
The University of Southern Mississippi
The Aquila Digital Community

Faculty Publications

4-1-1997

Conformation of Interacting Polymer Chains:
Effects of Temperature, Bias, Polymer
Concentration, and Porosity
Grace M. Foo
University of Southern MIssissippi

Ras B. Pandey
University of Southern Mississippi, ras.pandey@usm.edu

Follow this and additional works at: http://aquila.usm.edu/fac_pubs

Part of the Physics Commons

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by
an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

Recommended Citation
Foo, G. M., Pandey, R. B. (1997). Conformation of Interacting Polymer Chains: Effects of Temperature, Bias, Polymer Concentration,
and Porosity. Physical Review E, 55(4), 4433-4441.
Available at: http://aquila.usm.edu/fac_pubs/5294

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aquila Digital Community

https://core.ac.uk/display/301288506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aquila.usm.edu?utm_source=aquila.usm.edu%2Ffac_pubs%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aquila.usm.edu/fac_pubs?utm_source=aquila.usm.edu%2Ffac_pubs%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aquila.usm.edu/fac_pubs?utm_source=aquila.usm.edu%2Ffac_pubs%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=aquila.usm.edu%2Ffac_pubs%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


Conformation of interacting polymer chains: Effects of temperature, bias, polymer concentration,
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The conformations of interacting polymer chains driven by a biased field in heterogeneous media are studied
using Monte Carlo simulations in three dimensions. In addition to excluded volume, a nearest-neighbor inter-
action is considered with polymer-polymer repulsion and polymer-solvent attraction. Two types of heteroge-
neous media are considered:~i! a homogeneous-annealed system consisting of mobile polymer chains and
solvents and~ii ! quenched porous media, generated by adding a random distribution of quenched barriers.
Effects of polymer concentration (p), bias (B), temperature (T), and porosity (ps) on the magnitude of the
radius of gyration (Rg) of the chains and its scaling with the chain length (Lc) are studied. In an annealed
system, we observe a crossover in power-law variation of the radius of gyration with the chain length,
Rg;Lc

g , from an extended conformation withg.0.7 at low bias (B50.2), low p, and highT to a collapsed
conformation withg;0.2020.31 at high bias (B>0.5) and lowT. In a quenched porous medium, we observe
a somewhat lower value of the power-law exponent,g;0.6020.70, from its annealed value at highT and low
bias. At low temperatures, in contrast, the magnitude ofg;0.3920.47 is enhanced with respect to its annealed
value. Various nonlinear responses ofRg to bias are observed in different ranges ofB, Lc , ps , andT. In
particular, we find that the response is nonmonotonic at low temperatures (T.0.1) in the annealed system and
at high temperatures (T.100.0) in a porous medium with a relatively high barrier concentration (pb>0.3).
@S1063-651X~97!08804-1#

PACS number~s!: 36.20.Ey, 83.10.Nn, 02.70.Lq

I. INTRODUCTION

Because of its fundamental and practical importance, the
conformational and dynamical properties of chain polymers
have attracted a considerable interest in recent years@1–5#.
The conformational and transport properties of the model
systems of neutral polymer chains with the excluded volume
interaction have been extensively studied from a dilute solu-
tion to the melt regime. The crossover from a self-avoiding
walk ~SAW! conformation in the dilute regime to an ideal
~random walk! configuration in the melt is well understood.
There is a large variety of polymer systems@6–8# where
interactions among the constituents play an important role in
their conformations. Some examples include polyelectrolytes
and polyampholytes~protein, DNA, and RNA to weakly
charged systems with a fluctuation in the charge distribu-
tion!. The long range Coulomb interactions among the con-
stituents, on the other hand, impose a severe constraint in
studying these systems both by analytical theories as well as
by computer simulations. It is very difficult to perform a
controlled experiment to understand the fundamental proper-
ties of the constituents of such complex systems. Computer
simulation, therefore, remains one of the primary tools to
investigate even simplified models of such complex systems
which cannot be tackled by analytical theory in a controlled
fashion. The growth in the literature in the area of computer
simulation modeling of polymers is too extensive to cite all
of them @5#.

Several attempts have recently been made to study the
problems in such complex systems via models@5–10#. Most

models resort to simplified systems with a restricted range of
interactions, short chain lengths, low polymer concentra-
tions, etc., due to difficulties in taking into account the spe-
cific type and range of interaction and polydispersity among
the other variables. The simplified models are, however, use-
ful in capturing some of the important details of such com-
plex systems. In a highly concentrated melt where the long
range interactions seem to be screened out, a short range
interaction, different from the original long range interaction,
may be able to capture the relevant details. Further advan-
tages of the simplified models are the feasibility of incorpo-
rating other parameters such as temperature, solvents, and
their concentrations which would have been difficult other-
wise. In fact, several studies have been recently reported on
such simplified models which have shown interesting prop-
erties due to the interplay between the temperature and inter-
actions@5#.

The effects of external field~i.e., bias! in such interacting
systems are relatively less explored. Such studies@11–13#
are nevertheless useful in understanding some of the funda-
mental issues in electrophoretic transport, filtering, and
phase-separating processes. Studying the physical properties
of even simplified model chains in a quenched porous me-
dium is more difficult@14–21#. Inclusion of an external flow
field helps in reducing the relaxation time for the motion of
the chains, at least for certain values of the parameter space
~i.e., high porosity, low polymer concentration, and low
field! @13#. On the other hand, the biased flow field makes the
problem more complex as the field begins to compete with
the barriers for the chains’ movement@11,12#. In previous
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studies, we have explored the dynamics and conformational
behavior of model polymer chains in porous media, with
@13# and without @21# a field, in which only the excluded
volume~hard-core! interaction among the chains was consid-
ered. The polymer chains could move only by reptation dy-
namics into ‘‘empty’’ neighboring sites, i.e., those that were
occupied by solvent. In the present work, a more general
model is considered by introducing a local nearest-neighbor
~NN! interaction with a polymer-polymer repulsion and a
polymer-solvent attraction. Unlike our previous studies, we
are able to investigate the effect of temperature on the con-
formational properties of interacting chains along with the
influence of their lengths and concentrations.

We have carried out a detailed study of the conforma-
tional properties of interacting chains in a background of
solvent using a simplified model described in the following
section~Sec. II!. The conformations of chains in a homoge-
neous~or annealed chains! system are discussed in Sec. III
and the effects of quenched barriers in Sec. IV with a sum-
mary in Sec. V.

II. MODEL

The simulations are performed on a simple cubic lattice of
sizeL3L3L. A fraction p of the lattice sites is randomly
occupied by nc polymer chains, each of lengthLc ~or
Lc11 nodes!, wherenc5pLd/(Lc11). Chains are placed
on the lattice by a constrained self-avoiding walk~SAW!
process, each starting from a randomly selected site. A frac-
tion pb of the lattice sites, randomly selected from the empty
lattice sites, is then occupied by quenched barriers. A site
cannot be occupied by more than one barrier or chain node.
The porosity of the medium is defined byps512pb .

In addition to excluded volume, we consider nearest-
neighbor polymer-polymer repulsion and polymer-solvent at-
traction. An effective charge or interaction densityr is as-
signed to each lattice site, wherer51 for the polymer
nodes, 0 for the barriers, and21 for the empty sites. The
interaction energy of the system is described by

E5(
i j

r ir j , ~1!

where the summation is restricted to nearest-neighbor sites.
Note that such Ising-like effective interactions are frequently
used to study a variety of issues in different contexts, i.e.,
simple fluids@22#, polymer chains@5#, etc., for simplicity. A
biased field is also considered in moving the nodes as the
chains explore their conformational phase space via kink
jump and reptation.

The chain nodes are selected randomly. If the node is one
of the end nodes~head or tail! of the chain, then we attempt
to reptate the chain with the following rule: We select one of
its neighboring lattice sitesj with probabilityB in the direc-
tion of the field and in any direction with probability 12B,
whereB (0<B<1) is the biased probability. If the neigh-
boring site is empty, then we attempt to reptate the chain
with a Boltzmann distribution using a Monte Carlo accep-
tance condition

r<exp~2DE/T!, ~2!

wherer is a random number (0,r,1),DE is the difference
in interaction energy between the new and old configura-
tions, andT is the temperature in units of the Boltzmann
constant.

On the other hand, if the randomly selected node is one of
the interior nodes of the chain, then a kink-jump move is
attempted. In this case, one of the nearest- or next-nearest-
neighbor sitesj is selected with the biased probability de-
scribed above. If sitej is empty, then we attempt to move the
node and the associated bonds via a Boltzmann distribution
@Eq. ~2!#. However, if the neighboring sitej is occupied, the
move fails and the node remains in its old position. An at-
tempt to move each node of all chains once regardless of its
success is defined as a Monte Carlo Step~MCS!. A periodic
boundary condition is used for the moves across the sample.
The chains are moved for a fixed~large! number of time
steps, during which we monitor various physical quantities.

The parameters are the concentrationp of the chains,
chain lengthLc , temperatureT, strength of external bias
B, and concentration of barrierspb ~or porosity
ps512pb). For each set of parameters, we use as many
independent simulationsns as permitted by the available re-
sources to obtain a reliable estimate of the physical quanti-
ties. Chains of lengthLc520, 40, and 60 were used over

FIG. 1. Radius of gyration versus time for
driven chains at concentrationp50.2 and length
Lc560.
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external biasesB50.020.8 at polymer concentrations
p50.1,0.2,0.3 in the annealed system (pb50.0) and at a
fixed polymer concentrationp50.3 in the porous medium
(0.0,pb<0.4). Each simulation was run for a sufficiently
long time to relax the chain conformations. We evaluate the
radius of gyration of the chains which is defined as

Rg5
1

nsnc~Lc11! (j51

nc

(
i51

Lc11

A^@r i~ j !2r c.m.~ j !#
2&,

r c.m.5
1

Lc11 (
i51

Lc11

r i , ~3!

wherer i( j ) is the position of thei th node of thej th chain;
^•••& shows the ensemble averaging over configurational
states~i.e., over MCS time!.

III. HOMOGENEOUS-ANNEALED SYSTEM

To simplify the analysis, we first examine the behavior of
the chains in a homogeneous system, i.e., in the absence of
quenched barriers (pb50.0). A variation of the radius of
gyration with time is shown in Fig. 1 at various values of
biasB and two ~high and low! temperatures. We immedi-
ately note that the initial conformations of the chains
(t→0) are compact~i.e., of a constrained SAW configura-
tion! and elongate or stretch out as the chains begin to ex-
plore their conformations in the external field. The magni-
tude of the radius of gyration seems to approach its steady

state~i.e., a nearly constant! value (Rg`
) at almost all values

of the flow field and temperatures. We define a configura-
tional relaxation time in which the magnitude ofRg ap-
proaches its steady state value. Our simulations show that the
longer the chain, the longer it takes to reach this steady state
value. At a fixed bias, the relaxation time at high temperature
(T5100.0) is lower than that at the low temperature
(T51.0). We further note that the magnitude ofRg depends
strongly onB and that the change inRg , i.e., the response of
Rg to bias, is larger at higherB.

The conformational relaxation of chains also depends on
the polymer concentration, with more severe effects at low
temperature~Fig. 2!. As the polymer concentration increases,
the relaxation time of the chains increases quite drastically at
each value of the bias. For example, at biasB50.5,
Rg→(Rg)` at ;5.03103 MCS for chains atp50.1, while
Rg→(Rg)` at t.2.03104 MCS for chains atp50.3. At low
polymer concentration, the probability for a chain to encoun-
ter other chains during its movement is low. As the concen-
tration increases, there is a greater probability of encounter-
ing neighboring chains. The effective percolation threshold,
the concentration at which the chains begin to interfere with
each other, depends on the chain length@23#. For Lc540,
this threshold should be much smaller than 0.312@24,25#, the
percolation threshold for site percolation in three dimen-
sions. Therefore, at such a high concentration asp50.3, the
surrounding chains begin to act like barriers. Since the field
drives the chain, it begins to compete with the surrounding
chains with a resulting increase in relaxation time.

A. Scaling ofRg with chain length

In general, for a single chain or chains in solution~from
dilute to melt regime!, a frequently asked question is how the

TABLE I. Exponentg in Rg;Lc
g for driven chains in porous media.

Polymer conc Barrier conc Temperature
p pb T5100.0 T510.0 T51.0 T50.1

(B50.2!
0.1 0.0 0.71 0.71 0.71 0.70
0.2 0.0 0.71 0.71 0.71 0.74
0.3 0.0 0.71 0.73
0.3 0.1 0.70 0.70 0.39 0.45
0.3 0.2 0.67 0.67 0.45 0.47
0.3 0.3 0.68 0.68 0.44 0.47
0.3 0.4 0.62 0.60 0.46 0.46

(B50.5!
0.0 0.0 0.31~0.29!
0.3 0.1 0.33~0.33! 0.45 ~0.47!
0.3 0.2 0.38~0.39! 0.47 ~0.46!
0.3 0.3 0.40~0.42! 0.48 ~0.45!

(B50.8!
0.0 0.0 0.20
0.3 0.1 0.43~0.45!
0.3 0.2 0.30~0.32! 0.48 ~0.47!
0.3 0.3 0.40~0.40! 0.48 ~0.48!
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radius of gyration depends on the chain length (Lc). This
question is now addressed to our interacting chains driven by
a field. We observe a power-law dependence of the radius of
gyration on the chain length,Rg;Lg, over various ranges of
field, and chain and barrier concentrations. Such power-law
dependence is observed at low bias (B<0.2) and concentra-
tions p<0.2 at various temperatures 0.1,T,100.0 ~Table

I!. The power-law exponentg;0.7020.74 shows little
variation with temperature. At higher polymer concentration
(p50.3), a power-law dependence is observed only at high
temperature (T>10.0), with g;0.7120.73 @Fig. 3~a!#. No
power-law dependence is observed at high temperature and
higher biases (B>0.5). At very low temperature (T50.1),
high concentration (p50.3), and high bias (B>0.5), we

FIG. 2. Radius of gyration versus time for
driven chains of lengthLc540 and temperature
T51.0.

FIG. 3. Log-log plot of radius of gyration ver-
sus chain length for driven chains at concentra-
tion p50.3 and~a! T5100.0 and~b! T50.1.
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seem to observe a power-law dependence on chain length
with a much smaller exponent,g;0.2020.31, which sug-
gests the possibility of a collapsed state@Fig. 3~b!#.

B. Response to bias

The response of the chain radius to the bias depends con-
siderably on polymer concentration, chain length, and tem-
perature. At high temperature (T5100.0), we find that the
rate of increase ofRg is large at low bias followed by a
decreasing rate leading to saturation ofRg for longer chains
(Lc>40) — a nonlinear response@Fig. 4~a!#. This qualitative
response behavior remains nearly the same even on lowering
the temperature toT51.0, with no response to the field at
B>0.2 for long chains; i.e., the radius of theLc560 chains
rapidly approaches an asymptotic limit at a rather low value
of bias,B;0.2. The short chains (Lc520) show nearly a
linear response. Thus, we see that the chains stretch out with
bias until a characteristic value, beyond which the radius
saturates. This characteristic bias, as we expect, depends on
the chain length and concentration, since the probability of
intercepting the surrounding chains increases with the chain
length and concentration. Unfortunately, we are unable to
quantify this dependence due to limitations in our data

points. On further reducing the temperature toT50.1 @Fig.
4~b!#, we observe that the response of the radius becomes
negative beyond a certain bias (B>0.2) at high concentra-
tion (p50.3) especially for the longer chain (Lc>40). Com-
petition between bias and chain obstacles leads to metastable
~pinned! conformations which may be reflected by the non-
monotonic dependence.

IV. POROUS MEDIUM

Inclusion of quenched barriers (pb.0) in the above sys-
tem has severe effects on the relaxation of the chains and
their equilibrium values at low temperature. We observe no
effect of the bias on the relaxation of the radius of gyration
as the chains are unable to move against barriers, even at
fairly low barrier concentrations (pb50.2) at low tempera-
tures. At high temperatures (T5100.0), the relaxation time
increases on increasing the barrier concentration. For ex-
ample, for Lc540 chains atT5100.0 and biasB50.5,
Rg→(Rg)` at ;7.53103 MCS at pb50.0, Rg→(Rg)` at
;1.53104 MCS at pb50.2, andRg→(Rg)` at .2.03104

MCS at pb50.4 ~Fig. 5!. The relaxation time additionally
depends on the strength of the bias. At low barrier concen-
trations (pb<0.2), the relaxation time decreases on increas-
ing the bias. This trend continues even to high barrier con-

FIG. 4. Radius of gyration versus bias for
chains of various lengths and concentrations, at
temperature~a! T5100.0 and~b! T50.1.
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centration (pb50.4), but the relaxation is affected nonmono-
tonically; it decreases on increasingB up to a certain value,
beyond which it increases due to competition between the
barriers and the bias as the chains stretch out~i.e., at
pb50.4,B>0.5).

A. Scaling ofRg with chain length

For chains (p50.3) in the presence of barriers at low bias
(B50.2), a power-law dependence on the chain length is
still observed but with generally reduced exponents~Table

FIG. 5. Radius of gyration versus time for
driven chains of lengthLc540 in porous media.

FIG. 6. Radius of gyration versus chain length
for driven chains at temperature~a! T5100.0 and
~b! T50.1 in porous media.
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I!. At high temperature (T>10.0), the exponent
g;0.6020.70 is less sensitive to barrier concentrations
pb<0.3 @Fig. 6~a!#. But at pb50.4, g has dropped to
;0.6020.62. As in the annealed case, deviations from the
power-law dependence are observed at higher bias
(B>0.5) and high temperature. The stretching of the chains
by the field saturates at higher values ofB as field and bar-
riers compete. At lower temperature (T<1.0), g is not sen-
sitive to barrier concentrations overpb50.120.4, but its
magnitude has reduced considerably, i.e.,g;0.3920.47, in
comparison to their values at higher temperatures@Fig. 6~b!#.
At higher bias (B>0.5), the power-law dependence on chain
length persists with the exponentg;0.3020.48 ~Table I!
which seems to increase somewhat on increasing the barrier
concentration and decreasing the temperature or bias. Note
that in the absence of barriers~i.e., in a homogeneous sys-
tem!, the chains are collapsed while the presence of barriers
seems to trap the chains in more extended configurations.
Such pinning of chains due to the competition between the
field and barriers becomes more pronounced on increasing
the barrier concentration.

To check for finite size effects, some simulations were run
on a larger-sized lattice (L550). In particular, we checked

the power-law dependence at low temperature (T<1.0) and
high bias (B>0.5). The power laws were recovered with
estimates of the exponents~shown in parentheses! in Table I.
We note some small differences with the corresponding val-
ues of exponents on the smaller lattice (Lc540), but these
are not severe.

B. Response to bias

When barriers are introduced to the system of chains, the
response ofRg to the bias is again dependent on the chain
length and temperature. For example, for short chains
(Lc520) at concentrationp50.3, we find that the response
of Rg to B decreases systematically on increasing the barrier
concentration over the rangepb50.020.4 @Fig. 7~a!#. For
longer chains (Lc560), however, the response of the radius
to B is nonlinear and more sensitive to temperature@Fig.
7~b!#. At low temperature (T51.0), the presence of barriers
(0,pb<0.3) reduces the growth rate ofRg substantially in
comparison to those without the barriers at small values of
B, but sustains a positive growth with increasing field. At
high temperature (T5100.0), however, a nonmonotonic re-
sponse seems to prevail at higher values of barrier concen-

FIG. 7. Radius of gyration versus bias for
chains of length~a! Lc520 and ~b! Lc560 in
porous media.
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tration (pb>0.3). AtT50.1, the bias has very little effect on
the chain radius when barriers are present even at low con-
centrations. Thus, the response ofRg to bias is nonlinear and
depends on the range ofpb , T, andB.

C. Effect of barrier concentration

A radius of gyration versus barrier concentration plot for
Lc560 chains is presented in Fig. 8. We note a significant
difference in the nature of variation ofRg with pb at high
(T5100.0) and low (T<1.0) temperatures. At high tem-
perature,Rg remains constant at low barrier concentrations
~i.e., pb50.020.3 forB<0.5) and drops drastically at high
barrier concentrations. We note that there is a characteristic
value of barrier concentration (pbc), above whichRg is
strongly affected by the barriers. We find thatpbc decreases
on increasing the magnitude of the bias. For example,Rg
drops significantly atpb>0.2 for B50.8, and therefore,
pbc;0.2; pbc;0.3 at B50.5. At low temperatures
(T<1.0), since the chains are relatively less mobile, their
size is restricted by the pore size, i.e., the barriers at the pore
boundaries. As the barrier concentration increases, the pore
size decreases; therefore the chains become more confined to
the pores — this is consistent with the theoretical predictions
@14–18# as well as our simulations on an athermal system of
chains@21#. Thus, we see that temperature, bias, and barriers
are important in governing the size of the chains.

V. SUMMARY AND CONCLUSION

We have used a Monte Carlo simulation to study the con-
formational properties of driven polymer chains in homoge-
neous and porous media. Interesting behaviors such as a non-
linear response and nonmonotonic dependence appear due to
the competition and interplay between the external flow field,
barriers, and temperature as the degree of chain entangle-
ments is varied by varying the concentration of chains and
their length.

When an external bias is applied, the chains tend to
stretch in the direction of the bias. Under favorable condi-
tions of low chain and barrier concentrations, short chain

lengths, and high temperatures, the chain radius increases
almost linearly with bias, leading to rodlike conformations.
However, as polymer and barrier concentrations or chain
lengths~mass! increase, a nonlinear response to the bias sets
in with smaller responses at higher bias. This is due to the
enhanced probability of intercepting the surrounding chains
obstacles as the length of chains, their concentration, and the
external bias increase.

We note a power-law dependence of the radius of gyra-
tion on the chain length over limited ranges of the param-
eters,Rg;Lc

g . The exponentg at high temperature ranges
from ;0.7020.74 for chains at low chain concentrations
(p<0.2) and low external bias (B<0.5) in absence of bar-
riers (pb50.0), and decreases with increasing barrier con-
centration, to;0.6020.70. At higher chain concentrations
and higher bias (B>0.5) but low temperature (T<1.0), the
radius also shows a power-law dependence on chain length.
However, there is a sharp drop in the magnitude of the ex-
ponentg: In a homogeneous-annealed system, the exponent
is much smaller,g;0.2020.31, a sign of collapsed confor-
mation, while in quenched porous medium,g;0.3020.48
for pb<0.3. Thus, at low temperature, some of the chain
conformations seem to get pinned by the quenched impuri-
ties. Rg decays on increasingpb at low T where barriers
become more effective in controlling the size of the chains.
At high temperatures, chain nodes attempt to move more
frequently; as a result the chains are able to get out of traps
and explore a larger conformational phase space. The size of
the chains remains unaffected by barriers at lowpb for
pb<pbc . At p>pbc , Rg decays dramatically on increasing
pb , perhaps to collapse.pbc depends onB; the higher the
field, the lower is the value ofpbc and larger is the rate of
decay ofRg .
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