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Electrophoretic Deposition of Polymer Chains on an Adsorbing Surface insss2 1 1ddd Dimensions:
Conformational Anisotropy and Nonuniversal Coverage

Grace M. Foo1 and R. B. Pandey2
1Supercomputing and Visualization Unit, Computer Center, National University of Singapore, Singapore 119260
2Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046

(Received 18 November 1997)

Electrophoretic deposition of polymer chains flowing in as2 1 1d-dimensional system is studied
by computer simulations. Steady-state surface coveragesujd is found to decay with the chain’s
length, i.e.,uj , L2a

c with a nonuniversal exponenta . 0.0 0.9 depending on the magnitude of
driving field and temperature. Conformational crossover occurs for chains from a surface or wall to
an adjacent bulk region with different scaling exponents for their longitudinal and transverse spread.
[S0031-9007(98)05906-7]

PACS numbers: 61.41.+e, 68.35.Ct, 81.15.Pq

In an electrophoretic deposition, polymer chains are
driven by a fieldB, say, along anx direction, toward an
impenetrable two-dimensional adsorbing wall, i.e.,yz pla-
nar surface in ours2 1 1d-dimensional system. Questions
that we would like to address are as follows: Is there a
conformational crossover of the polymer chains from bulk
to surface and how does conformation at the surface de-
pend on the fieldsBd? Is there a power-law scaling for the
equilibrium surface coverage with the chain lengthsLcd?
In regard to the former, the transverse and longitudinal
conformational spreadings of directed polymer chains in a
gel matrix [1] are related to interfacial growth phenomena
[2–5]. About a decade ago, Kardar and Zhang [1] pre-
dicted that the transverse fluctuationsRyd of the polymer
chain scales with lengthsLcd of the polymer chain,

Ry , L
ny
c , (1)

with a superuniversal exponentny ­ 2y3 [6,7] in all
dimensionssd d. This scaling, for an electrophoretic depo-
sition model ins1 1 1d dimensions, has been very recently
revisited by computer simulations [8] in which it is pointed
out that the scaling exponent depends on the magnitude
of the driving field, nature of the barriers (impenetrable
adsorbing surface), and possibly on temperature. In our
computer simulation study ins2 1 1d dimensions, here we
observe a nonuniversal scaling of the conformational
spreading, different from that ins1 1 1d dimensions.

A second issue deals with the universal nature of the
power-law dependence of the equilibrium coverage of
surface by polymer and somewhat related to the jamming
coverage in a random sequential absorption (RSA). Con-
siderable interest has been devoted in recent years [9–19]
to understanding the basic laws for the growth of the cover-
age in RSA of particles and objects of polydisperse shapes
such as polymer chains. Very recently, a quality computer
simulation study of the jamming coveragesujd for the ran-
dom sequential adsorption of polymer chains on a two-
dimensional lattice [19] reveals a power-law scaling

uj , L2a
c , (2)

with a . 0.1. In our electrophoretic deposition of poly-
mer chains here, we evaluate the stead-state (or equilib-

rium) coveragesujd under the influence of a fieldsBd and
find that the coverage exponenta depends on the magni-
tude of the field and is nonuniversal.

Studies of the conformation of the polymer chains in
electrophoretic flow and growth of their density at the
impenetrable surface or wall have enormous applications,
i.e., in understanding and assessing the errors in DNA fin-
gerprinting in gel electrophoresis [20–27], coating under
pressure, designing composites, stability and interfacial
sliding of polymers, and friction in lubrications [28–32].
The adsorption processes have yet related applications
[33–38] in physical, chemical, and biological systems
such as binding of ligands on polymer chains, chemisorp-
tion, and reaction of molecular species including globular
protein on surfaces and interfaces. Thus, it is desirable to
study the conformational and interfacial growth phenom-
ena in model polymer systems and identify the unusual
properties as they change from bulk to surface.

We consider a discrete lattice of sizeLx 3 Ly 3

Lz with comparatively largeLx ; typically, Lx ­ 300,
Ly ­ Lz ­ 50 is used for most of our data, but different
lattice sizes are used to check for the severe finite
size effects. Polymer chains [each of lengthLc, for
Lc ­ 40, 80, 120, 160, and200, with sLc 1 1d nodes
connected by a constant bond of unit length] are released
at a constant rate from near the source end (i.e.,x ­ 1
to x ­ 0.2 3 300) of the sample and deposited on
an impenetrable wall (yz plane) at the opposite end
sx ­ Lxd via reptation dynamics. The concentration of
the chains in the lattice after a sufficiently long deposition
time is rather low, varying from1% for Lc ­ 40 chains
to 5% for Lc ­ 200 chains. In addition to excluded
volume, nearest-neighbor polymer-polymer repulsive
and polymer-wall attractive (adsorbing) interactions are
considered. The external fieldB is coupled with the
chain node via interaction energy2BDX, whereDX is
the displacement along thex direction. As before, the
Metropolis algorithm is used to reptate the chains. An
attempt to move the chainsNs­ Lx 3 Ly 3 Lzd times is
defined as unit Monte Carlo step (MCS).
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Profiles of polymer density and radius of gyrations are
studied in detail. The simulation is carried out for a suf-
ficiently long time (1000 MCS) to obtain stable profiles at
the wall and around the bulk. Even though the chains are in
constant motion driven by the field, their mobility becomes
highly restricted at or near the wall due to steric hindrances
as the polymer density increases. In a sufficiently long
deposition (observation) time, the polymer densities at the
wall sx ­ 300d and in the bulk (typically,x ­ 220 295)
reach their stable value; the density in the region,x , 220,
may not reach a stable value. While the polymer density
is evaluated at eachyz planesx ­ 1, 2, . . . , Lxd, the pro-
file of the radius of gyration is evaluated from the chains
whose center of mass is binned in each three consecutive
yz planes. Thus, the average radius of gyration of the chain
at the wall is evaluated from the chains with their center of
mass lying withinx ­ 297 300. We use ten independent
samples to evaluate the average quantities.

Figure 1 shows a snapshot of the polymer chains after
a sufficiently long time of deposition. Although it is
difficult to see each detail in three-dimensional snaps
as vividly as in two dimensions, a close examination
provides a rough idea of the conformation of the chains
and their distribution. We see that the chains conform
differently at the wall and in surrounding layers in the
bulk. Further, the polymer density has approached its
stable value at the wall and in the adjacent region of
the bulk. Since the chains are deposited on the wall,
the transversesyzd layers from the wall end begin to
reach their equilibrium density as expected. Note that
the whole deposition process is far from equilibrium,
but the evolution of polymer density at the wall and in
surrounding layers has reached steady state.

Figure 2 shows a typical density profile, i.e., the
variation of theyz planar polymer density withx for
different values of field. We find that the density at
the wall is very high at low values of fieldsB ­
0.5 and2.0d, in contrast to low value at high fieldsB ­
5.0, 10.0d. The wall absorbs the chains relatively easily
at low B since the interaction between the polymer
chains and the wall in attractive. At first glance, one
would expect that the high field value would enhance the
adsorption, in contrast to our observation. However, one
may reconcile with the facts by the following reasonings:
(i) the high magnitude of the field may reduce the
entropy substantially (by elongating the chains in a
brushlike configuration), and (ii) it may constrain the
movement on the wall (by enhancing the degree of
trapping in a relatively less mobile configuration, an
effective quenching due to competition between the field
and the wall barrier). AtB ­ 0.5, the high density at the
wall sx ­ 300d drops drastically in the neighboring layers
sX ­ 280 299d, followed by a linear density gradient in
the bulk—a specific gradient material in this parameter
space. On increasing the field toB ­ 1.0, onset of
oscillations in the density profile sets in and becomes
more prominent atB ­ 2.0 in nearly the same region

FIG. 1. Snapshot of chains on lattice, lengthLc ­ 160, under
field B ­ 2.0 at temperatureT ­ 1. Chains are color coded
(appearing as shades of gray) from a table of 20 colors
according to time of release. Generally, the lighter the color
(shade) the later the chain is released.

of growth near the wallsx ­ 150 300d. At the high
field sB ­ 5.0, 10.0d, on the other hand, the density on
the wall drops down drastically, and only half of the
oscillations in the density appears as one end of the
density profile is pinned at the wall to a low value; within
our simulation time we do see a signal of oscillation
with perhaps a longer period than that at the lower field.
These oscillations are the signature of layering formation
during the growth of polymeric deposition. Further, we
find that the oscillations (layering) vanish on increasing
the temperature (i.e.,T ­ 10).

Polymer density at the wall is defined as the surface
coveragesujd. A variation of coverage with the chain
length at T ­ 1.0 is presented in Fig. 3 for different
values of field. First, we find that the coverage decays
with the chain length with a power-law exponent,a

[Eq. (2)] at certain values of fieldsBd. We find a .
0.0, 0.8, 0.9 at B ­ 0.5, 2.0, and10.0, respectively. It
is important to point out that a power-law decay of
the jamming coverage is also observed in a random
sequential adsorption of chains in an athermal simulation
[19] but with the exponenta . 0.1. Since the chains are
relatively free to relax in our electrophoretic deposition,
the growth of the coverage should be different from that in
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FIG. 2. Density profile sLc ­ 160, T ­ 1, B ­ 0.5, 1.0, 2.0,
5.0, 10.0d.

RSA. Nevertheless, we see that the coverage decays with
the chain length with a power-law exponentsad similar
to that in RSA. Since the exponenta depends on the
magnitude of the field and possibly on temperature, the
scaling of coverage with the chain length is nonuniversal.

Next, let us now examine the conformation of the
polymer chains. We evaluate the radius of gyrationsRgd
of the chains alongx at the wall sx ­ 300d and in the
bulk sx ­ 220 295d and study its scaling with the chain
length, i.e.,

Rg , Ln
c . (3)

A typical variation of the radius of gyration with the chain
length is presented in Fig. 4 on a log-log scale. The
slope of the linear fit provides us with an estimate of the
exponentn. Deviations from a power-law scaling cannot

FIG. 3. Coverage versusLc; B ­ 0.5, 2.0, 10.0.

be ruled out in a few of the data sets, which may be due
to fluctuation in the data.

We have analyzed scaling of both longitudinalsRgxd
and transversesRgyzd components of the radius of gy-
ration. Estimates of these exponents are presented in
Table I. We see that at high temperaturesT ­ 5.0, 10.0d,
the conformation of the chains is relatively isotropic in the
bulk with the exponentnbulk . 0.6 at B ­ 0 2 2.0. At
the wall, on the other hand, it is highly anisotropic, with
the longitudinal exponentnx . 0.2 and the transverse ex-
ponent nyz . 0.65. Thus, at high temperature, chains
are compressed along the field direction on the wall. At
low temperatureT ­ 1.0, conformation of the chains are
still relatively isotropic in the bulk, particularly at low
Bs­ 0.5d. However, on increasing the field, they seem to
expand in an effective rodlike configuration (see Table I).
Conformation of the chains at the wall becomes a little
more relaxed in the sense that the chains are spread out a
little (nx . 0.3 at B ­ 0.5). At lower temperatureT ­
0.1, the chains in bulk are rodlike even at lowB ­ 0.5.
The chains at the wall are highly anisotropic withnx .
1.0, seemingly a conformational crossover with respect to
temperature (see Table I). Thus, we see a remarkable
conformational crossover from bulk to wall:sid at high
temperaturesT ­ 5.0, 10.0d, isotropic conformation in
bulk to longitudinally compressed, i.e., an anisotropic
conformation, at the wall.siid There is a conformational
crossover in the bulk from a self-avoiding walk (SAW) to
stretched-out (rodlike) conformation as a function of bi-
ased field. The crossover is sensitive to temperature, the
lower the temperature the lower the field needed to stretch
out the chains. These conformational crossover behaviors
in our s2 1 1d system here are quite different from those
in the s1 1 1d system [8].

In summary, the growth in polymer density profile ex-
hibits spatial oscillation near the wall at large driving field.

FIG. 4. Rg versusLc on a log-log scale for chains atT ­ 1.0,
showingx (open symbols) andyz (filled symbols) components.
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TABLE I. Estimates ofn, nx , nyz at wall and in the bulk.
The error barDn in evaluating the exponents varies.Dn ,
0.04 0.10 for the chains in the bulk. There are considerably
larger error bars (as large as,0.15 for the chains at the wall
due to poor statistics; many data points do not fit the power-law
dependence indicated by (–). The value of exponents slightly
larger than 1 are truncated to 1.

Temperature Field Bulk Wall
T B n nx nyz n nx nyz

10.0 0.5 0.56 0.56 0.56 0.57 0.22 0.61
10.0 2.0 0.54 0.58 0.51 0.64 0.19 0.68
10.0 10.0 0.84 1.00 0.40 0.62 0.19 0.69

5.0 0.5 0.55 0.56 0.55 0.57 0.22 0.61
5.0 2.0 0.58 0.66 0.53 0.54 0.23 0.58
5.0 10.0 1.00 1.00 0.29 – – –

1.0 0.5 0.65 0.81 0.50 0.56 0.30 0.59
1.0 2.0 1.00 1.00 0.28 0.91 – 0.99
1.0 10.0 0.97 0.98 0.72 – – –

0.5 0.5 0.91 1.00 0.28 0.67 – 0.70
0.5 2.0 0.94 0.95 0.51 083 0.48 0.85
0.5 10.0 1.00 1.00 0.73 – – –

0.1 0.5 1.00 1.00 0.76 0.62 0.99 0.62
0.1 2.0 0.98 0.98 0.62 – – –
0.1 10.0 1.00 1.00 0.59 – – –

The steady-state coverage of the wall depends on the driv-
ing field, temperature, and chain length. In certain regimes
of parameter space, we find that coverage decays with
the chain length with a nonuniversal power-law exponent
different from these found in random sequential adsorp-
tion of polymer chains on a surface. The conformation
of chains shows interesting anisotropic crossover behav-
iors from bulk (isotropic at highT and SAW-to-extended
conformation at lowT ) to surface (ansiotropic compressed
conformation with different scaling exponents for the lon-
gitudinal and transverse components ofRg).
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National University of Singapore.
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