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ABSTRACT

The usefulness of the concept of JEBAR, the joint effect of baroclinicity and relief, in large-scale ocean
dynamics is critically analyzed. The authors address two questions. Does the JEBAR term properly characterize
the joint impact of stratification and bottom topography on the ocean circulation? Do estimates of the JEBAR
term from observational data allow reliable diagnostic calculations?

The authors give a negative answer to the first question. The JEBAR term need not give a true measure of
the effect of bottom relief in a stratified ocean. A simple two-layer model provides examples. As to the second
question, it is demonstrated that the large-scale pattern of the transport streamfunction is captured by the smoothed
solution, especially with the Mellor et al. formulation of the JEBAR term. However, the calculated velocity field
is very noisy and the relative errors are large.

1. Introduction

Since its introduction by Sarkisyan and Ivanov (1971)
the concept of ‘‘JEBAR,’’ the joint effect of baroclinicity
and relief, has had a venerable history as an interpretive
tool in ocean circulation theoretical and diagnostic stud-
ies. An interesting recent diagnostic example is Great-
batch et al. (1991), who claim that the effect of JEBAR
on changes in ocean transport in the North Atlantic over
a recent 5-yr period far exceeded the influence of the
wind stress. Recent examples of the use of JEBAR in
the analysis of the ocean circulation include Krupitsky
and Cane (1997), as well as Slørdal and Weber (1996),
Myers et al. (1996), and Sakamoto and Yamagata (1996).
The purpose of this note is to point out that JEBAR need
not be a proper measure of the influence of topography
on large-scale oceanic flows. A related issue is the dif-
ficulty in estimating JEBAR reliably from available ob-
servations (e.g., Mellor et al. 1982).

* Lamont-Doherty Earth Observatory Contribution Number 5734.

Corresponding author address: Dr. Mark A. Cane, Lamont-Do-
herty Earth Observatory, Columbia University, P.O. Box 1000, Pal-
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JEBAR emerges from the derivation of the vertically
integrated vorticity equation. This derivation, which we
only sketch here, may be found in many places (e.g.,
Sarkisyan and Ivanov (1971); Mellor et al. 1982; Mertz
and Wright 1992). Using the smallness of the surface
displacements compared to the depth of the water col-
umn (alternately, the assumption of a rigid lid) to obtain
a transport streamfunction c and taking the curl of the
vertically integrated steady momentum equations after
dividing by the ocean depth H(x, y) yields

J(c, f /H) 5 curl(t /H) 1 JEBAR 1 R, (1)

where J is the Jacobian, c is the transport streamfunc-
tion, r0t is the wind stress, r0 is the mean density, and
curl denote the vertical component of the usual vector
curl operator; R, which includes the effects of nonlin-
earities and friction, will generally be ignored in what
follows. JEBAR results from a manipulation of the pres-
sure gradient term

0 r 1
JEBAR 5 J g z dz, ,E1 2r H02H

where r is the density.
Mertz and Wright (1992) have reviewed various phys-

ical interpretations of the JEBAR term. If, instead of
the procedure leading to (1), we first form a vorticity
equation and then vertically integrate, we obtain
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bcx 5 2 fwB 1 curlt 1 R9, (2)

where R9 includes the effects of nonlinearities and fric-
tion, and wB is the vertical component of the flow as-
sociated with the geostrophic velocity at the ocean floor:

1
w 5 u ·=(2H ) 5 J(p , 2H ).B B Br f0

Here uB is the horizontal geostrophic velocity at the
bottom, pB is the pressure at the bottom, and the last
relation is a consequence of geostrophy.

In this form it is evident that, R9 aside, any departure
from the Sverdrup balance in a flat-bottomed ocean,

bcx 5 curlt , (3)

will depend on the angle between the isobaths and the
bottom velocity or bottom isobars (cf. Mertz and Wright
1992). As a rule, we expect the flow to try to behave
like Taylor columns, arranging itself to go around hills
and valleys, avoiding vortex tube shrinking or stretching.
Thus, we expect isolines of pB and H to be nearly parallel.

If so, the Sverdrup relation (3) holds. The Sverdrup
relation appears to be structurally quite different from
(1) in that the characteristics are lines of constant f
(latitude lines) rather than the f /H of (1). The wind
forcing term appears as curlt rather than curl (t /H).
The usual interpretation of (1) is that lines of constant
f /H are characteristics for the transport streamfunction
integration, and the wind stress curl and JEBAR terms
on the right-hand side are forcing terms. However, since
both the baroclinic structure and the transport are de-
termined by internal dynamics, they are not independent
of one another. JEBAR is not an external forcing on the
same footing as the wind. (Strickly speaking, JEBAR
is not a forcing term at all.) It is possible for both (1)
and (3) to hold if JEBAR adjusts to the value

xef 1
JEBAR 5 = 2 curlt dx 1 t 3 = , (4)E5 1 2 6 1 2b Hx

where xe is the coordinate of the eastern coast.
Note that satisfying the Sverdrup relation (3) is equiv-

alent to wB 5 0. The term fwB is the only term in (2)
influenced by either baroclinicity or bottom relief. It
vanishes in a flat-bottomed ocean with or without baro-
clinicity: in either case this term accounts for the effect
of bottom relief. In contrast, though JEBAR is the only
term in (1) influenced by baroclinicity, bottom relief
appears in other terms of (1): the JEBAR term accounts
for the difference between the baroclinic and barotropic
solutions. If baroclinic compensation results in an ap-
proximate ‘‘level of no motion’’ at depth, then wB will
be small even if the bottom topography is not flat. In
such a case (4) is approximately true and JEBAR op-
poses—and nearly cancels—the effect of topography in
the other terms of (1).

The concept of a deep level of no motion has a long
useful history in both observational and theoretical

oceanography. Another indication that compensation at
depth characterizes much of the real ocean appears in
Godfrey’s (1989) global solution based on the Sverdrup
relation (3). Despite ignoring topography he obtains
good agreement almost everywhere with estimates of
sea level displacement based on hydrographic data and
a level of no motion at 2000 m. Presumably in most of
the ocean the stratification has adjusted to make (4)
approximately true. In the next section we present some
simple examples where this is the case and then discuss
how they may apply more generally.

2. Two-layer examples

Consider a two-layer ocean with topography H(x, y)
that does not penetrate into the upper layer. (This as-
sumption, while not essential to our argument, simplifies
its exposition considerably.) The governing steady, lin-
ear equations are

f k 3 r h u 5 2h =p 1 r t 2 r t (5)1 1 1 1 1 1 1 i

f k 3 r h u 5 2h =p 2 r t 1 r t , (6)2 2 2 2 2 2 B 2 i

= · (h u ) 5 = · (h u ) 5 0. (7)1 1 2 2

All symbols have their conventional meanings, and we
have included an interfacial stress t i 5 k(u1 2 u2) and
a bottom stress t B. Here h1 and h2 are the thicknesses
of the first and second layers, so h1 1 h2 ø H, with
exact equality if the rigid-lid approximation is made.
The pressures are determined hydrostatically:

=p 5 gr =h (8)1 1

=p 5 gr =h 2 g9r =h , (9)2 2 2 1

where h 5 h1 1 h2 2 H is the surface elevation (or, a
pseudoelevation for a rigid lid) and

g9 5 g(r2 2 p1)/r2.

Summing the two momentum equations (5) and (6), di-
viding by H, and eliminating h leads to Eq. (1) for the
vertically integrated mass transport. In this two-layer case

1 1 g9
2 2JEBAR 5 g9J h , 5 J(H, h ). (10)1 121 22 H 2H

Now suppose for a moment that the ocean is flat-bot-
tomed and the interfacial stress vanishes (t i 5 0). Then,
as is well known (e.g., Charney and Flierl 1981), the
motion in the lower layer will vanish as long as there
is some friction there to spin down any transients.
Hence, the lower-layer pressure gradient must vanish.
Then from (9) and (8), =p1 5 g9r1=h1 so the first term
on the right in (5) may be written as 2(½)=(g9r1 ).2h1

Taking the curl of this equation eliminates the pressure
gradient term, and defining a streamfunction c1 for the
upper layer [viz. (7)] results in the Sverdrup relation
(3). Once c1 is determined the momentum equation (5)
may be integrated to yield the layer thickness h1.
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FIG. 1. The upper-layer streamfunction c1 (Sv [ 106 m3 s21). The
exact solution (11) with parameters (13).

FIG. 2. The upper-layer depth h1 (m). The exact solution (12)
with parameters (13). The thickness of the upper layer in the
equilibrium state was 500 m; he was chosen to conserve the mass
of this layer.

FIG. 3. The size of JEBAR normalized by the rms of curl(t /H).
JEBAR is given by (10).

Assuming for simplicity that the wind is zonal and
depends only on the meridional coordinate

x]t
21c 5 c 5 b (x 2 x) , (11)1 e ]y

2 x2 f ] t
2 2h 5 h 1 (x 2 x) , (12)1 e e 1 2bg9 ]y f

where xe is the coordinate of the eastern boundary, and
he 5 h1(xe) is independent of y.

Now suppose that the bottom is not flat but again
assume that the topography is contained in the lower
layer. There is no reason why the same solution does
not apply. Note that although the topography obviously
does not influence the solution, JEBAR, which is given
by (10), need not be zero. In fact, since we have not
yet said anything about topography, H is at our disposal
to make JEBAR as large as we like.

We illustrate in a square domain of length L 5 4000
km (2L/2 # x # L/2, 2L/2 # y # L/2) with bottom
bathymetry H(x) given by

2 2H 5 H 2 A exp(2x /2L ), L 5 500 km,0 H H

H 5 4 km, A 5 0.5 km. (13)0

The wind stress is t x 5 t 0 cos(py/L), t 0 5 1024 m2

s22; and the stratification is specified by g9 5 0.02 m
s22. The solutions (11), (12) are shown in Figs. 1 and 2.

While in this case, by construction, the real effect of
topography is nil, the rms value of the JEBAR term is
2.2 times larger than that of the wind stress term in (1).
Figure 3 shows that the JEBAR term is noticeably larger
than the wind stress term outside the belt of the max-
imum wind stress curl.

These topographic configurations and winds are rea-

sonably representative of realistic features. Viewing them
through the JEBAR lens greatly amplifies the apparent
powers of topography. One would conclude that topog-
raphy is far more important than wind stress in determining
the ocean transports. This is obviously not the case here:
by construction, topography plays no role at all.

3. The influence of data errors

Errors are inevitable when diagnostic calculations are
made from real data. These ‘‘errors’’ encompass both
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errors in the density measurements and uncertainties in
what to choose as the appropriate value of H for each
grid box of the calculation. Let the effective error in
H(x, y) be z(x, y). In the two-layer model the ‘‘density’’
variable is h1; let its error be m(x, y). We assume that
at each grid point the expected rms errors in H and h1

are constants, sH and sh, respectively:

sH 5 ^z2&1/2; sh 5 ^m2&1/2, (14)

where angle brackets denote the expectation operator.
We further assume that the errors are uncorrelated with
each other and are uncorrelated from grid point to grid
point. Then, using standard centered differences to eval-
uate the right-hand form of Eq. (10) for JEBAR, we
find the expected error in JEBAR is

g9|h |12 1/2 2 2 2 2 1/2dJ 5 ^J & 5 {[=h ] s 1 [=H ] s } , (15)1 H h
2Ï2 dH

where d is the distance between grid points. In what
follows we always take d 5 100 km.

Mellor et al. (1982) suggested that one could reduce
errors by rewriting (1) in terms of

g9
2x 5 c 2 h (16)12 f

(specializing their formula to the two-layer case). Then

2b ] h1JEBAR 5 2g9 (17)[ ]2 f ]x H

and the expected error in JEBAR is
1/2

g|h | b 112 1/2 2 2 2 2dJ 5 ^J & 5 h s 1 H s . (18)M M 1 H h1 25 62 f 4Ï2 dH

The relative errors in JEBAR for the case of the
previous section are given in Figs. 4 and 5. Different
combinations of sH and sh are shown. Note that rel-
ative errors are generally higher for the traditional
Eq. (15) shown in Fig. 4 than for the Mellor et al.
form (18) shown in Fig. 5. In both cases the relative
errors are quite high because of the sensitivity of the
derivative calculations.

We expect that H has been adequately measured but
that there is some error associated with its represen-
tation on a discrete grid: is the averaging used to
obtain H on the grid compatible with the stratification
data; is this the choice of H that is consistent with
(1)? If we ignore the errors in H relative to those in
the stratification data, then

g9|h | =H1dJ ø s , (19)h) )HÏ2 dH

g9|h | b1dJ ø s . (20)M h1 2fÏ2 dH

Thus,

dJ L A Lf f
5 5 , (21)

dJ L H LM T B

where Lf is the scale f /b ø a, the earth radius; LT is
the horizontal scale of topographic features of charac-
teristic height A; and LB is a horizontal scale associated
with the topography. For example, if H is as above [Eq.
(13)] then LB ø LH(H/A), the scale of topographic vari-
ation multiplied by the ratio of the ocean depth to the
height of topographic features.

For the scales given in (13) the Mellor et al. form
reduces the error by about a factor of 1.5. Its advantage
would be less for features with greater height or hori-
zontal extent. There is an additional error introduced in
the conversion from c to x [Eq. (16)] of size

g9|h |1 s . (22)h2 f

This error is local, whereas the errors in JEBAR ac-
cumulate: letting dx denote the error in x and dJEBAR
the error in the JEBAR of Eq. (17), we have

J(dx, f /H) ø dJEBAR.

To estimate this effect, approximate the lhs as

b ]
(dx)

H ]x

and the errors in JEBAR as in (20). After (what amounts
to a random walk through) n grid points, the expected
error is

g9|h |sh12 1/2 1/2^dx & ø (2n) , (23)
2 f

so the local term (22) makes only a small difference.
The conclusion holds that the Mellor et al. form is ad-
vantageous as long as LB , Lf .

We consider now Eq. (1) and substitute for R a small
bottom friction («/Ho)¹2c with « 5 1026 s21. The influ-
ence of this term is limited to the narrow boundary layer
near the western coast. In this equation we specify H and
h1 according to (13) and (12) with added white noise errors
with variances sH 5 150 m and sh 5 24 m, respectively.
Then we use (10) to calculate the JEBAR term and solve
using the Il9in scheme (see Krupitsky et al. 1996) with a
uniform grid spacing d 5 100 km.

Both the traditional and Mellor et al. forms of JEBAR
were considered. The solutions obtained were then
smoothed twice in each direction with a 1–2–1 smoother
(Fig. 6). The calculations showed that the errors in the
terms f /H and curl (t /H) are negligible compared with
the errors from the JEBAR term. Comparison with Fig.
1 shows that the large-scale patterns of transport stream-
lines are captured by the smoothed solutions, especially
with the Mellor et al. formulation. However, the velocity
fields are noisy and the relative errors are large. The
rms relative errors in the traditional form for zonal and
meridional velocity are 0.64 and 0.94, respectively. For
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FIG. 4. The expected errors (15) in JEBAR (10), normalized by the rms of JEBAR, for various error amplitudes: (a) sH 5 100
m, sh 5 10 m; (b) sH 5 100 m, sh 5 5 m; (c) sH 5 150 m, sh 5 10 m; and (d) sH 5 150 m, sh 5 20 m.

the Mellor et al. form, the comparable numbers are 0.48
and 0.85—better, but still quite large.

4. Discussion

We have argued that JEBAR is likely to overestimate
the true influence of topography on oceanic transports.

We presented striking examples in the context of a two-
layer model ocean. This context is idealized, but the
shortcomings of the JEBAR approach that it reveals will
carry over to a fully stratified ocean.

As a practical matter, we argue that this means that
the transport is often better estimated by a flat-bottomed
Sverdrup calculation. Such a conclusion hinges on the
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FIG. 5. As in Fig. 4 but for the Mellor et al. (1982) formulation of JEBAR (17).

transport being largely confined to the upper part of the
water column, which is typically true. It is in accord with
Godfrey’s (1989) success in calculating surface topog-
raphy while ignoring bottom topography. A somewhat
different example is our study of the Antarctic Circum-
polar Current (Krupitsky et al. 1996) where we obtained
best agreement with the observed transports by assuming

that the transport has an equivalent barotropic structure.
This assumption is based on Killworth’s (1992) analysis
of observations and of the FRAM model output. In Kru-
pitsky et al. the bottom influence is nonzero, but is far
weaker than one would obtain from a purely barotropic
calculation: the stratification shields the transport from
topographic influence, but imperfectly.
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FIG. 6. The streamfunction c obtained by solving the streamfunction equation (1) with a small bottom drag and specified JEBAR. H and
h1 are perturbed;sH 5 150 m, sh 5 20 m. The solutions were smoothed by applying a 1–2–1 filter twice in each direction. (a) Regular
formulation (10); f /H contours are not perturbed. (b) Mellor et al.’s formulation (17); f /H contours are not perturbed. (c) Regular formulation
(10); f /H contours are perturbed. (d) Mellor et al.’s formulation (17); f /H contours are perturbed.

Our results have implications for diagnostic calcu-
lations of transport and for any numerical model that
calculates a barotropic component separately from the
baroclinic parts. The Eq. (1) with JEBAR is correct and

can be used for the calculation. However, the results
here suggest that doing so amounts to finding the influ-
ence of topography on the vertically integrated transport
from the difference of two large terms: JEBAR and
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1
( f =c 1 t) 3 = .1 2H

Indeed, (1) may be rewritten as

bc 5 curlt 1 HRx

1
1 H JEBAR 2 ( f =c 1 t) 3 = . (24)1 2[ ]H

Neglecting the nonlinear and friction terms in (24) and
(2), subtracting these equations and using the expression
for wB in terms of pB yields

1 1
JEBAR 2 ( f =c 1 t) 3 = 5 J(p , H ). (25)B1 2H r H0

The baroclinic effects tend to compensate the influ-
ence of sea surface elevation gradient on the bottom
pressure gradient. In the examples of section 2 the com-
pensation is total. In the general case, =pB can be very
small so J(pB, H) is small as well. Given the uncer-
tainties in data, it is unlikely that the bracketed terms
on the rhs of (24) will be calculated consistently in
diagnostic studies, leading to imperfect cancellation and
spurious transport values. The essence of what we have
to say here has been anticipated in a number of previous
studies, most recently by Mertz and Wright (1992; see
also references therein). In particular, one of their in-
terpretations of JEBAR is as a correction to using the
depth-averaged velocity to calculate the topographic
vortex stretching instead of the correct choice, the bot-
tom velocity uB. In other words, JEBAR is a measure
of the deviation of the true depth-integrated motion from
the hypothetical depth-integrated motion u of a ho-
mogeneous ocean in the same basin. Setting up this
hypothetical u as a standard of comparison makes JE-
BAR a misleading measure of the true impact of the
interaction of stratification and topography.

The examples of section 2 suggest that taking the flat-
bottomed stratified case as a point of departure would
give a better sense of the joint effect of baroclinicity
and topography. Note that this is tantamount to taking
a level of no motion at depth in determining a reference
solution. The JEBAR approach first artificially separates
the compensating effects of stratification and then re-
gards this internal adjustment as if it were an external
forcing. Diagnosing transport via JEBAR provides no
constraints on the impact of inevitable data errors. Be-
cause it has a clear physical interpretation, the strategy
of adding the influence of bottom velocity wB to the
Sverdrup solution suggests some plausible constraints.

For example, noting the tendency of a rotating flow to
go around obstacles rather than over them, one might
choose to minimize wB consistent with reasonable es-
timates of data errors (cf. Bogden et al. 1993, who min-
imized w at middepth).

Acknowledgments. This work was supported by Con-
sortium of UCSIO (NOAA Grant NA 37GPO518) and
a grant from the Vetlesen Foundation; in its later stages
Alexander Krupitsky was supported by the J. Seward
Johnson Postdoctoral Scholar Fellowship at the Woods
Hole Oceanographic Institution. Our thanks to Virginia
DiBlasi-Morris for typing this manuscript and the anon-
ymous reviewers whose suggestions much improved our
presentation.

REFERENCES

Bogden, P. S., R. E. Davis, and R. Salmon, 1993: The North Atlantic
Circulation: Combining simplified dynamics with hydrographic
data. J. Mar. Res., 51, 1–52.

Charney, J. G., and G. R. Flierl, 1981: Oceanic analogues of large-
scale atmospheric motions. Evolution of Physical Oceanography
(Scientific Surveys in Honor of Henry Stommel), B. A. Warren
and C. Wunsch, Eds., The MIT Press, 504–548.

Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow
for the world ocean allowing for island circulations. Geophys.
Astrophys. Fluid Dyn., 45, 89–112.

Greatbatch, R. J., A. F. Fanning, A. D. Goulding, and S. Levitus,
1991: A diagnosis of interpentadal circulation changes in the
North Atlantic. J. Geophys. Res., 96, 22 009–22 023.

Killworth, P. D., 1992: An equivalent barotropic mode in the Fine
Resolution Antarctic Model. J. Phys. Oceanogr., 22, 1379–1387.

Krupitsky, A., and M. A. Cane, 1997: A two-layer wind-driven ocean
model in a multiply connected domain with bottom topography.
J. Phys. Oceanogr., 27, 2395–2404.
, V. M. Kamenkovich, N. Naik, and M. A. Cane, 1996: A linear
equivalent barotropic model of the Antarctic Circumpolar Cur-
rent with realistic coastlines and bottom topography. J. Phys.
Oceanogr., 26, 1803–1824.

Mellor, G. L., C. R. Mechoso, and E. Keto, 1982: A diagnostic cal-
culation of the general circulation of the Atlantic Ocean. Deep-
Sea Res., 29, 1171–1192.

Mertz, G., and D. G. Wright, 1992: Interpretations of the JEBAR
term. J. Phys. Oceanogr., 22, 301–305.

Myers, P. G., A. F. Fanning, and A. J. Weaver, 1996: JEBAR, bottom
pressure torque, and Gulf Stream separation. J. Phys. Oceanogr.,
26, 671–683.

Sakamoto, T., and T. Yamagata, 1996: Seasonal transport variations
of the wind-driven circulation in a two-layer planetary geo-
strophic model with a continental slope. J. Mar. Res., 54, 261–
284.

Sarkisyan, A. S., and V. F. Ivanov, 1971: Joint effect of baroclinicity
and bottom relief as an important factor in the dynamics of sea
currents (in Russian). Izv. Acad. Sci. USSR, Atmos. Oceanic
Phys., 7, 116–124.

Slørdal, L. H., and J. E. Weber, 1996: Adjustment to JEBAR forcing
in a rotating ocean. J. Phys. Oceanogr., 26, 657–670.


	The University of Southern Mississippi
	The Aquila Digital Community
	3-1-1998

	On the Utility and Disutility of JEBAR
	Mark A. Cane
	Vladimir M. Kamenkovich
	Alexander Krupitsky
	Recommended Citation


	28_114.519_526

