bility decreases on reducing (increasing) the porosity (bar-
rier concentration); it decays down to zero near p, =0. 60.
The nature of the decay of the permeability depends on
the bias. At low values of the bias, the permeability de-
creases almost linearly with (1—p,) in a high porous re-
gime with a relatively slow decay to zero in low porosity
regime. At high values of the bias, a rapid decay in the
high porous regime is followed by a long tail in the low
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FIG. 4. Permeability o vs barrier concentration p, for chains
of length L, =10 and concentration p =0.2, for the biased field
values B =0.1-0.9. The lattice size is 100X 100 with 50 in-
dependent samples.

porous regime. These variations suggest that the decay
of the permeability with (1—p,) cannot be described by a
single power law. Furthermore, the value of the bias
seems to govern the dependence of permeability on the
porosity. With these data, we are not able to establish a
universal functional dependence of the permeability
o(ps,B) on the porosity and the bias B. However, we
hope that our investigations will stimulate further studies
that may lead to a more precise prediction of such a
functional dependence.

Figure 5 shows the permeability versus bias plot for
various values of the barrier concentrations
(pp, =0.0-0.35). In absence of barriers (p,=0.0), the
permeability increases on increasing the bias. The rate of
increase of permeability depends on the magnitude of the
bias: the higher the bias, the larger the rate. Thus the
permeability increases nonlinearly on increasing the bias.
The presence of barriers, however, leads to a dramatic
change in the variation of the permeability. Even at a
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small barrier concentraticn (p, =0.05), the permeability
falls off at higher values of bias (p, = 0.7, see Fig. 5). The
optimum (characteristic) value of bias, B., above which
the permeability begins to fall off depends strongly on the
barrier concentration. Figure 6 shows the optimum bias
versus the barrier concentration plot. The optimum bias
seems to decay logarithmically with barrier concentra-
tion, B, ~ —v Inp,, with y ~0.35.

Next, we would like to analyze the dependence of the
permeability with the size of the polymer chains. The
permeability versus chain length plot is presented in Fig.
7(a) on a log-log scale for various barrier concentrations
and biased fields. We see that the permeability decreases
on increasing the chain length. A fairly linear fit of the
data suggests a power-law dependence of the permeability
on the chain length (L,), o0 ~L; %, at least in the absence
of the impurity barriers. Note that the power-law depen-
dence of the permeability on L. remains unchanged at
different lattice sizes [see Fig. 7(b)]. The decay exponent
a seems to depend on both the barrier concentration and
the biased field; the estimate of « is presented in Table I.
We note that a increases systematically on increasing B,
which suggests that the exponent is nonuniversal.

For a fixed chain length and concentration (L, =10,
p =0.2), we study the dependence of the radius of gyra-
tion on the strength of field bias and barrier concentra-
tion. Figure 8 shows the radius of gyration R, versus
field bias B for different barrier concentrations. We ob-
serve that for barrier concentrations p, =0.15, the radius
of gyration increases monotonically with increasing field
bias B. The rate of increase is greatest for zero barrier
concentration and decreases as the barrier concentration
increases. The dependence of the radius of gyration R,
on barrier concentration p, for various biased fields is
presented in Fig. 9. For field bias B = 0.5, the radius of
gyration decreases monotonically with increasing barrier
concentration until about p,=0.2, and fluctuates for
Py >0.2. The rate of decay is most rapid for the highest
field bias (B =0.9), and decreases as the bias decreases.
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FIG. 6. Characteristic bias B, vs barrier concentration p, for
the polymer concentration p =0.20 with chain length L, =10
on a 100X 100 lattice with 50 samples.

FIG. 5. Permeability o vs bias B for barrier concentrations
p» =0.0-0.35 with the same statistics as in Fig. 4.
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In Fig. 10 we show on a log-log scale the dependence of
the radius of gyration R, on the chain length L.. At low
chain concentration (p.~0.06) and low barrier concen-
trations (p, =0.2), we observe a power-law dependence
of the radius of gyration on the chain length, R, ~L/.
The power-law exponent v~0.84-0.94 does not seem to
depend strongly on the bias field (Table I). It shows
stronger dependence on the barrier concentration, having
a smaller value at a higher barrier concentration.

Finally, we would like to point out the difficulties in-
volved with the linear response description for our poly-
mer system. As we mentioned in Sec. II, Darcy’s law (1)
is valid as long as the mass-current density is linearly pro-
portional to the pressure difference. If this assertion is
valid in our case, then we should obtain a linear fit of the
data in a plot of current density j versus bias B; Fig. 11
shows such a plot for various porosities (or barrier con-
centrations) where a strong deviation from the linear
dependence is evident at all porosities. Even in the ab-
sence of barriers (p, =0.0), the current density seems to
increase nonlinearly with the bias. On reducing the
porosity, the current density shows a nonmonotonic
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200X 200 lattice and (b) a 100X 100 lattice, with 50 samples at a
polymer concentration p =0.06.
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L,=10, concentration p =0.2, and for barrier concentrations
P, =0.0-0.35. The lattice size is 100X 100 with 50 independent
samples.
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tions p, =0.0-0.35. Chain length L. =10, polymer concentra-
tion p =0.2, lattice size 100X 100 with 50 independent samples.
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L =200 (square); L. =80, p =0.06, L =200 (triangle), 50 in-
dependent samples.
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TABLE I. Power-law exponents.
Barrier concentration bias

Db B a v

0.00 0.20 1.64 0.89

0.00 0.50 1.67 0.91

0.00 0.80 1.77 0.94

0.10 0.20 2.08 0.88

0.10 0.50 2.01 0.93

0.10 0.80 2.29 0.90

0.20 0.20 3.02 0.85

0.20 0.50 3.14 0.86

0.20 0.80 3.73 0.84

dependence on the bias: the current density increases on
increasing the bias followed by a decay beyond a charac-
teristic value of the bias (B_.). The current density de-
creases due to competition between the driving bias and
the barriers at B above B,. The magnitude of the charac-
teristic bias depends on the barrier concentration, B, in-
creases on reducing the barrier concentration. However,
at bias below B,, linear or nonlinear response description
should be applied.

In the low bias regime, we would like to develop a non-
linear approach to understand the nonlinear response of
the current density to driving bias. Let us assume that
the current density grows with the bias with a power law

where A is a constant and § is a power-law exponent. A
plot of the variation of the current density j with bias B
on a log-log scale is shown in Fig. 12. Although these
plots show strong deviations at relatively high values of
bias, we do see the linear fits of the data points at low
values of the bias particularly at low barrier concentra-
tions (p, =0.0-0.15); we find 6=1.20. So, a power-law
response of our driven polymer system does not seem
inappropriate although other possibilities cannot be ruled
out.

Let us examine the power-law response a little more
closely. For simplicity we will not consider barriers
(pp, =0.0). Figure 13 shows a plot of current density
versus bias on a log-log scale for different chain lengths
(L,=10, 20, 80) at different polymer concentrations.
These data were generated at different lattice sizes which
should not affect our results since we have not observed
severe finite size effects in these simulations. We note that
all the data points show an excellent linear fit. However,
the slopes of these lines, i.e., the exponent §, seem to de-
pend on the chain length as well as their concentrations,
8~1.20-1.51 (see Table II).

TABLE II. Nonlinear response exponent.

Chain length Polymer concentration

L. P 8

10 0.20 1.20
20 0.06 1.28
80 0.06 1.51
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It is rather difficult to develop a unified approach to
such nonlinear response due to the nonuniversal nature of
the power-law exponent. Nevertheless, if one chooses a
fixed polymer concentration and chain length, such a
nonlinear response formula (3) seems reasonable. In any
case, this analysis illustrates that the response due to the
driving bias in our system is highly nonlinear, and cannot
be described by traditional linear response approaches
even at low values of the bias.

IV. SUMMARY AND CONCLUSION

A computer-simulation model is introduced to study
the permeability of the chain polymers through a porous
medium. The chains are modeled by the constrained self-
avoiding walk while the porous medium is generated
from a random distribution of the quenched barriers. An
external biased field is applied to drive the chains along
the direction of the field. As the chains reptate through
the porous medium, there is a net flux along the direction
of the field. Using an effective linear response theory, we
evaluate the effective permeability. We find several in-
teresting results for the dependence of the permeability
on the concentration of the barriers, magnitude of the
fields, and the concentration and size of the chains.

The permeability shows a non-monotonic dependence
on the polymer concentration. Permeability decays on
increasing the barrier concentration (p,). However, the
nature of the decay with p, depends strongly on the field
strength. In the absence of barriers, the permeability in-
creases nonlinearly on increasing the bias. The introduc-
tion of quenched barriers strongly affects the dependence
of the permeability on the bias due to competition be-
tween the bias and the barriers. The permeability de-
creases on increasing the bias beyond a characteristic
value of the bias B, which depends on the concentration
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of the barriers. The optimum value of the bias (B,) decays
logarithmically with barrier concentration, B, ~ —v Inp,,
where y ~0.35. We find that the permeability depends
strongly on the size of the chains. It shows a power-law
decay with the chain length, o ~ L. ¢, with a nonuniver-
sal power-law exponent a which depends on the barrier
concentration (@ =1.64-3.73, for p, =0.0-0.2); it is also
enhanced on increasing the bias.

For low barrier concentrations (p, <0.15), the radius
of gyration increases with increasing field bias, the in-
crease is most rapid when there are no barriers. We ob-
serve that for the field bias B = 0.5, the radius of gyration
decreases on increasing the barrier concentration, the de-
crease is most rapid in high field bias. In the dilute limit
of chains with low barrier concentrations, the radius of
gyration shows a power-law dependence on the chain
length, R, ~L/, with v depending on the field bias
(v~0.84-0.94).

An alternate approach to study such a nonlinear poly-
mer flow through a porous medium is pointed out. We ar-
gue that a power-law response theory could be used as a
starting point to capture the nonlinear dependence of the
current density on the flow field. We plan to extend this
study to systems with more realistic features such as full
dynamics of chains, interaction, temperature, etc. We
hope that such unusual transport phenomena reported
here will stimulate further interest in these areas, both
theoretically as well as experimentally.
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