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PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Discrete-to-continuum simulation approach to polymer chain systems:
Subdiffusion, segregation, and chain folding

Grace M. Fob and R. B. Pandéy
1Supercomputing and Visualization Unit, Computer Center, National University of Singapore, 119260 Singapore
°Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046
(Received 17 December 1997

A discrete-to-continuum approach is introduced to study the static and dynamic properties of polymer chain
systems with a bead-spring chain model in two dimensions. A finitely extensible nonlinear elastic potential is
used for the bond between the consecutive beads with the Lennard{ldhgmtential with smaller R,
=264=0.95) and largerR.=2.50=2.1) values of the upper cutoff for the nonbonding interaction among
the neighboring beads. We find that chains segregate at tempefatur® with R,=2.1 and remain deseg-
regated withR.=0.95. At low temperatureT(=0.2), chains become folded, in a ribbonlike conformation,
unlike random and self-avoiding walk conformationsTat 1.0. The power-law dependence of the rms dis-
placements of the center of mad®.(,) of the chains and their center nodR.f) with time are nonuniversal,
with the range of exponents,; =0.45-0.25 andv,=0.30-0.10, respectively. Both radius of gyratioR)
and average bond lengtilf) decrease on increasing the range of interactiBp),( consistent with the
extended state in good solvent to collapsed state in poor solvent description of the polymer chains. Analysis of
the radial distribution function supports these observatif®$063-651X%98)11205-9

PACS numbe(s): 36.20.Ey, 02.70.Lq, 02.70.Ns, 83.10.Nn

[. INTRODUCTION with relative ease. It is therefore possible to study the long
time behavior with the help of appropriate dynamics. One
Development of molecular simulations using Monte Carloshould, however, be careful in implementing different local
and molecular dynamics methods, and their applicatitrs ~dynamics so as not to eliminate the desired physical proper-
6] to a variety of complex systems, have become a subject dfes arising from a short time local dynamics and introduce
considerable interest in teaching and research. In particula@rtificial effects. For example, if the “slithering-snakep-
computer simulation modeling has become an important todtion” dynamics is used in conjunction with kink jump and
to study the statics and dynamics of polymer chains in recerfirank shaft, then the reptation dynamics dominates over the
years[5,6]. One of the major problems in such simulations isshort_tlme Rouse pehawor. Off—Iatng:e S|m.ulat|ons seem ap-
the long relaxation time to reach steady-state and equilibriunrf_rOprIate for shqrt time local properties while f[he accelerateq
configurations particularly for chains in melt, complex mix- discrete simulation approaches seem to provide overall equi-

tures, and gel matrix. For example, the motion of a monomelrjb”um properties. Since the discrete lattice simulations are

o L ... _generally more efficient for a long tim@quilibrium) scale
E)'L?S:)r (I)efwx?sCROZaESt(Va \?vri?r;nc?i?feprce)lr)? pegvf:rallgv\;ne)r(:)eol:]sesg '(b'tswhile the continuum(off-lattice) simulations are relatively

. : . . slow but desirable to take into account the physics from the
=1, 1/2, 1/4,1/2, 1) in various short to long time regimes

) g i >short time regime, we attempt to combine these methods in
[7,8]. Note that even the short time regime associated withyqer to capture the appropriate effects.

Rouse-to-reptation crossover in polymer dynamics takes
relatively large computational time stef@-15|. It is rather

difficult to cover all time regimes due to limitations on the Il. METHOD AND MODEL

computational resources. Extensive simulati¢hs,9 are One of the common procedures in polymer simulations
performed to examine the onset of reptation from short timenvolves equilibrating the sample of the polymer chain and
Rouse dynamic§l6] of a polymer chain in melt. solvent and studying the statics and dynamics evolving from

There are two main simulation approach®$,9 to study  their statistical ensembles in which the constitugntsaing

the statics and dynamics of polymer chains, i.e., lattice andre in constant movement exploring their conformational
off-lattice simulations to address appropriate questions. Offphase space. How soon the system approaches its steady-
lattice simulations in a coarse-grained chain model deal witlstate or equilibrium configurations depends on how fast the
the motion of each monomer by a small amount. As a resultgonstituents are exploring their phase space. In complex sys-
it is possible to take into account short time dynamics withtems like melts, movement of chain segments is very often
good accuracy. It takes a considerably large number of timéo slow to reach equilibrium configurations in a desirable
steps to study the long time behavior in a complex polymetime. One then implements various dynamics to accelerate
melt. Using the discrete lattice approach, on the other handhe process. The evolution of the system in statistical phase
one may implement various dynamics, i.e., kink-jump,space could be thought of as a stirring process in which one
crank-shaft, and their combinations at various length scalesnay consider appropriate stirring pathways to bring such
slithering-snake“‘reptation”) dynamics[5,6,9,17—-20 etc., complex system close to a desirable state in phase space. In

1063-651X/98/5(5)/58029)/$15.00 57 5802 © 1998 The American Physical Society
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simulations, stirring of solution could be achieved in two 20
steps: large scale stirrin@global mixing—equilibration by
lattice simulation followed by small scale stirrindocal sl —— FENE

mixing—equilibration by off-lattice simulations. oy

To illustrate this method, we consider a two-dimensional
system of sizdL XL as an example. In order to implement

0.5

FENE, LJ

: )

the lattice simulation we treat this space as a square lattic
with unit lattice constant. Polymer chains, each of lerigth
consisting ofL.+1 nodes connected by unit bond length
compatible with the lattice structure, are placed regularly on 0o \ [
the lattice. Placing chains regularly in the beginning does no | -
appear efficient at first glance, since we eventually like to -05 | 1 7
have a randomly mixed configuration. However, we would Vs
be able to fill the lattice with arbitrary polymer concentra- 10} N
tions (up to nearlyp=1), which could otherwise be very 00 33 5 s 20 5
time consuming in a random sequential process of introduc Distance
ing the chains in the system. Further in such a random se-
guential process of preparing the samples, the configurations FIG. 1. Plot of FENE potential(dashed ling (for K
of chains placed later are highly restrict@dlie to the pres- =10.0, |,,i=0.4, | 10=1.0, [(=0.7) and LJ potential {=1.00
ence of surrounding chaipswhich may result in biased- =0.85) vs distance.
undesirable metastable states. A homogeneous distribution of
chains may reduce the local inhomogeneity in the initial o\? [g)\®
chain distribution. There could be other variant methods to Up=4e IT) —<:)
introduce the chains for our system. After placing the chains, . !
we reptate the chains for sufficiently I(_)ng time stgps to MiXywhere we select the parameters 1.0, o=0.85 in arbitrary
the system well so as to reduce or eliminate their memoryyit, Spatial quantities such as rms displacements and radius
One may incorporate other dynamics such as kink jump angs gyration are measured in arbitrary units. A typical varia-
crank shaft, and may even involve temperature with approgion of these potentials is shown in Fig. 1.
priate interaction, however, we will restrict ourselves here to Using the Metropolis Monte Carlo algorithifii—4] we
reptation dynamics alone in preparing the sample. attempt to move each bead by a small amogiat
Reptating the chains accelerates the equilibration Process. (sx sy)1: find the energy ;) of the bead in its original
We would like to mention that reptation alone could lead toposition and in the new positiorJy), evaluate the differ-
certain metastabilities as pointed out by several researchegs, e su = U,—Uj,, and accept the move with a Boltzmann
[19,20. However, the probability of such metastability is yistribution expt 6U/kgT). Attempting to move each bead
relatively low. Moreover, in our method, we implement other 5,4 is defined as one Monte Carlo StACS). We move
proceduregsee belowthat may help bring the chains out of g50h node for a sufficiently long time to equilibrate the sys-
such metastablity. , tem before beginning to take the measurements. The number
Now, we switch off the lattice structure and turn on the ¢ ime steps needed to achieve equilibration is now reduced
off-lattice simulation. We consider a coarse-grained beadgqngigerably with reptation of chains in discrete lattice space
spring mode[21] for the polymer chain in which a finitely a1 without it. We would like to point out that such an
extensible nonlinear elasti€ENE) potential Ur) describes  4thermal reptatiorpreinitial stirring corresponds to a high
the bonded interaction between the consecutive beads of thgmnerature equilibration. Switching to an off-lattice thermal
chain, i.e., simulation at a temperaturel) then implies a quenching,
) 5 the depth(drop in temperatujeof which depends off. In
Up=—(k/2RIn{1—[(I-10)/R]7, (D) our simulation(see below, we have tried to approach an
equilibrium—steady state where the temporal variation of
wherel is the bond lengthR=1,—1o. lg, Imaw @ndlnin  bond length and radius of gyration approaches their stable
are the equilibrium value of the effective bond length, and itsvalues. We have not identified the theta temperature in this
maximum and minimum values, respectively, such that  study although we have studied some effect of temperature.
<I<lpax and lpin=2lp—lna. We use ln=1, Inn  In the following we present some of our data for the confor-
=0.4, andl,=0.7. The associated spring constdntis  mation and dynamics of chains.
fixed atk=10. Next, we scale the bond lengthfrom its
lattice value of one to a desirable val(oser to equilibrium . RESULTS
bond length in off-lattice model, i.e(|4)~0.7. The lattice is
also scaled simultaneously so that the chains are homoge- Most simulations are performed on a 20000 space, al-
neously distributed throughout the lattice. In addition wethough different sample sizes were also used to check for
consider a Lennard-JonékJ) nonbonding interactiofl,2]  severe finite size effects. Lowl & 0.20) and high T=1.0)
between the neighboring beads except consecutive bondéemperaturegin unit of e/kg with the Boltzmann constant
beads which are held together by the FENE potential. The LBg) are considered to see the contrast between the evolution
interaction between two nodésand j separated by;; is  of stable conformations and dynamics, with two upper cut-
described by offs (R.=0.95, 2.1) of the nonbonding potentials on chains
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w " B e Y, M”%;n\p o~ j
é—" & o " %@@ i e M ) 4{2 ?}s

) LS U 2% 28 ()
FIG. 3. Snapshots of the chainstat 22° steps forL .= 80 (a) FIG. 4. Snapshots of the chains with the upper cutef
andL.=40 (b) at p=0.4, T=0.2, with upper cutofR.=2.1. =0.95 forL,=80, p=0.4 atT=1.0(a) and 0.2(b).

of lengthL.=20, 40, 60, and 80 at polymer concentrations2(d)] the segregations of chains into clusters of chain aggre-
p=0.05, 0.2, and 0.4. We have used 8-10 independer#ates becomes pronounced, which finally develops into
samplegdifferent initial configurationsfor each set of data. larger aggregates of chains at 1 048 576 dfeig. 2(e)].
Note that the growth of the clustefaggregateésbecomes
very slow now, as the mobility of chains becomes very low
(see below Chains are bounded together by the nonbonding
Distribution of polymer chains and their conformations at(LJ) interaction, which is dominant as the chain nodes ap-
various stages of their evolution are studied by visual inspecproach closer within the attractive cutoff randge.&2.1) at
tion of the snapshots. Figure 2 shows a typical evolution athis temperature {=1.0). Such a segregation of chains in
p=0.4 andT=1.0 withR,=2.1. From Fig. 2a), we see that two dimensions has been studied bef)].
the chains are uniformly distributed throughout the system A similar simulation at a low temperatur@ € 0.2) shows
and their conformations appear to be random with exclude@ spectacular evolution of the chains’ distribution and their
volume constraint$self-avoiding walk(SAW)]. The lattice  conformations shown in Fig. 3. Note the contrast and differ-
constraints are visible with a constant discrete bond lengtience in conformation of chains at low temperat(fa. 3
and their orientations constrained to the square lattice. Witirom that at temperatur€=1.0[Fig. 2(e)] at the same time
a small local mixing(switching on the off-lattice simulatign  starting from the same initial configuration in a discrete stir-
[Fig. 2(b)], the lattice discreteness of the chains’ conforma-ring state[Fig. 2(a)]. Chains are folded in a rather uniform
tions reduces considerably. After 1024 M(Big. 2(c)],  fashion unless hindered by clustering. We are not aware of
chains begin to segregate and form aggregates as the inteauch conformational change, i.e., from random conforma-
actions begin to affect their mobility. At 65 536 stfpig.  tions atT=1.0 to folded coil(ribbonlike) conformations in

A. Segregation, desegregation, and chain folding
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o—©OT=1.0 (cm)
3—=a T=0.2 (cm)
®--0T=1.0(cm)
B --EmT=0.2 (cm)
A—AT=1.0 {cn)
V—~ T=0.2 {cn)
A--AT=1.0{(cn)
¥--¥T=0.2 {cn)

Rms Displacement

10° 10° 10* 10° 10° 10
Time (MCS)

FIG. 5. RMS displacement for the center of mass of the ch@ma) and their center node&n) vs time on a log-log scale fdr,
=40 andp=0.4, withR.,=2.1 (open and 0.95(filled).

two dimension at low temperature§ €£0.2). We further 1 D e
note that such a spectacular conformational phase transition (X3(t))= > > xﬁm,
persists even with smaller chain siZeompare Figs. @) MeNsm=1 k=1
and 3b)]. -
As mentioned above, we have carried out simulations also 2 1 &<
with a relatively small value of the upper interaction cutoff, ()= nCnsz:l gl Yiem: “)

i.e., R.=2Y¢=0.95 of the LJ interaction. Such a short-

range interaction brings our model closer to chains of beadghere x(t) and y(t) are thex and y components of the
with only hard-core(excluded volume spheranteraction.  displacement of chains at tinien, is the number of chains,
The above characteristic conformational phase transitioRndng is the number of samples. Attempts are made to find
from random conformation to folded-coil conformation on the leading power-|aw dependence of these disp|acement3

lowering the temperature frofi=1.0 toT=0.2 during seg-  with time described by exponents and v, i.e.,
regation is also observed hdsee Fig. 4. However, with the

lower range of interaction at the low temperature, the size of Rem~t"1, (5
the coil, i.e., the amplitude of folding, has reduced consider-
ably. The ramification in the random conformations is more Ren~t"2. (6)

pronounced at a smaller scale.

Unlike the chains with relatively longer range interactions A typical variation of rms displacements with time is pre-
[i.e., withR,=2.1, Fig. Ze)], we do not observe segregation sented in Fig. 5. The visual inspection of these plots suggests
of chains with shorter range of interactipR,=0.95, Fig.  a relatively good power-law dependence in the long time
4(a)]. Segregation of chains and formation of stable aggreregime. Chains have traveled a distance of the order of their
gates[Fig. 2e)] thus depends on two factorf) mobility  radius of gyration and larger. The rms displacement for the
(which is higher at higher temperatyy@nd (i) the interac-  center of masgc.m) of the chains is normalized hly, (the
tions (the longer the range of attractive LJ interaction and itssize of the chaiy therefore it appears smaller than corre-
magnitude, the more stable is the aggrepgaBespite the sponding values for the center nogm). In fact, it is larger.
mobility at T=1.0, the range of interactioR,=0.95 is too  The slope of the least square fit of these data points may
small to form an aggregate within our observation time.  provide an estimate of the exponents and v,. However,

one may resort to a better resolution by evaluating the slopes
B. RMS displacements at regular intervals of time. In other words, we may evaluate
During the structural evolution we calculate the rms dis'tmhErz)lotﬁcs)u()fhguietthzf %?gf‘vea(iu:g/esg:t?hgog?g d2'F:i),, uor:a 6
placement of the center nod&¢,) and the center of mass 9 - "9
. o . shows a typical plot of these power-law exponents versus
(R¢m) of the chain periodically. The average rms displace-. 7! ) n : .
. = ' time forL.=40 chains ap=0.40. Obviously, the magnitude
ment per chain at time is defined as . : ;
of the exponents is fluctuating and the fluctuations could be
Rimd ) = V()Y + (1)), 3) improved by increasing the_ numbt_er of statistics as we have
observed. Nevertheless, it is possible to analyze the dynam-
ics of polymer chains and their nodes, and find the trend as
where the system evolves. From these déti. 6), we see a dis-
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10° 10' 10° 10° 10* 10° 10° Time (MCS)
(a) Time (MCS)
FIG. 7. Typical evolution of the radius of gyratioRf) with
0.50 : ' ‘ time for L =40, T=1.0 with R;=2.1 (open and 0.95(filled).
G—ov,, T=1.0
0.45 8V, T=0.2 ® -
e -ov,T-1.0 /
0.40 1 temperature in controlling the power-law behavior of the
center node of the chains is also quite cleay=0.3 at
0.35 1 T=1.0 drops down tor,=0.10 atT=0.2 [see Fig. &)].
» However, the effect of the range of interaction on the power-
g 0301 1 law behavior of the center nodee., R.,~t"2) is not as clear
g 025 | | again due to lack of sufficient data.
e In the following we describe some other estimates of the
0.20 L 1 exponents ¢, andv,) as examples to gain insight into the
range of error bars and effects of chain length and polymer
0.15 1 concentration. With the upper cutofR.=2.1, in the short
time regime, we findv;=0.45+0.07 andv,=0.30+0.06 at
010 r I T=1.0 for L,=80 chains atp=0.2. For L,=40, atT
0.05 ‘ ‘ ‘ . ‘ ( =0.2, v,=0.4 (short timg to v;=1/4 (long time and v,

FIG. 6. Variation of the instantaneous exponent for the rms
displacement of the center of ma@ and center nodéb) for L
=40,p=0.4 with R;=2.1 (open and 0.95(filled).

10'

Time (MCS)

=1/4tov,=1/10. ForL.=80, T=0.2, v;=0.4(short timg

to 0.3(long time, andv,=0.4(short timg to 0.1 (long time

with a continuous decay. The values of these exponents
(vq1,v,) in the short time regime are given only to see the

10

---- T=1.0, p=0.05
- T=0.2, p=0.05
---- T=1.0,p=0.05

tinct difference in the magnitude of;, the power-law expo-
nent for the center of mass of the chains, at low and high
temperatures 1=0.20, 1.0) in long time regime. For ex-
ample, with the range of interactidR.=2.1, the magnitude

of v, drops from about 0.4 aT=1.0 to about 0.30 aT
=0.2. The difference in the magnitude of increases ¥,
=0.45 atT=1.0 to »,=0.25 atT=0.2) with the smaller
range of interactionR;=0.95. Although the data points
seem to have large fluctuations at this scale, the difference il
magnitude ofy, is larger than the range of fluctuations, a
measure of the error bar.

Thus, we see that the temperature affects the power-lav
behavior of the center of mass of the chains in an importan
fashion leading to a nonuniversal power lgaxponent The
range of interaction also seems to affect the magnitude of tht
power-law exponents. However, the difference in magnitude

Radius of Gyration

1

............ T=0.2, p=0.05
——- T=1.0, p=0.20
— T=0.2, p=0.20
——- T=1.0, p=0.20
—— T=0.2, p=0.20 7

10

Le

100

of v, due to range of interaction is small and seems less FIG. 8. Variation ofRy vs L. on a log-log scale for chains at
reliable due to lack of adequate quality data. The effect op=0.05, 0.2,T=0.2, 1.0 withR,=2.1 (open and 0.95(filled).
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TABLE I. Exponenty in Ry~L[. Errors on the order-0.04. 700.0 ‘ ‘
O—0 p=0.05, t=1024
Polymer concentration Temperature Y 600.0 - : Dg:g:gg: ::;giggs
p T R=21 R,=0.95 * — p-0.20, t=1024
= — m p=0.20, t=16384
500.0 A — 4 p=0.20, t=1048576
8'25 ]]:8 gjg 8;; c O—0p=0.40, t=1024
. . . . S O—1p=0.40, t=16384
0.4 1.0 0.70 3 4000 | £—1,p=0.40, 1=1048576
0.05 0.2 0.64 0.99 2
0.2 0.2 0.62 0.95 g 300.0 -
0.4 0.2 g
200.0
trend, and not to confuse with the chain dynamics in the 1000 |
asymptotic power-law regime since the system is not in equi
librium in short time regimes. Small values of the exponent R
in long time, however, implies that the chains and nodes ar %% . . . . ; 300
relatively less mobile as the segregation leads to stable ¢ r

metastable aggregates of clustersTat1.0. This is consis-
tent with our visual analysis of the evolution of chains con- FIG. 10. Variation of the radial distribution function with the

formation and their aggregates in the preceding section. distance at different time steps fog=80 atp=0.05, 0.2, 0.4 with
R.=2.1 andT=0.2.

C. Radius of gyration and bond length p=0.05 and 0.40. LargB; means long attractive interaction

A typical evolution of the radius of gyratiorR) in time between the chain nodes, which may correspond to a rela-
is shown in Fig. 7. Note thd®y has approached to a constant tively poor quality of solvent for the chain environment. This
(saturatedlvalue in the long time regime. This is an indica- is consistent with the notion that the size of the chains de-
tion that our system has reached a steady-state—equilibriugreasegcollapses in poor solvent from their extended state
as far as the conformation of chains is concerned. We sei@ a good solvent.
that the equilibrium value oR, depends on the value of We evaluate the scaling exponeni) (for the variation of
upper interaction cutoffR;). At T=1.0 with R;=2.1,R; R, with the chain length (),
seems to increase on increasipgfrom 0.05 to 0.4. The
radius of gyration appears to be less sensitive to polymer Ry~L{. (7)
concentration with the smaller interaction cutoR & 0.95);
however, our data show a decreasing trendRgfwith in- ~ Figure 8 shows the variation diy with L. on a log-log
creasingp. Thus, the polymer concentration affects the mag-scale. The slopes of the linear fit provide an estimate of the
nitude of Ry differently with the smaller and larger interac- exponenty (see Table)l At high temperatureT=1.0), we
tion cutoffs. Further, we find that increasing the range offind y=1/2, i.e., a Gaussian conformation with the interac-
interactionR; from 0.95 to 2.1 reduces the magnitudeRyf  tion rangeR.=2.1. Chains seem to stretch a little with
considerably, i.e., fronR;=3.8-4.2 to R;=2.50-2.75 at =0.63 at low temperatureT(=0.2) withR.=2.1 (see Table
I) but still the chains conform to random configurations.
With the smaller interaction cutoffR.=0.95), we findy
=0.71(closer to SAW estimate 3)4t T=1.0. However, at
low temperature T=0.2), y=1, i.e., chains are linearly ex-
tended(a rodlike conformation on a large scaleith the
smaller interaction cutoff. These quantitative measurements
of the size of the chains are consistent with our visual in-
spections of the snapshots.

A typical variation of the average bond length with time is
presented in Fig. 9. We see that it takes longer for bonds to
relax with larger interaction cutoffR.=2.1). The equilib-
rium bond length|) depends on the range of interactidh,

] decreases from about 0.66 with=0.95 to less than 0.60 at

070 g

0.65

Bond length

0.60

:::S:g:ig p=0.4. Further, we note that the lower the temperature, the

smaller the bond length.

D. Radial distribution

0.55
10°

2 4

10° 10 10 10
Time (MCS) The radial distribution functiorp(r) is defined as the
number of monomers at a distance dr from the center of
FIG. 9. Bond length vs time for chains of length=40 at mass of the polymer chains. We evalupafe) in a relatively

differentp and T=1.0, withR,=0.95 and 2.1. large range 1) for all parameters we have discussed above.
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FIG. 11. Radial distribution function vs distance at
=0.05, 0.2, 0.4 fot..=80 atT=0.2 withR,=2.1(open and 0.95
(filled).

FIG. 12. Radial distribution function vs distanceTat 0.2 and
1.0 forL.=80 atp=0.4 with R.=2.1 (open and 0.95(filled).

A typical evolution ofp(r) is shown in Fig. 10. We see that (ime regime; the amplitude of folding depends on the range
the peak of the distribution increases and the width reducegs interaction. i.e. larger with a larger interaction cutoff.

in time as the chains segregate into larger aggregates. During the conformational evolution of chains and their

The equmbr!um d|§tr|but|on funcuo(u.g., the distribution segregation or phase separation process, we evaluate the
at the end of simulation averaged over independent) fians :
power-law exponentsi;,v,) for the rms displacements of

p=0.05, 0.20, 0.40 aT=0.2 is presented in Fig. 11. We : . .
see that the width of the distribution decreases on increasing_ﬂe center of maVss and t?ew center node, respectively, with
the polymer concentrations, i.e., the chains become closer €, "e"R_C-m-Nt tRer~1"2. We find that these expon_ents

form more compact aggregates at highefrhe width of the are nonuniversal as they depend on temperature, ue€.,

distribution becomes wider with a relatively long tail with =0-40 (T=1.0), 0.30 I'=0.2) with R.=2.1, and »,
the lower range of interactiorR,=0.95). In order to see the =045 (T=1.0), 0.25 T=0.2) withR.=0.95 forL.=40
effect of temperature, we collected the data at low and higt¢hains; these estimates are consistent with other chain
temperatures av=0.4 in Fig. 12. We note that the mono- lengths(i.e.,L.=80). Thus, the rms displacement of the cen-
mers are relatively more dispersed at higher temperaturter of mass of the chains is subdiffusive at low temperature.
(longer tails in distributioh The exponent #,) for the center node of the chains also
depends on temperature, i.ey,=0.30 (T=1.0), 0.10
(T=0.2) and is nonuniversal. These power-law exponents
IV. SUMMARY AND CONCLUSION seem to depend on the range of interaction as well, however,

. . . _ our data is not good enough at present to confirm it conclu-
A discrete-to-continuum hybrid method is presented, us- g g P

. s S ; ; sively. We would like to point out that such nonuniversal
ing the efficiency, simplicity, and importance of discrete and y P

. ; ; ) X . power-law dependence of the rms displacement of chains has
continuum simulations to incorporate the appropriate detallgeen also observed in different context such as chain in a
of small and large scales. In the lattice frame of the hos

space, we are able to place as many polymer chains as horous me_d|un[15,22._ . .

like, i.e., chains with arbitrarily high concentration, which is 1€ radius of gyrationRy) is generally smaller with the
not efficient and perhaps not feasible in a continuum bead®Nger range of interaction. The scaling exponer(R,
spring model in a random sequential fashion. Even with the~LZ) exhibits a Gaussian conformation wif.=2.1 and
“slithering snake” reptation algorithm alone we are able to €xtended(SAW) conformation withR;=0.95, a relatively
prepare an intermediate initial sample with a relatively goodgood solvent condition. A similar trend is also observed for
random distribution of chains with random SAW conforma-the average bond lengftlh), which is longer withR.=0.95
tions using a large-scale athermal stirring. At high temperathan that withR.=2.1, a relatively poor solvent condition.
ture (T=1.0), we observe segregation of chains and theiRadial distribution of monomer&eads$ is examined in de-
clustering with the cutofR.=2.1 of the LJ interaction while tail. The variation of the magnitude of the peak of the distri-
there is no segregation with the smaller interaction cutoffoution and its width with temperature and the upper interac-
(R,=0.95). This is consistent with the expectation that poly-tion cutoff is consistent with the above observation, i.e.,
mer chains do not mix as well in a relatively poor solventsegregation withR,=2.1, desegregation witlR.=0.95 at
(ascribed to dominant attractive interaction WwRh=2.1) as  high temperature {=1.0), change from a random confor-
in a relatively good solventR.=0.95). At low temperature mation to a chain folding, etc. We hope to develop and refine
(T=0.2), on the other hand, we observe a spectacular corthis approach further to address more complex issues in
formational change to a folded-coil conformation in the longpolymeric systems.
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