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Inhomogeneity in gelation and nonuniversality of sol-to-gel transitions
studied by a computer simulation model

Yi-Min Liu 1 and R. B. Pandey1,2
1Program in Scientific Computing, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046

2Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046
~Received 26 June 1996!

Effects of the quality of a solvent on the sol-to-gel transition are studied by a computer simulation model. A
nearest neighbor interaction of strengthJ between the polymeric units is introduced to control the quality of the
solvent. The Metropolis algorithm is used to move the monomers and microgels that react with their neigh-
boring units with a rate of reaction. The critical exponents for the sol-to-gel transition are found to depend on
the nature of solvent, i.e., the exponentb for the gel fraction and the exponentg for the weight average degree
polymerization vary with the values ofJ. The dynamic evolution of the structure of gel networks is analyzed
by collective structure factors. Due to the competition between the effect of dilution and the coagulation of
clusters, a phase-separated gel network seems to emerge, leading to inhomogeneities. We also find that the
interplay between the rate of the reaction and the energy parameters that represent the quality of solvents
determines the final morphology of gel networks.@S1063-651X~96!08212-8#

PACS number~s!: 05.70.Fh, 82.20.Wt, 82.70.Gg, 82.35.1t

I. INTRODUCTION

Sol-to-gel transitions have been a subject of extensive
studies for a long time with early approaches, such as classic
descriptions by Flory and Stockmayer@1#, to the contempo-
rary percolation theory@2#. The Flory-Stockmayer model is
equivalent to the random bond percolation theory in which
the effect of solvents and the correlation between molecules
are not considered. It is assumed in both theories that the
interactions between polymer units are screened by an inter-
vening cluster and all states of the system consisting of a
fraction of occupied bonds are equally probable. However, in
real polymeric systems, monomers and solvent are in thermal
equilibrium, that is, their movements are controlled by inter-
action forces.

The behaviors of gels in the presence of a solvent have
been studied theoretically@3,4# and experimentally@5#. It is
found that the critical properties, such as fractal dimension
and critical exponents, are quite different from the values
predicted by the classical theory and the percolation theory
@4,5#. Real solvents are also selective, i.e., the thermody-
namic properties and phase behaviors of gels such as gel
time, gel structure, and gel modules are different for different
interactions between polymers and solvents. The presence of
a solvent gives rise to motion of the species in the reaction
bath, and due to this diffusion the reactivity of functional
groups are no longer equal. When polymers are diluted by a
solvent, the interaction between the clusters may not be
screened out. Due to the excluded-volume interaction, the
solvent would change the nature and magnitude of electro-
static and hydrogen bonding interactions in the system.
These interactions, in turn, greatly affect the sol-gel reaction
and hence the structure of the resulting gel by phase separa-
tion @6–8#.

In a good solvent, the phase-separation effects are usually
suppressed and the system is assumed to be homogeneous.
However, in a poor solvent, the competition between the

dilution effects and the effective attraction induced by
chemical cross-linking can often produce concentration inho-
mogeneities in gel networks@9#. These inhomogeneities have
been observed by scattering experiments in various polymer
systems@10–16#. In fact, even in a very good solvent, the
evolving polymer network will tend to segregate. However,
the phase separation is prevented by cross-linking. As a re-
sult, only a microscopic separation takes place, leading to
localized inhomogeneity in the gel structure. The microphase
separation in irreversible gels is explained as a reaction-
induced phase separation since there is no temperature
quenching involved in the irreversible gelation@17–20#.

Several computer simulation models have been proposed
to include the mobility of polymers in the gelation process in
recent years@21–29#. The solvent effect, however, is ignored
in most of these models. Coniglioet al. @30# developed a
site-bond correlated percolation model to include the solvent
effects. In their model, the monomers are no longer distrib-
uted randomly but are distributed according to a distribution
at thermal equilibrium at a temperatureT via a nearest-
neighbor interaction. They considered two types of interac-
tions: the usual van der Waals interaction and a directional
interaction that leads to chemical bonds. This analytical
model can be solved only on simple structure such as a Cay-
ley tree due to the counting problem. Moreover, the mobility
of a monomer or polymer is neglected in the model. Very
recently, we have also investigated the effects of temperature
on the structural properties of gel in a thermodynamic model
@31#, in which monomers and microgels are mobile; we re-
ported some interesting results on the critical gel points and
melting points. Nevertheless, the effect of solvents is not
considered.

In this paper, we use the Monte Carlo simulation method
to study the effects of a solvent on the sol-gel transition and
gel structure. We consider interactions between monomers
and polymers in this model and investigate the sol-gel phase
behaviors of irreversible gels in different solvents.
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II. METHODS AND SIMULATION TECHNIQUES

We consider a simple cubic lattice of sizeL3L3L with a
periodic boundary. The system starts with randomly distrib-
uted unreacted monomers. Each monomer carries a number
( f ) of reactive groups~functionality! capable of forming
bonds in pairs. A fractionC2 of the lattice sites is randomly
occupied by bifunctional monomers, a fractionC4 by tet-
rafunctional units, leaving the remaining fraction
12C22C4 of lattice sites empty. A lattice site cannot be
occupied by more than one unit at a time.

We consider the interactions between nonbonded neigh-
boring monomers. This potential is expressed through the
reduced energye/kBT. The polymer-solvent interactions are
not explicitly included. Then the energy parameter
J5e/kBT describes the solvent quality. WhenJ.0, the in-
teraction between polymers is repulsive. IfJ,0, then the
interaction is attractive. For the polymer clusters formed by
aggregations, we consider only the surface interactions with
neighboring monomers of the other clusters. The interior
units of a cluster have no interaction with each other. The
energy associated with monomers will affect the molecular
jump probability, i.e., the motion of the molecules and thus
the formation of a bond~cross-link!. The Metropolis algo-
rithm is used to accept and reject the hopping of monomers
or microgels, i.e., the ratio of moving probability depends on
the energy change in the system viae2DE, whereDE is the
difference in the energy between the new and old configura-
tions. The only link with thermodynamics is through the
probability ofW5e2DE.

We assume that each of the units in the system has an
equal reactivity. A bifunctional monomer can be connected
to its two neighboring monomers at the most by single bonds
and to one neighboring monomer at the most by a double
bond. Similarly, a tetrafunctional monomer can be connected
to its four neighboring monomers at the most by a single
bond, to one monomer at the most by four bonds, or to its
neighboring monomers by various bonding with multiplicity
between one and four.

Monomers and microgel particles~a finite cluster result-
ing from the reaction! can move a distance of one lattice unit
in a randomly selected direction~one of six simple cubic
directions! in one attempt if the excluded-volume criterion
and energetic conditions~see below! are met. We focus here
on the rigid network. During the move, all bonds must be
preserved and the conformation of the polymer is unchanged
during this movement. The diffusion coefficientDn for a free
cluster withn monomers is given byDn;1/n, i.e., the hop-
ping rate of a cluster is inversely proportional to its mass. To
evolve the system, we select a monomer or cluster randomly
and attempt to diffuse it by a lattice unit distance in a ran-
domly chosen direction with its hopping rate. The acceptance
of a move is checked with the energetic criterion. After each
hopping, the monomer attempts to react with one of its ran-
domly selected neighbors. If both monomers have at least
one unsaturated bond~i.e., unreacted functional unit!, then a
bond is formed between the two monomers with a certain
bonding probabilitypb . An attempt to form a bond fails if
the randomly selected neighboring site is not occupied by a
polymer unit or if either of the units is saturated. A unit
becomes saturated as soon as it bonds with all of its func-

tional groups. This process of hopping each particle by one
step and attempting to form bonds is repeated again and
again until the reaction is nearly complete, i.e., all monomers
are nearly saturated. The time is measured in units of Monte
Carlo steps~MCS!. A unit of MCS is defined as an attempt
to move all the monomers and clusters and to let them react
with their nearest neighbors. One MCS may be divided into
m intervals, i.e., in eachm interval, only 1/m of the total
species in the system can be selected randomly to move and
react.

In the course of polymerization and kinetic growth, the
concentration of reacted monomers increases. The extent of
the reaction or the extent of cross-linkingp, which is defined
as the fraction of bonds formed, increases accordingly. At
the sol-gel transition thresholds, where an incipient infinite
gel network appears,pc5p(tc), with pc and tc the critical
bond concentration and critical gelation time. In this model,
the time evolution of a given configuration is based on the
fact that the monomers or microgel particles tend to move
close to the other units and form a bond when attractive
potentials exist between polymer units~in a poor solvent!.
On the other hand, they tend to move away from each other
in a good solvent where the repulsive interactions dominate.
Thus the collision probability of reactive groups and thus the
rate of reaction are controlled by the diffusivity of monomers
and clusters.

The sol-to-gel transition is related to the connectivity
property of the system. As the reaction proceeds the clusters
~microgels! grow. When a cluster spans the system, a sol-to-
gel transition occurs. This geometrical transition can be stud-
ied as a function of time (t) and fraction of bonds (p). We
choose the gel fraction as the order parameter of the system.
The volume fractions of the two components~gel cluster and
clusters in a sol! are fG and fS , which are defined as
fG5nG /(nS1nG) andfS5nS /(nS1nG), respectively.nG
andnS are the number of monomers in the gel and in the sol
phases, respectively.N5nG1nS is the total number of
monomers in the system. The gel fraction is defined as

G5
fG

fS1fG
5
nG
N
. ~1!

In the simulations, we also keep track of the following
quantities besides the order parameterG: ~i! the weight av-
erage degree polymerizationMW , characterized by the mean
size of the cluster, which is the ratio of the second moment to
the first moment of the mass distribution, i.e.,

MW5

(
s
nss

2

(
s
nss

, ~2!

wherens is the number of clusters containings monomers
per site; and~ii ! the correlation lengthj ~or z average of the
radius!, which is the measure of the spatial extension of the
connectivity, is given by
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j25
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whereRs is the radius of gyration

Rs
25

1

s K (
i51

s

~r i2r0!
2L , ~4!

where r05( i51
sr i /s and r i denotes the position of thei th

connected site. In the next section, we will discuss the be-
havior of some of these quantities.

III. RESULTS AND DISCUSSION

A. Solvent effects on the gelation process

The monomer-solvent interactions are characterized by a
Flory parameterx @3#. x 5 1/2 corresponds to a cancellation
between the steric repulsion and attraction between mono-
mers. At lowerx values, i.e., in the good solvent regimes,
steric repulsion dominates. Whilex.1/2 corresponds to a
poor solvent,x can be related to the energy parametere as
@32#

x5ze/kBT, ~5!

wherez is the effective coordination number. In this section,
we study the critical properties of gelations in a solvent of
various qualities (J 5 0.3,0.1,0.0,20.1,21.0!. The simula-
tions are carried out on a lattice of size 70370370. The
bonding probability is 0.8. The concentrations of monomers
areC250.1 andC450.3 throughout this paper. The evolu-
tion of the gel fraction with time~MCS! is shown in Fig. 1.
The effects of the solvent on the gel time are evident. The gel
time is longer in a good solvent. This is because when the
repulsive potential (J.0) become larger, the monomers

need more energy to overcome the repulsive force and hence
have less of a chance of moving close to other polymers to
form a bond. ForJ,0 ~in a poor solvent!, on the other hand,
the attractive interactions facilitate the formation of clusters.

At a low concentration of monomers, the probability of
forming a gel becomes very small in the limitJ→`, when
the probability of forming even a finite cluster is small. We
can see this effect more clearly in Fig. 2, which is the plot of
the gel timetc versus the parameterJ. The variation of the
mean gel size with the extent of the reaction is presented in
Fig. 3. We know that the mean gel size shows a maximum
divergence in the infinite system at the gel point (pc). We
see that the gel point (pc) depends strongly on the quality of
the solvents~see Fig. 4!. In a poor solvent, a gel network
forms in a relatively short time, so the extent of reaction is
lower at the gel point than that in a good solvent. This seems
to be consistent with our previous observation of the gel
fraction. However, the attractions between polymer units
bring monomers and clusters closer to each other. This en-
hances the reaction probability, resulting in a more compact
network, i.e., the gel fraction~Fig. 1! has greater value at the
saturated stage in a poor solvent.

It is generally believed that continuous phase transitions
have certain universal properties, e.g., the critical exponents
that characterize the phase transitions are independent of the
microscopic details of the systems@2#. Near the critical
point, the mean gel sizeMW diverges with a critical expo-
nentg, while the evolution of the gel fraction (G) is char-
acterized by a critical exponentb,

MW;u12pc /pu2g, ~6!

G;u12pc /pub. ~7!

We have attempted to estimate the critical exponents us-
ing the finite-size scaling analysis method@33,34#. Since the
correlation length (j) is limited by the linear size of the

FIG. 1. Gel fraction vs time
for various solvent conditions
(J5 0.3,0.1,0.0,20.3,21.0! with
C250.1 andC450.3 on the lat-
tice of size 703.
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latticeL asp→pc , i.e.,j;u12pc /pu2n;L, the gel fraction
G and the mean gel sizeMW can be expressed in terms of
scaling functionG̃ andM̃W ,

GLb/n5G̃@~12pc /p!L1/n#, ~8!

MWL
2g/n5M̃W@~12p/pc!L

1/n#. ~9!

To use the finite-size scaling, we have carried out our simu-
lations with various lattice sizes (5032803) with J523.0.
Figures 5 and 6 are the finite-size scaling plots ofG and
MW , which show that the family of curvesG andMW nearly
collapse on a single functionG̃ and M̃W with the choice of
b50.58, g51.42, andn50.73. In Table I, we list the esti-
mates of the critical exponents we found in various solvent
conditions. We found that the value ofb seems relatively

less sensitive to the quality of solvent, while the values of
g andn increase by varying the quality of the solvent from
good to poor.

The cluster structure can be described by the radius of
gyrationRs . The fractal dimension of the gel at gel point can
be evaluated from the power law

s}Rs
D~p5pc ,s→`!, ~10!

whereD is the fractal dimension. Figure 7 shows that the
variation ofs with Rs on a log-log scale at the gel point in
different solvents. We find that the slope (D) is almost in-
variant with solvent qualities withD.2.05. This value is in
good agreement with the result from theoretical prediction
@4# and experimental result@35#.

FIG. 2. Plot of gel point (tc)
vs the value ofJ, with C250.1
andC450.3 on the lattice of size
703.

FIG. 3. Mean gel size vs ex-
tent of the reaction for various sol-
vent conditions (J5 0.3,0.1,0.0,
20.3,21.0! with C250.1 and
C450.3 on the lattice of size
703.
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B. Inhomogeneities in gels

The gel network is highly ramified and heterogeneous
particularly at the gel point. It is rather difficult to character-
ize the inhomogeneities in such a heterogeneous system@36#.
The inhomogeneities of gel networks can, however, be
thought of as some regions of high cross-link density embed-
ded in the network with low cross-link density. In a gelation
in the presence of a solvent, the solvent condition has great
effects on the mobility of the components of the mixture as
we saw above. Depending on the quality of the solvent, i.e.,
the value ofJ and the rate of polymerization, a network with
different structures and properties can be grown.

To get a qualitative analysis of the microphase structure,
we compute the static structure factors of the system. It is
known that the scattered intensity is the result of local varia-

tions of the cross-linking density. The structure factor
S(q,t) of an L3 lattice is the Fourier transformation of the
spatial correlation function that measures the difference be-
tween the local concentrations of two components:fp , the
fraction of polymers, andfs , the fraction of solvents:

S~q,t !5
1

L3 K H(
r
eiq•r@~fp2fs!2^fp2fs&#J 2L ,

~11!

where r runs over all lattice sites and
q5(2p/L)m5(2p/L)(ux ,uy ,uz), ux ,uy ,uz50, . . . ,L. A
local concentration variablefp

j is equal to 1 if the lattice site
j is occupied by a polymer unit and otherwise 0.fs

j is set to
zero in this simulation.

FIG. 4. Plot of gel point (pc)
vs the value ofJ, with C250.1
andC450.3 on the lattice of size
703.

FIG. 5. log-log plot of GLb/n vs
u12p/pcuL1/n, with J523.0, assuming that
b50.58, n50.92, andpc 5 0.77.
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In order to investigate the time evolution of the structure,
we compute the collective structure factor of the system,
which is the average ofS(q,t) in a spherical shell of radius
q with one lattice unit@37–40#,

S~q,t !5(
q

S~q,t !Y (
q

1, ~12!

for q5(2p/L)n. The sum(q goes over all values ofq such
that

2p

L
n<uqu,

2p

L
~n11!. ~13!

We usen51,2, . . . ,20 in the calculation.
To see the correlation of the formation property of the gel,

we prepared gels at different solvent conditions by varying
the values of interaction parametersJ. The size of the lattice
is 60360360 in this section. Figure 8 is a plot of the struc-
ture factorS(q,t) as a function ofq85qL/2p at various
times after the reaction begins with~a! J50.1, ~b!
J520.1, and~c! J521.0. These profiles of the static struc-
ture factors of the evolving gel network show the rate of
phase separation in various solvent conditions. The growth in
the scattered intensity indicates the evolution of inhomoge-

neities. As the aggregation proceeds, a large cluster forms
from smaller ones, which gives rise to depletion zones in the
system. This leads to an inhomogeneity in the density of
cross-links. But the position of the peak ofS(q,t) seems to
show no shifts. This indicates that some structures grow after
the onset of gelation due to the increase in the extent of the
reaction in the network formation. Notice that the bonding
probability in these figures is 0.4. To show the effect of the
rate of the reaction on the inhomogeneities, we conduct the
simulations withJ521.0 and the bonding probabilitypb 5
0.8, 0.2, and 0.1~see Fig. 9!. In the case of higher bonding
probability @Fig. 9~a!#, the formation of the large cluster due
to the cross-linking reaction is comparatively fast. The
phase-separation process is arrested and the growth of the
intensity tends to cease faster than in the case of a lower
bonding probability@see Fig. 8~c!, wherepb 5 0.8#. In Figs.
9~b! and 9~c!, the bonding probabilities are even lower (pb
5 0.2 and 0.1!. The intensities increase and the position of
the peaks shifts from a large angle to a small angle because

FIG. 7. log-log plot ofs vs Rs , with C250.1 andC450.3 on
the lattice of size 703.

TABLE I. Critical exponents for the sol-to-gel transition for
various solvent conditions. The statistical uncertainty in the esti-
mate of these exponents is around60.10.

J b g n

0.3 0.64 1.24 0.48
0.1 0.49 1.69 0.91
0.0 0.39 1.92 0.77

20.1 0.57 1.85 0.82
20.3 0.58 2.08 0.92
21.0 0.65 2.21 0.74

FIG. 6. log-log plot of
MWL

2g/n vs u12p/pcuL1/n, with
J523.0, assuming that
g52.08, n50.92, and pc 5
0.77.
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the rate of growth is quite slow compared to the rate of
diffusion. These shapes of the structure factor are in good
agreement with those observed in experiments@17–20#.

The microstructured inhomogeneities in gel can be seen in
Fig. 10, which shows the structure factorS(q,t) as a func-

tion of q85Lq/2p with various solvent qualities after react-
ing for t 5 80 ~MCS!. It is evident that the final structure
depends on the solvent conditions in the formation of gel
networks. The inhomogeneities increase with the changing
of the value of the interaction parameterJ from a good to a

FIG. 8. Structure factorsS(q,t) plotted vsq85qL/2p at various
times ~MC steps!, for various solvent conditions~a! J 5 0.1, ~b!
J520.1, and~c! J521.0 after the reaction with the bonding prob-
ability pb 5 0.4.

FIG. 9. Structure factorsS(q,t) plotted vsq85qL/2p at various
times ~MC steps!, for various bonding probabilities~a! pb 5 0.8,
~b! pb 5 0.2, and~c! pb 5 0.1 after the reaction withJ521.0.

54 6615INHOMOGENEITY IN GELATION AND . . .



poor solvent range. Notice that whenJ→` ~a good solvent!,
the system contains no structural inhomogeneity and the
phase separation effects are suppressed. Since the attraction
is not as strong as in a poor solvent, the growth of clusters is
sufficiently slow and the polymer units are more mobile. So
the rate of phase separation is slower than that of gelation.
This miscibility of gel networks is affected greatly by the
inhomogeneities of cross-link distribution. Our structural
data suggest that in a good solvent, the coagulates of poly-
mer segments were less developed~lower gel fraction!,
forming a loosely packed cluster compared to the gel and
microgels in a poor solvent. The polymer thus shows soluble
characteristics in a good solvent.

The inhomogeneities were also observed in kinetic gela-
tion models for free-radical polymerization@36#. In the ki-
netic gelation model, the bonds are formed via the process of
a radical ~initiator! moving from one site to neighboring
sites. Thus the bonding probability depends on the concen-
tration of initiators. To avoid the trapping of initiators~a
radical has no site to jump!, the concentration of the initia-
tors is usually very low. Therefore, the unequal reactivity of
reactive groups due to the very low concentration of initia-
tors is the origin of the inhomogeneity of gel networks.
While in our model, the inhomogeneities are caused by the
competitions of the unfavorable interactions between poly-
mer units and cross-linking reactions.

IV. CONCLUSION

A computer simulation model is used to study the sol-to-
gel transitions in an irreversible gel. A nearest-neighbor in-

teraction of strengthJ(e/kBT) is considered and a Metropo-
lis algorithm is used to move the monomers and microgel
particles. In addition to mobility, the rate of reaction is also
governed by the bonding probability. The value of the inter-
action strengthJ determines the quality of the solvent, i.e.,
positiveJ corresponds to a good solvent, while negativeJ to
a poor solvent. The evolution of a gel and sol-to-gel transi-
tion is studied as a function of the quality of the solvent.
Several interesting observations are made. We find that the
gelation process can be affected strongly by the solvent con-
ditions. The critical exponents for the sol-to-gel transition,
particularly for the volume fraction of the gel and the mean
gel size, vary with the energy parameterJ. For example, the
magnitude of the gel fraction exponentb decreases from
0.64 to 0.39 on reducingJ from 0.3 to 0.0 in a good solvent,
while it increases (b50.57–0.65! on increasingJ from
20.1 to 21.0 in a poor solvent. The exponentg for the
weight average degree of polymerization shows a systematic
increase in changing the quality of the solvent from good
(J50.3) to poor (J521.0) ~see Table I!. This suggests that
the universality of the sol-to-gel transition depends on the
quality of the solvent. However, the fractal dimension of the
gel at the gelation threshold seems insensitive to the solvent
conditions. We have also investigated the dynamic develop-
ment of phase separation and gelation under various cross-
linking rates and solvent conditions. The final morphology of
the macroscopic gel structure resulting from the interplay
between gelation and phase-separation processes can be de-
termined from the analysis of the static structure factors. The
structure factor is a good quantity to estimate the inhomoge-
neities in such heterogeneous gels. We find that the inhomo-
geneities grow on varying the quality of the solvent from
good to poor: the degree of inhomogeneity increases on re-
ducing the solvent quality. The inhomogeneity also depends
on the rate of the reaction: the lower the rate of reaction, the
higher the probability to develop an inhomogeneity. The
qualitative features of these structure factors are in good
agreement with the scattering experiments in different poly-
mer systems. From this study of the inhomogeneities in the
irreversible gelation, it seems that the evolution of the inho-
mogeneities near the transition threshold plays an active role
in the sol-to-gel transition.
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