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Ocean Physics Research and Development, Long Beach, Mississippi
15 February 1994 and 26 August 1994

ABSTRACT

A solution to an optimization problem is developed that deals with minimizing a measure of difference
between the values of observed and predicted variables at an open ocean boundary. Minimization is based on
the change of the flux of energy through the open boundary. It is shown that many of the longwave radiation
conditions that are commonly used in ocean modeling can be derived using this optimization criteria. However,
the minimization process is seen to produce a modification of these radiation conditions in that they are multiplied
by a coeflicient, which allows the conditions to adapt to a change in the flux of energy penetrating the boundary.
An example of the numerical implementation is presented for the Reid and Bodine boundary formulation. For
a standing wave problem with an analytical solution, use of the modified Reid and Bodine formulation is seen
to eliminate almost entirely errors in the predicted amplitudes and phases. Overall, this approach is seen to
allow a modeler to generate different types of boundary conditions based on observations as well as the inclinations

of the modeler.

1. Introduction

The treatment of open boundaries is one of the most
interesting problems to be solved while modeling
oceanic phenomena, especially in finite ocean coastal
areas. In most ocean models, open boundary conditions
are chosen locally, that is, depending on the solution
of the governing equations near the boundary. Many
approaches of the local type have been developed (Reid
and Bodine 1968; Orlanski 1976; Chapman 1985;
Blumberg and Kantha 1985; Qey and Chen 1992).
The results of numerical studies show that the appli-
cation of many local-type boundary conditions repro-
duce the modeled physical phenomenon and work for
most practical purposes. However, it is known (Benneit
1992, Oliger and Sundstrom 1978) that the local treat-
ment of open boundaries for primitive equations mod-
els is an ill-posed problem in that it is difficult to prove
that a unique solution exists that is continuously de-
pendent on available observations,

Some researchers use the inverse approach to the
modeling of open boundary conditions. The open
boundary conditions are chosen in such way as to si-
multaneously provide the “best” fit to the governing
equations and observations. The best fit means the
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minimization of the norm of the deviation between
model results and observations. Thus, the interior so-
Iution and available observations are used to choose
the open boundary conditions. This approach has been
applied to atmospheric and oceanic circulation prob-
lems (e.g., Bennett 1992; Zou et al. 1993; Seiler 1993).
The most popular algorithm for solving an inverse
problem is an adjoint method in which the initial
problem of circulation with open boundary conditions
is reduced to integrating the governing equations and
an equation for the adjoint variable forward and back-
ward in time (Zou et al. 1993). Although the inverse
approach leads to 2 well posedness, it suffers from a
few drawbacks that may restrict its use: requirements
of large amounts of computer time and memory and
the problem of stable integration of the adjoint equa-
tion.

We propose methods for modeling open boundary
conditions that are based on the integration of the gov-
erning equations forward in time and choosing open
boundary conditions via a specific inverse problem that
provides the “best” fit to available observations on the
open boundary and to the energy flux through the open
boundary. In this way, we avoid the local treatment of
the open boundary conditions. All observations on the
open boundary and its interior vicinity are used in de-
termining the open boundary conditions for each par-
ticular point on the boundary. Numerically, the pro-
posed methods consist of the integration of the gov-
erning equations and solving the optimization problem
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for each time step. We show that some of the well-
known “local” longwave radiation boundary condi-
tions, commonly used in ocean modeling, are special
cases of boundary conditions derived using this ap-
proach. The derivations presented here suggest meth-
ods for the generation of new boundary conditions
based on the requirements of the modeled phenomena.

2. Derivation of the optimization problem

We first derive the equations for the optimization
problem based on the surface height at the open
boundary. Consider the system of equations for shallow
water:

u

a—t—”gVn+¢), (1)
617___ .

P V-(Hu), (2)

where u is the horizontal velocity vector, % is the sea
surface deviation, H is the depth, and ¢ represents the
forcing. The equation for the total energy within the
model domain D is

1
k=1 | (s griar, )
180 } — + + —+— +
g ,U-Q-QJQZE:E:Q-Q'E
1504 E,Q.QEE-A
Aoz el
= 1207 E,Q:E:EE -
W gy
=] E' _ _A_A-A-A'A"A'A'A
2 901 A-A-x‘""" 4 1
'y 'A,A"
o a-A
= 601a-A -
O—0 ANALYTICAL SOLUTION
301 A— A REID & BODINE 1
A—A MODIFIED REID & BODINE
0 + t —+ +— + t
0 50 100 150 200 250 300
DISTANCE FROM CHANNEL MOUTH (KM)
180 —t —— b —— + —+
03— ANALYTICAL SOLUTION
A— A REID & BODINE
A— A MODIFIED REID & BODINE
™ 90 +
E A-A-A-A-A-AA-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A
o a.
Y
7}
«{
I
T _gol !
~180 — —t + ~— +— +
0 50 100 150 200 250 300

DISTANCE FROM CHANNEL MOUTH (KM)

F1G. 1. Amplitude (top) and phase (bottom) of the standing wave
for a channel 255 m deep.
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FI1G. 2. Same as Fig. 1 but for a channel 1000-m deep.

and its time rate of change using (1) and (2) is

aK = f [Hudu + gndmldr
D

=f ——gV-(Hnu)dT+f Hugdr. (4)
D D

By using the Gauss divergence theorem, (4) can be
rewritten as

adK = —ngHnu.,ds + f Hugdr,
D

where u, is the outward normal velocity and S is the
open boundary of D. Thus, the temporal variations of
the total energy can be expressed as a sum of energy
changes occurring along the open boundary plus
changes related to ¢ inside the model domain.

Now consider-the following optimization problem:

minJ(7), (5)

constrained by the flux of energy through the open
boundary

P, = —gLHnu..ds. (6)
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FIG. 3. Same as Fig. 1 but for a channel 50 m deep.

Here J(7) is an objective functional depending on 7,
such that J(n) = 0. The term P, can be interpreted as
the flux of total energy penetrating the open boundary
S. Using the Lagrangian method (Fletcher 1987) to
solve the problem (5)-(6), we minimize:

min[](n) - )\,(P, +g f Hnu,,ds)] R
n S
where A is a constant (the Lagrange multiplier). Thus,

the solution of the problem satisfies the following con-
dition:

309

FIG. 4. Model domain and bathymetry (m)
for the Texas-Louisiana shelf.
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TABLE 1. Observed and model-predicted amplitudes (cm) and
phases (degrees, relative to UTC) for the M, tide at Galveston, Texas;
Port Aransas, Texas; and South West Pass, Louisiana. The model
forcing used the standard Reid and Bodine boundary formulation.

Model Observed
Station Amplitude Phase = Amplitude Phase
Galveston 9.1 259.8 13.5 275.1
Port Aransas 6.2 238.0 7.7 262.3
South West Pass 0.2 333.5 1.7 127.2
dJ
— — \NgHu, = 0. (7
dn

It 1s important to note that the constant A, measures
the rate of change in the function J(7) due to changes
in P, (the flux of mechanical energy across the open
boundary S). Let ¢ be the perturbation of P,: P¥ = P,
+ ¢,. It can be shown that (Fletcher 1987)

w
de,’

which provides us with a direct relationship between
the various terms of the problem.

A= (8)

3. Some examples

In the following we will show that several of the open
boundary conditions used in numerical ocean mod-
eling can be related to the optimization approach of
the last section. In each case a specific objective func-
tional J is minimized.

a. Simple longwave radiation

Let us consider the following problem:

min(J, = é'f Van2ds) , (9)
] 2 S
with condition (6). In this case, (7) becomes
1/2
(&
=—(= . 10
un At (H) ( )

TABLE 2. Observed and model-predicted amplitudes (cm) and
phases (degrees, relative to UTC) for the M, tide at Galveston, Texas;
Port Aransas, Texas; and South West Pass, Louisiana. The model
forcing used the optimized Reid and Bodine boundary formulation.

Model Observed
Station Amplitude Phase Amplitude Phase
Galveston 13.2 262.1 13.5 275.1
Port Aransas 7.9 242.0 7.7 262.3
South West Pass 136.1 1.7 127.2

3.1
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FIG. 5. Amplitude (top) and phase (bottom) of the M, tide along
the open boundaries of the LATEX shelf model using the modified
Reid and Bodine open boundary formulation.

Note that (10) is the commonly used longwave radia-
tion condition with a “tuning” coefficient A, which is
time dependent. With this coefficient, the relationship
given by (10) minimizes the functional J(7) given in
(9) (in essence, the square of the sea surface height on
the open boundary). If A, = 1 (the common radiation
condition), then according to (8) we have dJ/de, = 1.
Under such conditions, we are specifying that the
change in the flux of energy penetrating the open
boundary will be equal to the change of the functional
specified in (9).

b. The Reid and Bodine boundary condition

There are situations when some extraneous infor-
mation on the open boundary in the form of sea surface
height nris available. This information could be direct
observations or output of another numerical model.
In this case, we specify the objective functional to be

min[]z = § J; VEFI(W - nT)ZdS] , (11)

where the model height is fitted to the known function
in the least squares sense. In this case, (7) becomes
(n — n7) (5)”2

u, = (12)
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Note that condition (12) is a modified version of that
used by Reid and Bodine (1968), which is often used
to force regional tidal models while still allowing for
the radiation of longwave energy from the interior do-
main of the model (Lewis et al. 1992). In this case,
the relationship given by ( 12) minimizes the deviation
of the sea surface height from the known function 7+
(e.g., observed tidal variations). When A\, = 1, the
change in the flux of the total mechanical energy pen-
etrating the boundary S is equal to the change of the
deviation » from 7.

Oey and Chen (1992 ) incorporated current velocity
information u(s, t) into the open boundary condition.
To do so in our formulation, we rewrite the condition
(12) in the following form:

Ve/Hn—(nr+ NVH/gun 1)1 = N1ty — tn7), (13)

where u, ris the outer normal component of the known
velocity uz(s, t). Let us introduce the following no-
tation:

77 = nr+ NVH/guy 1.
By substituting ( 14) into (13), we can get the following:

(n—a7)[&g\'"*
A H| ~

(14)

Up — UpT =

(15)

Condition ( 15) is a modification of the boundary con-
dition employed by Oey and Chen (1992) with 5 7 cal-
culated from (14). The boundary conditions given by
(12) and (14)-(15) both minimize the difference be-
tween the modeled and observed surface heights [ Eq.
(11)]. The difference is that (14)—(15) allows for the
inclusion of surface heights and currents observed at
the boundary.

¢. The Blumberg and Kantha boundary condition

We specify the objective functional to be

1 t 2
min{Jz = % fs 1@?1[,72 + ?(L (n— nr)dt) ]dS] )

(16)

TABLE 3. Observed and model-predicted amplitudes (cm) and
phases (degrees, relative to UTC) for the M, tide at Galveston, Texas;
Port Aransas, Texas; and South West Pass, Louisiana. The model
forcing used the optimized Reid and Bodine boundary formulation
for the eastern open boundary and again for the southern open
boundary.

Model Observed
Station Amplitude Phase Amplitude Phase
Galveston 15.4 251.0 13.5 275.1
Port Aransas 9.6 234.2 7.7 262.3
South West Pass 8.1 120.5 1.7 127.2
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where T is a known constant. The minimization of J;
subject to the energy flux constraint leads to

H 1/2 1 t
n— kz(;) Uy = _:_ffo (n—np)dt. (17)

By differentiation of Eq. (17) with respect to ¢, we can
get the following:
n_\ (H\” 3,
a ot

H\!/? 1
- dJ\z(;) Uy = — _T(" = nr).

(18)

According to (1), (19) can be rewritten in the following

form:
H\'/? o 0d¢ H\'/?
—_ — __+__ — —_
At(g) ( gan 6n) dtxt(g) Un

9 _
o

1
== —T(n —nr). (19)
Suppose that d¢/on|s = 0. Thus,
dn Voli 1 H\'? 1
ot + N\ gHan dtxt(g) Uy = T(n nr).

(20)

The condition specified in (20) is a variation of the
boundary condition developed by Blumberg and Kan-
tha (1985) (if A, = 1 for all ). According to (16),
condition (20) minimizes the square of n and the de-
viation of n from 5 over time along the open boundary.
If T = t?, according to (16) we are minimizing the
square of # and the average deviation of # from nrover
time.

- d. Some enhancements

A few simple enhancements of the objective func-
tionals can be considered to derive different open
boundary conditions. Consider

min[J4 =B/, t+ 82>
n

= gfs VeH[B1n* + Ba2(n — nr)Z]dS} , (21)
again with constraint (6). For this case, (7) becomes
H 1/2

Bin — Xz(—) Up = —B2(n — nr).
g
If8,=1and B, = 1/T, we have
H\'/? 1
n— N(—) Uy = — =(n—nr). (22)
g T

This formulation provides for the direct specification
of u, at the boundary.
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4. Discussion

There are many possible numerical approaches to
implementing the proposed boundary conditions.
These approaches depend on the numerics of the hy-
drodynamical model. Here we discuss one of these ap-
proaches for the Reid and Bodine modified boundary
condition (12) implemented for a vertically averaged
model. Suppose 7, and u, , are the sea surface elevation
and velocity at time ¢. The model uses the two previous
time steps for calculating variables for the ¢ -+ 1 time
step. As always, the sea surface elevations 7, are cal-
culated from the continuity equation, and the velocities
U, are calculated from the momentum equation. On
the open boundary, the following numerical scheme
was implemented based on our optimization approach.
By using values of 5, and u, ,, we can find an estimate
of P, from (6). We have the following optimization
problem (11), (6) for time ¢:

min[1=§ f \/Eﬁ(n—nr,,)zcls], (23)
” 2 Js

p, = —gf Hyu,, ,ds. (24)
s

We assume that P, and u,,, contain some errors in the
estimates of the energy flux and the normal velocity.
We employ the regularization method (Sabatier 1987;
Parker 1994) for solving the problem

: 2
min[% (P, + gf Hnun,xds) + YJ], (25)
7 S

where 7 is a parameter of regularization. The solution
of (25) gives the following expression for A, in (12):

P+ gLHm,Tun,:dS
)\t = -

(26)
g'? LH”Zuﬁ,,ds +

After the calculation of \,, we can find a corrected -
value of the sea surface elevation from (12). This cor-
rected value of the sea surface elevation at time ¢ is
used for calculating the value of u,,:

=(n—nr)Vg/H. (27)

Because we do not know the norms of the errors in the
estimates of P, and u,,, the parameter v is chosen in
such a way that the two terms in (25) are equal.

We performed simulations for a flat bottom, fric-
tionless channel that is closed at one end. The channel
was forced at the other end by surface oscillations at
the M, tidal frequency with an amplitude of 1 m. The
length of the channel was 355 km. There are 23 grid
points along the channel (the 23rd is a wall). We per-
formed simulations for three different values of channel
depth: 255 m, 1000 m, and 50 m. Figures 1-3 show

Une+1
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the amplitudes and phases of the model-predicted
standing waves using the Reid and Bodine boundary
condition and the modified Reid and Bodine as well
as the analytical solution. The use of the modified Reid
and Bodine formulation is seen to eliminate, almost
entirely, errors in the predicted amplitudes while more
than halving the errors in the predicted phases.

We also performed simulations for the M, tide over
the Texas-Louisiana shelf (LATEX) area (Fig. 4). The
model domain has southern and eastern open bound-
aries. Tables 1 and 2 contain the results of the simu-
lations performed with both the Reid and Bodine and
modified Reid and Bodine conditions [calculating A,
and n, from (26) and (12)]. The use of the optimization
approach gives much better predictions of the ampli-
tudes and phases at Galveston and Port Aransas, Texas,
and the weak tide at South West Pass, Louisiana. Figure
5 shows a comparison between the tidal forcing at the
open boundaries and the tides predicted at the model
grid cells next to the open boundaries. These results
indicate that the modified Reid and Bodine formula-
tion provides a good estimate of the tidal amplitudes,
with the largest deviations occurring on the eastern
open boundary along the shelf slope. However, the
minimization process for this simulation shows a clear
bias in overestimating the phases, with the largest over-
estimates occurring along the southern open boundary.

We also conducted an experiment when the southern
and eastern open boundaries were treated separately
in our optimization approach. Different values of 2,
(26) were calculated for each open boundary. Thus,
the technique would minimize differences along the
eastern open boundary independently of those differ-
ences along the longer southern open boundary. The
results of the simulation are presented in Table 3. In
this case, the amplitudes were overestimated and the
phases were underestimated. As mentioned in the In-
troduction, the original Reid and Bodine condition is
a local treatment approach to the specification of the
open boundary condition: only neighborhood data are
used in determining the boundary condition for a grid
cell on the boundary. In our approach, all data along
and near the boundary are used in calculating the
boundary values for each grid point on the boundary,
and this approach results in a substantial improvement
in predicting amplitudes and phases. However, the
separate treatment of the southern and eastern bound-
aries gives inferior results, likely due to its more local
treatment of the boundaries.

5. Conclusions

As we have shown, many of the familiar formula-
tions used as open boundary conditions in numerical
simulations can have certain optimization properties
based on the coefficient A,. This coefficient allows the
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adaptation of the boundary condition to the change in
the flux of total mechanical energy penetrating the open
boundary, as well as the minimization of differences
between observations and predictions. By choosing the
appropriate functional to minimize along the open
boundary, the proposed approach allows a modeler to
generate different types of boundary conditions based
on a priori information and the inclinations of the
modeler. Conditions (12), (16), (21), and (23) can
be considered as data assimilation schemes, where
functions n7 and u+(s, t) include a priori information
of the phenomena being modeled. For future research
we plan to investigate the percentage of reflected versus
absorbed energy on the open boundary. We plan to
extend our approach to the modeling of three-dimen-
sional, open boundary conditions and develop tech-
niques for coupling basin and coastal models by using
estimated energy flux through the interface of the ba-
sin-coastal models.
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