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 INTERRELATIONSHIPS AMONG LANDSCAPES, NDVI, AND STREAM
 WATER QUALITY IN THE U.S. CENTRAL PLAINS
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 4Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045 USA
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 Abstract. During late spring through summer of 1994 and 1995, 290 randomly selected
 stream sites in Nebraska, Kansas, and Missouri were sampled once for several parameters
 including conductivity, turbidity, total phosphorus, nitrate-nitrite nitrogen, the index of
 biotic integrity, and a habitat index. Based on landscape data from watersheds that were
 delineated for each sampling location, interrelationships were examined between these water
 quality parameters and land use/land cover, the normalized difference vegetation index
 (NDVI), and vegetation phenological metrics derived from the NDVI. Statistically signif-
 icant relationships were found between NDVI values and the derived metrics with the
 stream condition parameters (r values to 0.8, ox = 0.05). The NDVI or vegetation pheno-
 logical metrics (VPMs) were more highly correlated to the selected stream condition pa-
 rameters than were the land use/land cover proportions. Knowledge of the general land
 use/land cover setting within the watersheds, however, was important for interpreting these
 relationships. The most common variables associated with the stream data were early spring
 NDVI values or VPMs associated with the date of onset of greenness. These results dem-
 onstrate the utility of NDVI and VPMs as broad-scale environmental indicators of watershed
 conditions.

 KeY words: ecological mnonitoring; Great Plains, USA; land use/lantd cover; NDVI; vegetation
 phenological metrics; water qualitv

 INTRODUCTION

 Landscape properties such as riparian zone condi-
 tion, channel slope and aspect, Quaternary and bedrock
 geology, vegetation, and hydrography all affect the
 structure and function of aquatic systems (Townsend
 et al. 1997). One of the most significant determinants
 of water quality, however, is land use/land cover
 (LULC). In particular, agricultural activities are among
 the most frequently cited sources for degradation and
 pollution of aquatic resources, primarily due to nutrient
 enrichment and sediment runoff (Cooper 1993). These
 impacts are of special interest in a predominantly ag-
 ricultural region such as the Central Plains of Nebraska,
 Kansas, and Missouri. The conversion of native forest
 and riparian vegetation to agriculture, or of native
 grassland to pasture, has a profound influence on
 stream chemistry and also affects discharge, temper-
 ature, channel characteristics, bed disturbance regime,
 and energy and organic matter input (Townsend et al.
 1997, Townsend and Riley 1999). These physical
 changes in turn impact stream biota (Richards et al.

 1996, Wichert and Rapport 1998). Reviews of the gen-
 eral impacts of agriculture on instream sediments, nu-
 trients, organic contamination and pesticides/metals
 can be found in Cooper (1993), Matson et al. (1997),
 and Skinner (1997).

 The relationship between LULC and water quality
 has long been studied (Omernik 1976, Osborne and
 Wiley 1988, Lenat and Crawford 1994, Roth et al.
 1996, Allan et al. 1997, Johnson et al. 1997, Basnyat
 et al. 1999). Johnson et al. (1997) provide a summary
 of studies that examine the impact of LULC on water
 quality. In particular, strong relationships have been
 found between LULC and phosphorus and nitrogen
 (Peterjohn and Correll 1984, Lowrance et al. 1985,
 Keeney and DeLuca 1993, Hall and Schreier 1996, Bol-
 stad and Swank 1997). The importance of these inter-
 relationships is reflected by the increased recognition
 since the 1980s of nonpoint-source pollution as a major
 environmental concern (Sharpley and Meyer 1994,
 Loague 1998).

 To address water quality degradation from agricul-
 tural nonpoint-source pollution and other impacts,
 management perspectives are shifting away from the
 analysis of stream reaches only to a broader landscape
 perspective (Sidle and Hornbeck 1991. Johnson and
 Gage 1997, O'Neill et al. 1997, Wiley et al. 1997).
 Consensus is forming that analyses of stream condition
 must include both small-scale (stream reaches) and
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 large-scale (whole catchments) landscape studies

 (Schlosser 1991, Johnson and Gage 1997, Johnson et

 al. 1997). Landscape-level analysis allows quicker as-

 sessment of problems and a cost-effective way to focus

 protection and restoration efforts. As a result, regional

 land use and land cover information is increasingly

 used to support water quality studies (Zelt et al. 1995).

 Advances in remote sensing and GIS technologies

 have made regional and landscape-level studies and

 management strategies much more feasible (Johnson

 and Gage 1997). Consequently, the future trend is for

 more frequent use of remotely sensed data and GIS as

 they become increasingly available through various

 federal programs. One management tool borne from a

 landscape perspective and commonly employed in

 aquatic resource studies are ecoregions (Omernik 1995,

 1987). Ecoregions are used to stratify areas based on

 similar environmental variables for research and re-

 source management purposes. Using ecoregions as a

 basis for management decisions is beneficial because

 ecoregions integrate multiple factors (e.g., physiogra-

 phy, vegetation, land use, geology, and soils) that de-

 termine the character and quality of terrestrial and

 aquatic natural resources (Omernik 1995, Bryce et al.

 1999).

 Stream biological communities and physical habitat

 are also affected by agricultural and other land uses

 (Roth et al. 1996). For example, fish communities in

 Kansas and the Central Plains area have been impacted

 by habitat alteration and degradation (Cross and Collins

 1995). In larger streams, such changes include channel

 narrowing and flow modifications from dams that have

 stabilized previously variable hydrologic regimes to

 which Great Plains fish communities had adapted

 (Cross et al. 1986, Eberle et al. 1993, Cross and Collins
 1995). In smaller streams as well, many problems arise

 from agricultural impacts. These include siltation of

 previously clear streams and dewatering of streams

 from both intensive groundwater mining for irrigation

 and conservation practices such as farm ponds and con-

 servation tillage (Cross and Collins 1995).

 Smith et al. (2000) discussed the development of

 environmental indicators of agroecosystems to estimate

 their environmental trends, conditions, and sustain-

 ability. Analysis of biotic resources is important as

 aquatic resource managers focus increased attention on

 biological indicators of stream condition as opposed to
 physicochemical parameters (Karr 1991, 1993, Roux

 et al. 1993). One reason for this is that fish communities

 are considered integrators of watershed condition
 (Wichert and Rapport 1998), and thus they indirectly

 reflect agroecosystem condition. A commonly used bi-
 ological assessment tool is the index of biotic integrity
 (IBI; Karr et al. 1986, Karr and Chu 1997). The IBI
 evaluates biotic variables in a stream relative to a sim-

 ilar-sized stream in the same region where human dis-
 turbance has been minimal. This technique allows com-

 parative evaluation of metrics based on abundance, spe-

 cies richness, condition, presence of alien species, and

 representation of relevant trophic and habitat guilds

 (Harris and Silveira 1999). Multimetric habitat indices

 are also frequently used to characterize and evaluate

 stream conditions (Kaufmann et al. 1999, Maddock

 1999).

 Most of the aforementioned studies that relate LULC

 to water quality or stream biological/habitat conditions

 have employed traditional land cover maps. This type

 of land cover characterization is temporally static, how-

 ever, and does not account for seasonal (phenological),

 interannual, or directional (successional/human in-

 duced) changes (Hobbs 1990). A different approach to

 relating gross vegetation types (i.e., land cover) to wa-

 ter quality and stream conditions is through the use of

 the normalized difference vegetation index (NDVI)

 values derived from satellite or airborne sensors. The

 NDVI is widely used, has become a standard for band

 ratio applications, and has a long history of use in

 remote sensing, ecology, and geography to study char-

 acteristics of vegetation, including amount (biomass),

 type, and condition (Lauver and Whistler 1993, Jensen

 1996). The NDVI is a reflection of biophysical con-

 ditions of a watershed's vegetation cover, which in turn

 affects water runoff and quality. One can approach in

 different ways the linkages among land cover, plant

 physiology, and water quality. One view is that NDVI

 is indicative of land cover and land use, but shows the

 biophysical condition of watersheds as well. Increased

 greenness (higher NDVI) at a certain time of the year

 may simply be indicative of a more intensively agri-

 cultural watershed, or may be indicative of increased

 fertilizer or chemical applications. This connection of

 NDVI providing an indication of the land cover clas-

 sification along with intensity of agriculture is the ap-

 proach that best fit our analysis of watersheds across

 a large spatial entity.

 Whistler (1996) explored NDVI values derived from

 Landsat Multi-Spectral Scanner (MSS) imagery as a

 surrogate for biomass and hypothesized that they would
 have stronger relationships with water chemistry pa-

 rameters than land cover proportions derived from the

 same imagery. He found significant relationships be-

 tween NDVI and selected water quality parameters that

 in fact were stronger than relationships to LULC in
 many cases. In addition to the NDVI values, a suite of
 metrics describing vegetation phenology can be derived
 from NDVI time-series data (Reed et al. 1994). Some

 of these vegetation phenological metrics (hereafter re-
 ferred to as VPMs) served as useful ancillary data in
 land cover classification of the conterminous U.S.
 (Loveland et al. 1995). The metrics have yet to be fully
 explored, however, for their potential application to the
 monitoring and assessment of water quality and stream
 conditions.

 This study assesses NDVI and VPMs for environ-
 mental monitoring purposes in Nebraska, Kansas, and
 Missouri by examining their relationships with selected
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 TABLE 1. Component indices or variables for the index of biotic integrity (IBI) and the habitat
 index (HI).

 Index Components

 Index of biotic integrity total number of fish species
 number and identity of darter species
 number and identity of sunfish species
 number and identity of sucker species
 number and identity of intolerant species
 proportion of individuals as green sunfish, carp,

 bullheads, goldfish
 proportion of individuals as omnivores
 proportion of individuals as insectivorous cyprinids
 proportion of individuals as piscivores (top carnivores)
 number of individuals in sample
 proportion of individuals with anomalies

 Habitat index riparian vegetation quality
 lack of riparian human disturbance
 substrate quality
 in-channel disturbance and deviance from expected

 channel morphology and substrate
 habitat volume
 spatial complexity
 instream fish cover
 stream power and velocity

 water quality parameters, the IBI, a habitat index (HI),
 and LULC. Specifically, the questions addressed are:

 1) What are the relationships between NDVI and the

 selected water quality and stream condition measures?

 What are the relationships between the VPMs and se-
 lected water quality and stream condition parameters?

 2) What are the relationships between LULC and
 water quality or stream condition?

 3) How do LULC relationships with water quality
 compare with that of NDVI and VPMs to the selected

 water quality and stream condition parameters?

 MATERIALS AND METHODS

 The study area

 Although commonly perceived as homogenous, the
 landscapes of Nebraska, Kansas, and Missouri are sur-

 prisingly varied. Geology in the area consists of lime-
 stones and shales in central and eastern Kansas origi-
 nating from shallow Paleozoic seas. The Nebraskan and
 Kansan glaciations deposited glacial drift across north-
 ern Missouri, eastern Nebraska, and northeastern Kan-
 sas. The Precambrian strata of the Ozark Uplands re-
 mained a nonglaciated area with steeper and more rug-
 ged terrain. Loess soils cover much of Nebraska, while
 stream sediments from the Rocky Mountains cover the
 western edges of Kansas and Nebraska (Williams and
 Murfield 1977). Precipitation ranges from 38-45 cm
 in westernmost Kansas and Nebraska to 90-100 cm in
 eastern Kansas, to nearly 120 cm on the Mississippi
 River in southeastern Missouri (Schroeder 1982, Good-
 in 1995). Native vegetation consisted of shortgrass
 prairie in westernmost Kansas and Nebraska, tallgrass
 and mixed-grass prairie in the Nebraska Sand Hills and
 central Kansas, a mosaic of bluestem prairie and oak-

 hickory forest in eastern Kansas and northern Missouri,

 and dense oak-hickory forests in the Ozark Highlands.

 The central human transformation of the Great Plains

 has been conversion of grassland to cropland. Cur-

 rently, 90% of the area is in farms or ranches and 75%

 of the land is in cultivation (Riebsame 1990). Hydro-
 logical impacts stem from tillage, cropping, runoff

 change, water impoundment, groundwater depletion,

 and changes in soil structure and chemistry. Chapman

 et al. (2001) provide a physical geography synopsis of
 Kansas and Nebraska.

 Field data

 Water quality and stream condition data were col-

 lected by the U.S. Environmental Protection Agency

 (EPA) Region VII during the late spring and summer

 of either 1994 or 1995 (streams were sampled once) as

 part of its Regional Environmental Monitoring and As-

 sessment Program (REMAP). Two hundred ninety

 stream sites were randomly selected in Kansas, Ne-

 braska, and Missouri to assess fisheries health and

 stream condition, as well as to establish baseline data

 and methods usable for assessing long-term trends

 throughout the region (EPA 1997). Of the more than

 30 water quality parameters examined, four water qual-

 ity parameters that are important determinants of water

 quality and which integrate across the entire watershed

 were selected for this analysis: total phosphorus (TP),

 nitrate-nitrite nitrogen (NO-NO), turbidity, and con-

 ductivity. In addition, the IBI and a habitat index (HI)

 were examined (Table 1). Analytical techniques used

 to determine the values for the water quality parameters

 and methods for calculating the IBI and HI are detailed
 in EPA (1997).
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 FIG. 1. Vegetation phenology curve and metrics derived from enhanced AVHRR imagery. This diagram of a 12-mo NDVI
 temporal response is for vegetation typical of the Great Plains. Greenness metrics that characterize vegetation phenology are
 illustrated on the curve to show the relationship between NDVI and time (after Reed et al. 1994). Table 2 shows examples
 of the NDVI-derived metrics, along with a brief description. Mean and standard deviation values were calculated for these
 derived VPMs. Higher NDVI values correlate with increased green, leafy biomass.

 Landscape data

 For each stream sampling point, contributing water-

 shed areas were delineated and digitized. In some cases,

 only portions of watersheds were delineated; they were

 completed by merging the digitized portions with dig-

 ital hydrologic unit (HUCs) boundary files of U.S. De-

 partment of Agriculture Natural Resources Conserva-

 tion Service. Land cover data for the region were ob-

 tained from 1:250 000 U.S. Geological Survey (USGS)

 land use and land cover composite theme grid data

 (USGS 1990), which was processed from aerial pho-

 tography from the middle and late 1970s with a spatial

 resolution of 200 m. Although the USGS data set is

 dated and has coarser resolution than other data sets

 derived from Landsat TM or MSS, preliminary anal-

 yses were done in Kansas on a 30-m TM-derived land

 cover map circa 1990 (Whistler et al. 1995). Results

 were mixed; for some variables the correlations were

 stronger and for others they were weaker. Usually, the

 magnitude of differences in correlation strength was

 not great. Moreover, Herlihy et al. (1998) found no

 major differences in LULC-stream water chemistry re-

 lationships when using either the USGS data set or the

 recently completed 30-m National Land Cover Data Set

 (NLCD). This result may be partly explained because

 the NLCD was meant for use with larger study units

 than small watersheds, on which any misclassification

 errors can have a relatively greater impact. The NLCD

 was not available at the start of this project; moreover,

 this data set was specifically intended for regional- and

 national-scale purposes (Vogelmann et al. 2001). Nev-

 ertheless, we acknowledge that exploring this data set

 may be useful in future studies, but at the start of this

 project, we felt the USGS LULC data was the best

 available data set that was consistently produced over

 our three-state study area.

 NDVI and VPMs were derived from the National

 Oceanic and Atmospheric Administration's (NOAA)

 advanced very high resolution radiometer (AVHRR)

 satellite sensor. From the USGS conterminous U.S. bi-

 weekly composite database, 26 periods of biweekly

 NDVI composites for 1995 were used. Each composite

 is composed of the maximum NDVI value for every 1

 X 1 km pixel over a 2-wk period (Eidenshink 1992).

 Roughly correlated to photosynthetic biomass, the

 NDVI is a ratio of near-infrared (NIR) and red solar en-

 ergy reflectance values that is calculated as follows:

 NDVI = NIR - red/NIR + red.

 In addition to the raw NDVI values, a series of de-

 rived metrics describing vegetation phenology were de-

 veloped using algorithms modified from Reed et al.

 (1994). Fig. 1 and Table 2 show the basis for their

 calculation and Table 3 lists the specific dates of the

 biweekly composites used in this study. Loveland et

 al. (1995) used these VPMs to help classify LULC in

 the conterminous U.S. For each watershed, GIS over-

 lays were used to extract LULC proportions and to

 calculate mean NDVI and VPM values for each bi-

 weekly period, as well as standard deviations of the

 VPMs. The U index (human use index), which equals

 the proportions of agricultural plus urban lands, was
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 TABLE 2. A series of satellite-derived metrics describing vegetation phenology.

 Metric name Parameter being measured

 Temporal metrics

 Date of onset of greennesst beginning of photosynthetic activity
 Date of end of greenness end of photosynthetic activity
 Duration of greennesst length of photosynthetic activity
 Date of maximum greennesst time when photosynthesis is at maximum
 Growing dayst number of days from onset of greenness to maximum NDVI
 Growing season't number of days from onset of greenness to end of greenness

 NDVI-value metrics

 Value of onset of greennesst level of photosynthesis at start
 Value of end of greenness level of photosynthesis at end
 Value of maximum NDVIt level of photosynthesis at maximum
 Range of NDVI range of measurable photosynthesis

 Derived metrics

 Accumulated NDVI net primary production
 Rate of green upt acceleration of increasing photosynthesis
 Rate of senescence acceleration of decreasing photosynthesis
 Mean daily NDVI mean daily photosynthesis activity

 Note: These calculations were developed using algorithms modified from Reed et al. (1994).
 t Metrics used in the analysis.

 also calculated and has been used to gauge the level
 of total anthropogenic disturbance in regional land-
 scapes (EPA 1994).

 The data were geographically stratified using ecore-
 gions used by the EPA (Omernik 1987) (Fig. 2). Only
 watersheds with at least two-thirds of their area in one

 ecoregion were used. The exception to this was for two
 ecoregions adjacent to the Mississippi River that were

 combined (the Interior River Lowlands and Mississippi
 Alluvial Plains). because there were so few watersheds
 that were fully contained in them even after they were
 combined. The Western High Plains, Southwestern Ta-

 blelands, and Northwestern Great Plains were also

 grouped into one region to increase the watershed sam-

 ple size. If there were a large enough number of sam-

 ples in any one ecoregion, watershed area was used for
 stratification. These divisions were made by examining
 histograms of watershed area and choosing logical
 break points, while also maintaining adequate sample
 size.

 Pearson product-moment correlation analysis (Ste-
 vens 1996) was used to investigate relationships be-
 tween the stream field data and the LULC, the NDVI,
 and the VPMs. The water quality data and LULC data
 were log or square-root transformed to normalize the
 data. Normality of the NDVI and VPMs for each ecore-
 gion was checked before correlation analysis. If severe
 deviation from normality occurred for a variable, that
 variable was not reported in the results. Because the
 sampling points were randomly chosen, watershed area
 ranged widely and was included in the correlation anal-
 yses. For instances where watershed area was signifi-
 cantly correlated with a stream variable, partial cor-
 relation analysis was performed to control for water-
 shed area. Although multiple correlations were made,
 we decided to maintain the standard alpha level of 0.05,
 because we were treading new ground in studying these

 variables and did not want to dismiss any potential

 relationships. Moreover, previous work done with ag-

 gregations of ecoregions, and thus fewer comparisons,

 had similar results (Griffith et al. 2000).

 RESULTS

 The spatial distribution of the watersheds is shown

 in Fig. 3, and Table 4 lists watershed sizes for each

 ecoregion. In cases where partial correlation was per-
 formed to control for a significant relationship between

 watershed area and a stream variable, there still existed

 in every case a significant relationship between the

 variables in question. For purposes of consistency, only

 the Pearson product-moment correlation coefficients

 are reported. Table 5 lists the correlation coefficients

 for relationships between the stream parameters and

 TABLE 3. Calendar dates for the biweekly NDVI compos-
 ites.

 1995 biweekly
 NDVI values composites

 Period 7 31 Mar-14 Apr
 Period 8 15 Apr-27 Apr
 Period 10 12 May-25 May
 Period 1 1 26 May-8 Jun
 Period 12 9 Jun-22 Jun
 Period 13 23 Jun-6 Jul
 Period 14 7 Jul-20 Jul
 Period 15 21 Jul-3 Aug
 Period 16 4 Aug-17 Aug
 Period 17 18 Aug-31 Aug
 Period 18 1 Sep-14 Sep
 Period 19 15 Sep-28 Sep
 Period 20 29 Sep-12 Oct
 Period 21 13 Oct-26 Oct
 Period 22 27 Oct-9 Nov

 Note: Period 9 had significant cloud cover remaining in the
 composite and was not used in the analysis.
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 FIG. 2. Ecoregions of EPA Region VII (Nebraska, Kansas, Missouri, andlIowa; from Omernik [1987]). Note that no water
 quality data were collected for Iowa.

 the NDVI/VPM values for selected ecoregions where

 correlations were the strongest (generally r > 0.4).

 Table 6 lists the r values showing the correlations

 for selected ecoregions that were also stratified by wa-

 tershed area. An analysis of the full list of all statis-

 tically significant correlations at ox = 0.05 (not shown)

 revealed that the variables having the greatest number

 of significant correlations with the stream field param-

 eters were NDVI values for periods 8, 10, 11 (April

 through late May), mean date of onset of greenness

 (late March through late May), and the standard de-

 viation of NDVI values at the onset of greenness. These

 variables also had the greatest number of strong cor-

 relations (considered here to be r - 0.65; that is, ex-

 plaining ?40% of the variation in a stream parameter).

 In each ecoregion there were usually only one or two

 variables for which correlations were -0.65. The Mis-

 sissippi River Lowlands and Central Irregular Plains

 (watersheds >260 kM2) had the greatest number of cor-

 relations with r ' 0.65, although most of these were

 FIG. 3. The watersheds for the streams sampled in Region VII of the Environmental Protection Agency.
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 TABLE 4. Mean and range of watershed sizes (kM2) in each
 ecoregion.

 Mean
 water-

 shed Mini- Maxi-
 Ecoregion area mum mum

 Western plains and tablelands 1831 10.1 17 415
 Flint Hills 228 0.5 1067
 Sand Hills 2212 9.6 13499
 Western corn belt plains 126 1.6 1836
 Central irregular plains 571 2.3 14688
 Ozark highlands 452 3.6 3929
 Central Great Plains 587 3.9 5970
 Mississippi River lowlands 379 2.8 3447

 for one stream parameter only, such as the IBI or HI.

 With respect to water chemistry, conductivity and

 N02-NO3 had the greatest number of strong correla-
 tions with the NDVI or VPMs. Most of the stronger

 relationships were associated with one ecoregion, such

 as the Sand Hills for conductivity and the Western Corn

 Belt Plains (watersheds >25 kM2) for N02-NO3. Total
 phosphorus had the least number of strong correlations

 with the NDVI/VPMs.

 In ecoregions stratified by size, correlations were

 slightly higher for the larger watersheds in the Western

 Corn Belt Plains and Central Irregular Plains (Table 6).
 For the Ozark Highlands and Central Great Plains, no
 definite trend was observed. Different watershed size
 groups in these ecoregions each had a stream variable

 for which correlation with an NDVI/VPM was greater
 than in the other watershed size groups. Generalizing
 the results from Tables 5 and 6, NDVI in the early
 growing season seemed to be most often correlated

 with water quality. This general category includes
 NDVI values from Periods 8-11 (late April to mid-

 June) and mean NDVI at the onset of greenness, date

 of onset of greenness, or standard deviation of these
 values. Peak growing season NDVI metrics, such as

 NDVI from periods 12 through 18 (late June to late

 September), or maximum NDVI, date of maximum
 NDVI, or the standard deviation of these values were

 also frequently correlated with IBI and the HI. Figs. 4

 and 5 show scatterplots of the strongest correlations.
 To help interpret these results, it was useful to ex-

 amine correlations between the NDVI, VPMs, and land
 cover (Table 7), and LULC proportions for the selected

 ecoregions (Fig. 6). In addition, we identified relatively

 pure areas of known LULC and verified the phenolo-
 gies as described herein. Because the streams were only

 sampled once in late spring or summer, and not at bi-

 weekly intervals concurrent with the NDVI data, it is
 important to view these relationships (especially re-

 garding the nutrients) as revealing the general effects
 of agriculture. This situation might contrast with that
 of a year's profile of both water quality and NDVI data
 wherein one might expect to observe higher nutrients

 in winter, when actively growing vegetation is not pres-

 TABLE 5. Pearson correlation coefficients (significant at (x
 0.05) in selected ecoregions.

 Variable Correlated variable r n

 A) Western plains and tablelandst

 Conductivity AG 0.46 24
 onset NDVI SD 0.65 24
 date of maximum NDVI SD 0.57 24

 Turbidity log(URB) 0.50 21
 P22 NDVI 0.57 21

 TP AG 0.71 25
 U index 0.73 25
 mean onset date -0.74 25
 P8 NDVI 0.71 25

 HI date of maximum NDVI 0.47 25

 B) Flint Hills

 Turbidity FOR 0.48 19
 mean onset date -0.76 19
 P18 NDVI -0.70 19

 N02-NO3 mean onset date SD 0.65 21
 onset NDVI SD 0.53 21

 C) Sand Hills

 Conductivity GRA -0.59 19
 mean onset NDVI 0.70 19
 P14 NDVI 0.69 19

 N02-NO3 mean growth rate -0.48 20
 mean no. growing days 0.47 20

 TP log(AG) 0.54 20
 P1 1 NDVI 0.57 20
 P8 NDVI 0.53 20

 D) Western Corn Belt

 Conductivity GRA -0.59 33
 P22 NDVI 0.41 33
 P11 NDVI 0.35 33

 Turbidity log(FOR) 0.54 29
 log(AG) -0.47 29
 U index -0.50 29
 P14 NDVI 0.49 29

 NO-NO3 PIO NDVI -0.69 34
 P8 NDVI -0.66 34

 TP U index -0.50 34
 IBI mean growth rate -0.65 34

 P15 NDVI -0.64 34
 HI mean onset date -0.49 34

 PIO NDVI 0.48 34

 E) Mississippi Valley lowlands:

 Conductivity Onset NDVI SD -0.72 9
 Turbidity P18 NDVI -0.78 10

 date of maximum NDVI -0.66 10
 NO2-NO3 mean no. growing days -0.62 11
 TP FOR -0.69 11

 U index 0.71 11
 onset NDVI SD -0.70 11

 IBI log(URB) -0.73 11
 P18 NDVI 0.79 11
 P16NDVI 0.78 11
 date of maximum NDVI SD 0.76 11

 Notes: Listed are the two most strongly correlated NDVI
 values or vegetation phenologic metrics (VPMs). If a LULC
 type was significantly correlated to a water-quality or stream-
 condition variable, it was listed; if none is shown, there were
 no LULC types significantly correlated at t = 0.05. In gen-
 eral, NDVI and VPMs were as highly correlated to water
 quality as LULC. In many cases, while an NDVI or VPM
 was significantly correlated to a stream variable, an LULC
 type was not. Abbreviations are: TP, total phosphorus; IBI,
 index of biotic integrity; HI, habitat index; AG, percentage
 of land in agriculture; URB, percentage of land that is urban;
 U index, human use index; P followed by a number is the
 period number; FOR, percentage of land in forest; GRA, per-
 centage of land in grass.

 t Consists of the western high plains, northwestern Great
 Plains, and southwestern tablelands ecoregions.

 : Consists of the interior river lowlands and Mississippi
 alluvial plains ecoregions.
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 TABLE 6. Pearson correlation coefficients (significant at (x =
 0.05) in selected ecoregions, which are also stratified by wa-
 tershed size.

 Variable Correlated variable r n

 A) Western corn belt >10 mi2 (25 kM2)

 Conductivity P20 NDVI 0.54 16
 N02-NO3 mean onset date 0.75 17

 PIO NDVI -0.73 17
 mean growth rate 0.71 17

 TP log(URB) 0.48 17
 IBI P15 NDVI -0.66 17

 maximum NDVI -0.61 17
 HI log(AG) 0.60 17

 U index 0.65 17
 mean onset date -0.55 17

 B) Central irregular plains >100 mi2 (260 kM2)

 Conductivity mean no. growing days 0.60 18
 P19 NDVI 0.68 18

 Turbidity onset NDVI SD -0.87 15
 P8 NDVI -0.73 15
 mean onset date SD -0.79 15

 NO,-NO, P20 NDVI -0.52 15
 IBI onset date SD 0.64 18

 onset NDVI SD 0.59 18
 P14 NDVI -0.57 18

 HI onset date SD 0.71 17
 P14 NDVI -0.70 17
 onset NDVI SD 0.68 17

 C) Ozarks <20 mi2 (50 kM2)

 Conductivity P9 NDVI -0.55 14
 Turbidity log(AG) 0.53 15
 N02-NO3 P18 NDVI -0.52 15
 TP P8 NDVI -0.56 15

 onset date 0.52 15
 IBI onset NDVI SD -0.82 14

 P8 NDVI -0.59 14
 HI log(AG) -0.64 15

 mean onset NDVI 0.66 15
 mean no. growing days -0.59 15

 D) Ozarks >100 mi2 (260 kM2)

 NO2-NO3 date of maximum NDVI SD 0.77 10
 P13 NDVI -0.67 10

 E) Central Great Plains <30 mi2 (75 kM2)
 NO2-NO3 P14 NDVI 0.60 20

 P18 NDVI 0.55 20
 TP date of maximum NDVI SD -0.62 20

 mean onset date SD -0.52 20
 HI date of maximum NDVI SD 0.60 20

 onset NDVI SD 0.54 20

 F) Central Great Plains > 100 mi2 (260 kM2)
 Conductivity log(GRA) 0.49 18

 P11 NDVI 0.64 18
 mean onset date -0.56 18

 TP log(GRA) -0.55 18
 date of maximum NDVI SD -0.77 18
 onset NDVI SD -0.63 18

 IBI mean onset NDVI SD 0.65 19
 mean onset NDVI 0.64 19

 HI log(URB) -0.51 19
 onset NDVI SD 0.54 19

 Notes: Listed are the two most strongly correlated NDVI
 values or vegetation phenologic metrics (VPMs). If a LULC
 type was significantly correlated to a water quality or stream
 condition variable, it was listed; if none is shown, there were
 no LULC types significantly correlated at (x = 0.05. In gen-
 eral, NDVI and VPMs were as highly correlated to water
 quality as LULC. In many cases, while an NDVI or VPM
 was significantly correlated to a stream variable, an LULC
 type was not. Abbreviations are: TP, total phosphorus; IBI,
 index of biotic integrity; HI, habitat index; AG, percentage
 of land in agriculture; URB, percentage of land that is urban;
 U index, human-use index; P followed by a number is the
 period number; FOR, percentage of land in forest; GRA, per-
 centage of land in grass.

 ent (lower NDVI) for nutrient uptake, versus lower

 concentrations of nutrients in the growing season (high-
 er NDVI) when vegetation is actively taking up nutri-

 ents.

 DIscusSION

 Key points emerging from these results are:

 1) The NDVI or VPMs were, in most cases, corre-
 lated with the stream field data as highly or more

 strongly than simple land-cover proportions. In many

 cases, land-cover proportions were not significantly

 correlated with the stream data, while an NDVI date

 or VPM value was.

 2) An NDVI date or VPM was often correlated with

 LULC, and this relationship in turn helped explain re-

 lationships between an NDVI or VPM and the stream

 field data.

 3) The context of LULC within a region as well as

 general regional crop types are important when inter-
 preting NDVI/VPM relationships with the stream data.

 In the majority of cases, the NDVI or VPMs per-

 formed better than simple land cover proportions in

 explaining variation in water quality parameters (Ta-
 bles 5, 6). In fact, for over one-half of the instances

 where an NDVI or VPM was significantly correlated

 with any of the stream variables, an LULC type was

 not significantly correlated. This increased perfor-
 mance of the AVHRR-derived metrics relative to LULC

 was evident even though the AVHRR data have a spa-

 tial resolution of 1 km compared to the 200-m reso-
 lution USGS LULC data. The following discussion of
 specific relationships in selected ecoregions is broken
 into three sections: those regions that are predomi-
 nantly agricultural, those that are predominantly grass-

 land, and those that are predominantly forested or have
 mixed LULC. A common theme linking the ecoregions
 is that, while NDVI/VPMs had stronger correlations tcy
 stream conditions, understanding the LULC composi-
 tion within the watersheds was important in under-
 standing the relationships of the VPMs to stream con-
 dition.

 Agricultural regions

 In the Western Plains and Tablelands, there was a

 strong negative correlation (r = -0.74, Fig. 4a) be-
 tween total phosphorus (TP) levels and both mean onset
 date and NDVI at period 8 (mid-April; Table 5). Both
 the NDVI and VPMs in this ecoregion (Table 7) were
 related to the percentage of agriculture in the water-
 sheds and performed as well as the proportion of ag-
 riculture or the U index in explaining variation in TP
 levels. In this case, knowledge of the general LULC
 and primary regional crop type(s) was helpful in in-
 terpreting the relationships. For example, the onset date
 in watersheds within these ecoregions is related to the
 dominance of winter wheat. Winter wheat begins to
 "green up" in late February/early March after winter
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 FIG. 4. Scatterplots of correlations between selected water quality or stream condition parameters and NDVI or vegetation
 phenological metrics. Total phosphorus and N02-N03 were originally measured in mg/L; turbidity in NTUs. Pearson cor-
 relation coefficients are shown and are significant at a- 0.05; 95% confidence intervals are shown around the regression
 line. In panel (e), higher Habitat Index values indicate better conditions.

 dormancy, which is much earlier than late-season crops

 such as corn or soybeans, and also earlier than natural

 grasslands (Loveland et al. 1995). Therefore, for wa-

 tersheds in this region having greater amounts of ag-

 riculture, the mean onset date will usually be shifted

 earlier relative to watersheds having more grassland or

 forest.

 For watersheds in the Western Corn Belt Plains, there

 were strong correlations between the NDVI/VPMs and

 NO,-NO3 levels (Fig. 4b and c). These relationships
 likely result from the predominance of corn agriculture

 in this ecoregion. Significantly more nitrogen-based

 fertilizer is typically applied to corn compared to other

 crops in the study area (R. Lamond, personal coni-
 munication). The typical onset of greenness in eastern

 Kansas occurs in late May/early June. which explains
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 FIG. 5. Scatterplots of correlations between selected water quality or stream condition parameters and NDVI or vegetation
 phenological metrics. Turbidity was originally measured in NTUs, NO,-N03 in mgIL, and conductivity in ~tmhos. Pearson
 correlation coefficients are shown and are significant at a- 0.05; 95% confidence intervals are shown around the regression
 line. An example of the connection between LULC and the VPMs is for the Flint Hills, where a later mean onset date is
 associated with lower turbidity and a greater amount of grassland (see Table 7). In panels (c) and (e), higher IBI values
 indicate better conditions (IBI =index of biotic integrity).

 why, for this ecoregion, a later onset date is associated

 with higher N02-NO3 levels (Fig. 4b). Deciduous for-

 est and grasslands have an earlier onset date than corn.

 This example underscores the importance of interpret-

 ing these relationships within the context of regional

 crop types. The situation in the Western Corn Belt con-

 trasts with that in the Western Plains and Tablelands,

 where an earlier onset of greenness is associated with

 greater wheat agriculture and higher TP levels. Phos-

 phorus levels may not be as high in the Western Corn
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 TABLE 7. Correlations (? 0.4) between selected NDVI or VPMs and LULC from 200 m
 USGS LUDA data.

 Percentage

 agricul- Percentage Percentage Percentage
 Ecoregion tural forest grassland urban U index

 Western plains and tablelands

 Mean onset date -0.74 0.43 -0.76
 Onset NDVI SD 0.38
 Date of max. NDVI SD 0.84
 P8 NDVI 0.67 -0.60 0.70
 P13 NDVI -0.71
 Mean date of max. NDVI -0.58 -0.57

 Flint Hills

 Mean onset date 0.46
 P18 NDVI -0.54
 P8 NDVI 0.52 -0.57 0.52

 Sand Hills

 Mean onset NDVI 0.65 -0.85
 P14 NDVI 0.60 -0.70
 PI I NDVI 0.69 -0.49

 Western corn belt >10 mi2 (25 ki2)

 Mean growth rate 0.43
 P18 NDVI -0.47

 Central irregular plains >100 mi2 (260 km2)

 P20 NDVI 0.44

 Ozark highland <20 mi2 (50 km2)

 Mean onset NDVI -0.58 0.60 -0.60
 Mean onset date 0.68 0.70 -0.70

 Ozarks >100 mi2 (260 kM2)

 Date of max. NDVI SD 0.75 -0.75 0.80 0.75

 Central Great Plains <30 mi2 (75 km2)

 Date of max. NDVI SD -0.57 0.57 -0.57

 Central Great Plains >100 mi2 (260 km2)

 PIl NDVI -0.51 0.52 -0.52 -0.54

 Mississippi River lowlands

 P18 NDVI 0.56 -0.68
 P16 NDVI 0.57 -0.88
 Date of max. NDVI 0.61 -0.69

 Notes: These relationships often helped explain the correlations between the NDVI and VPMs
 with the stream data. All correlations were significant at (x = 0.05. All variables that were
 significantly correlated to an LULC class are shown. If a variable does not appear, it was not
 significantly correlated to any of the LULC classes.

 Belt, as the increased nitrogen in the receiving waters

 may increase precipitation of P and uptake by aquatic

 plants.

 Because corn in the Western Corn Belt Plains does

 not "green up" until late May/early June, NDVI from

 period 10 (mid to late May) is negatively correlated

 with N02-NO3 levels (Fig. 4c). At this time of year,

 corn is just emerging, or other fields are likely to be

 in stubble or be bare ground. These ground conditions

 produce lower NDVI values than green vegetation.

 NDVI values for period 16 (early to mid-August), how-

 ever, are positively correlated with N02-NO3 (Table 5),

 because the corn has matured and is near peak green-

 ness at this time. Notice, however, that NDVI in this

 ecoregion is not correlated with the percentage of land

 in agriculture (Table 7), although period 18 NDVI is

 negatively correlated with the percentage of grassland.

 The lack of correlation with the percentage of land in

 agriculture probably results from the lack of much var-

 iation in the percentage of land in agriculture among

 the watersheds when compared to mean onset date (Ta-

 ble 8). Thus, although the NDVI/VPMs in some in-

 stances are associated with LULC (e.g., Western High
 Plains and Western Corn Belt Plains for conductivity,

 TP, and turbidity), they apparently provide increased

 information content as well, because they are more

 highly correlated with certain stream condition param-

 eters.

 For large watersheds in the Central Irregular Plains

 (>260 kMi2), an area also having significant corn and
 soybean agriculture, period 8 NDVI (late April) values

 were strongly negatively correlated with turbidity (Ta-

 ble 6), because at this time of the year most fields have

 just been planted, or still have stubble. The standard
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 FIG. 6. Bar graph of mean LULC proportions within wa-
 tersheds of each of the selected ecoregions or size stratifi-
 cations within an ecoregion. Abbreviations are: WP, Western
 High Plains and Tablelands; FH, Flint Hills; SH, Sand Hills;
 WCB, Western Corn Belt Plains; CIP, Central Irregular Plains;
 OH, Ozark Highlands; CGP, Central Great Plains; MRL, Mis-
 sissippi River Lowlands. The proportions do not add up to
 exactly 100% in some cases because water, wetland, and bar-
 ren LULC types are not included.

 deviation of the NDVI value at the onset of greenness

 was strongly negatively correlated with turbidity levels

 in streams (Fig. 4d). The reason for this is that the

 landscape in these watersheds is overwhelmingly ag-

 ricultural, having a mean percentage of land in agri-

 culture of 88 + 6.2% (Fig. 6). Because these water-

 sheds have relatively little urban, grassland, or other

 LULC types, any deviations from agricultural land use

 in this region likely result from the presence of forest.

 Similarly, NDVI values at the onset of greenness for

 forest are different from those for wheat, corn, or sor-

 ghum, and therefore increase variability. Because most

 upland areas are cultivated, any forest is likely to be

 riparian forest, which acts to reduce turbidity levels

 and sedimentation levels in streams (Schlosser and

 Karr 1981, Carpenter et al. 1998). Period 14 NDVI

 (mid-July) was negatively correlated with the HI (Fig.

 4e). Although not correlated with the percentage of

 land in agriculture or the percentage of grassland, it is

 likely that there is a linkage. Higher mid-July NDVI

 values reflect greater intensity of late-season crops like

 corn or soybeans, and lower mid-July NDVI values

 may represent less intensive agriculture and possibly

 more intact riparian conditions that lead to increased

 habitat quality. In larger watersheds (>260 kM2) of the

 Central Great Plains, less variation in the date of max-

 imum NDVI was correlated with higher TP levels (Fig.

 4f). This relationship exists probably because the dom-

 inant LULC type is agriculture (mean percentage of

 land in agriculture = 81 + 1 1%). Any variation in these

 relatively homogeneous agricultural watersheds would

 likely stem from the presence of grassland, which

 would tend to be associated with relatively better

 stream conditions.

 Grassland regions

 In the Flint Hills (Fig. 5a), the mean onset date was

 negatively correlated with turbidity levels. Examining

 the relationship of mean onset date to LULC in the

 Flint Hills (Table 7) shows that an earlier date of onset

 of greenness indicates less grassland, which helps ex-

 plain the VPMs' negative relationship with turbidity.

 Less grassland likely indicates a more human-impacted

 system; greater amounts of agriculture were also as-

 sociated with an earlier onset date (r = -0.40, cx =

 0.10). In the Sand Hills, conductivity increases with a

 higher NDVI value at the onset of greenness (Fig. 5b).

 Table 7 shows that this value is positively related to

 the proportion of agriculture and negatively related to

 the proportion of grassland. Higher conductivity levels

 are typically associated with increased chemical con-

 tent in the stream, which is typical of increased agri-

 cultural activities.

 Forested and mixed LULC regions

 In smaller watersheds of the Ozark Highlands (<50

 km2; Fig. 5c), there was a strong negative correlation

 (r = -0.82) between standard deviation of NDVI val-

 ues at the onset of greenness and the IBI. Most wa-

 tersheds in the Ozark Highlands are predominantly for-

 ested (mean percentage of land in forest = 70%; Fig.

 6). Clearing of the land for any purpose (e.g., urban,

 agriculture, or timber harvesting) would create varia-

 tion in NDVI values at the onset of greenness, which
 logically may reflect stream conditions that are not con-

 ducive to the presence of environmentally sensitive fish

 species and in turn would likely decrease IBI scores.
 Larger watersheds in the Ozark Highlands (>260 km2;

 Fig. 5d) contrasted with watersheds of the Central

 Great Plains (Fig. 4f). In the Ozark Highlands, variation
 in the date of maximum NDVI was positively corre-
 lated with higher nutrient levels, in this case, NO-NO3

 levels (Fig. 5d). The standard deviation of the date of

 TABLE 8. Descriptive statistics for the percentage of land in agriculture and mean date of
 onset of greenness in the Western corn belt plains (>25 kM2).

 Parameter Minimum Maximum Mean SE CV

 Percentage agriculture 86.3 100 96.5 1.04 4.5
 Mean onset date (day of year) 69 128.8 102 3.64 14.7

 Note: n = 17.

This content downloaded from 131.95.218.41 on Thu, 02 Mar 2017 21:00:27 UTC
All use subject to http://about.jstor.org/terms



 1714 JERRY A. GRIFFITH ET AL. Ecological Applications Vol. 12, No. 6

 maximum NDVI for these watersheds was positively

 correlated with the percentage of land in agriculture

 and the percentage of urban land, and negatively cor-

 related with the percentage of forest cover (Table 7).

 The last example comes from the Mississippi River

 Lowlands, where strong relationships occurred be-

 tween standard deviation of the date of onset of NDVI

 and conductivity (Table 5), and period-18 NDVI (early

 September) and both IBI (Fig. 5e) and turbidity. The

 ecoregion's LULC again helps explain this relation-

 ship. NDVI at period 18 (early September) is positively

 correlated to the percentage of land in forest and neg-

 atively related to the percentage of urban land (Table
 7). More-urbanized and less-forested watersheds are

 typically more turbid relative to watersheds with other

 LULC types. NDVI at onset of greenness was nega-

 tively correlated with the percentage of urban land and

 phosphorus (Table 7). Therefore, as onset NDVI de-

 creases, there is both more urban land and higher total

 phosphorus levels. Urban lands typically provide a

 large phosphorus source to streams flowing through

 them and also increase conductivity through erosion

 and road salts (Carpenter et al. 1998). Moving away

 from urban lands thus helps explain the increase in the

 IBI scores which indicates better conditions.

 NDVI vs. LULC in water quality studies

 The reason NDVI, and the derivative VPMs, may

 have certain advantages over simple land cover pro-

 portions is that it is a biophysical integrator of con-

 ditions throughout the watershed. Mean NDVI takes

 into account multiple LULC types. For example, in a
 predominantly forested environment, mean NDVI val-

 ues capture not only the effect of forest, but also of

 urban or agricultural land, and might logically be more

 correlated with environmental conditions than any one

 of them would be singly. Classification of spectral re-

 flectance values into land cover inherently involves a
 loss of information. NDVI values, meanwhile, reflect

 the condition of vegetation at various phenological de-

 velopment states, including moisture status or in-

 creased greenness in agricultural watersheds, perhaps

 reflecting increased fertilizer application. Using NDVI

 and derived metrics can also capture temporal changes,

 as opposed to static LULC maps, which do not capture

 within-class variation and which typically are not up-

 dated annually. Moreover, because NDVI values are

 interval data as opposed to the nominal categories of

 LULC, it is possible to calculate a standard deviation

 for NDVI in a watershed, which can also estimate to

 a certain extent the regional mix of crop or land cover

 types.

 Another approach to studying the physical link

 among land cover, NDVI, plant physiology, and water
 quality is to temporally analyze the relationships of a

 controlled set of watersheds. Although affected by

 weather conditions and other factors, increased green-

 ness (NDVI) is linked to physiological activity of

 plants. Box et al. (1989) found global AVHRR patterns

 closely associated with primary production and actual

 evapotranspiration. Growing vegetation acts to se-

 quester chemicals and impede sediment transport. In

 an agricultural area, this may be associated with water

 uptake and increased uptake of nutrients such as nitro-

 gen and phosphorus, resulting perhaps in less of these

 chemicals in receiving waters. Usually, chemical and

 fertilizer applications take place when the plants are

 still young and bare ground is abundant, resulting in

 possible leaching of chemicals if they are overapplied,

 or in increased vulnerability to erosion. More research

 is needed to determine how these opposing forces coun-

 teract each other.

 Studv limitations

 The above examples illustrate the importance of

 knowing about the general levels of LULC proportions

 and crop types in a region as a key to data interpre-

 tation. Interpreting the variability in VPM values, of

 course, will depend on the current mix of LULC types.

 For example, if a watershed is mostly forested, then

 variation in NDVI or VPM values might indicate more

 degraded stream conditions. If the percentage of land

 in agriculture or urban land surpasses 50%, variation

 of the VPMs might be, in contrast, indicative of im-

 proved stream conditions.

 Human errors introduced in this study include the

 error in watershed boundary definition, error in the

 positional accuracy of the sampling point, and general

 errors in digitizing. Any small variation in the water-

 shed shape or sampling-point position, for small wa-

 tersheds in particular, could result in a large percentage

 error in land cover proportions or mean VPM values.

 In some cases, the year of water sampling did not match

 the year of NDVI data acquisition. In general, instances

 of lower r values show that factors other than LULC

 affect water quality. These factors include geology,

 slope, soils, and point sources of pollution. Multiple

 comparisons were made in this study, and although we

 did not adjust the alpha level, the consistency of the

 NDVI/VPMs significance across different ecoregions

 let us feel comfortable that these significant correla-

 tions were not spurious. Future work incorporating

 multivariate analyses may prove useful in further ad-

 dressing this issue.

 Some landscape changes have occurred since the

 time of the USGS LULC data that may have added to

 the error component found in our relationships. There

 has been an increase in Conservation Reserve Program

 lands, mainly in the central and western part of the

 study area. The amount of land conversion decreases

 as one moves east, where most of our watersheds occur.

 Since our stream site selection was based on a prob-

 ability sample of streams, there are fewer perennial
 streams in these western areas and thus fewer water-

 sheds from the west that were studied. Although in-

 creased urbanization has occurred around the metro-
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 politan areas, an examination of our watersheds shows

 that few were located in the dynamic urban-rural fringe

 areas of these cities. Finally, although we are not at

 the point of conclusively defining the mechanisms be-

 tween NDVI/VPMs and water quality, we believe the

 words of Flather and Sauer (1996) apply to the de-

 scriptive nature of studies such as ours, in which we

 have reported patterns of associations. Although they

 noted the danger of inferring causation from correla-

 tion, they stated that this should not preclude macroe-

 cological investigations. This type of data analysis

 serves an important heuristic function, can lead to in-

 sights into the factors affecting the relationships of

 interest, and can provide a context for interpreting and

 guiding future local studies (Flather and Sauer 1996).

 Significance and implications

 Results presented in this study concur with those of

 Whistler (1996), whose research on watersheds in

 northeastern Kansas showed that correlations between

 NDVI and water quality measurements were stronger

 than those between LULC proportions and water qual-

 ity. In most cases, correlations in Whistler's (1996)

 study were stronger than those found in this study. The

 reasons that are likely to account for this difference

 include Whistler's (1996) selection of watersheds,

 which was based on criteria focusing on the effects of

 LULC while controlling for other environmental fac-

 tors. Also, his study area was much smaller (thereby

 reducing variation in other environmental factors), he

 used finer resolution (80 m) NDVI data, and he per-

 formed correlations in all four seasons, wherein the

 season in which water quality samples were collected

 matched the season of the NDVI data.

 Spring correlations were highest for nitrogen in the

 Western Corn Belt Plains in Whistler's (1996) study.

 In this research as well, early growing season NDVI

 (early May to early June) or the mean date of onset of

 greenness was most highly correlated to water quality

 samples, some of which were collected later in the

 summer. An important potential benefit from NDVI or

 VPMs revealed in this study is that, because early

 growing season NDVI values were most often corre-

 lated with stream parameters, the potential exists for
 estimating summer water quality conditions with

 springtime AVHRR NDVI data. Although examining

 individual watersheds on a temporal basis is needed to

 confirm this potential, the temporal relationship held
 for both corn and wheat growing areas in this study.

 In the winter wheat belt, increased greenness was as-

 sociated with greater agriculture and poorer summer
 water quality conditions, and in the corn belt, lower
 NDVI in late spring (to late June) was indicative of
 greater bare ground and more agriculture and poorer
 water conditions as well. Thus, NDVI or VPMs may

 serve as an early warning signals of stress (Munn 1988,
 Kelly and Harwell 1990) to aquatic systems.

 This research also supports the hypotheses of Jones

 et al. (1996, 2000), who postulated that NDVI has the

 potential to characterize watershed conditions, and

 Jones et al. (1997), who found that change in NDVI

 values over a 15-yr period in the U.S. mid-Atlantic

 states was useful in assessing the relative vulnerability

 of watersheds to conditions that impact stream water

 quality (e.g., urbanization and construction of new

 roads and reservoirs). Because NDVI performed better

 than LULC proportions in this study, the implications

 of this research support adding NDVI and VPMs to the

 list of landscape indicators used for regional and na-

 tional level monitoring of watersheds.

 Furthermore, Jones et al. (1997) generalized that, at

 its simplest, watersheds covered by forests in the mid-

 Atlantic region are likely to be in better condition than

 watersheds with high percentages of intensive land

 uses. In the U.S. Central Plains, outside of heavily

 forested southern Missouri, watersheds covered by

 more grassland are likely to be in better condition than

 those covered by agriculture. Grasslands have different

 phenology than most crops, therefore the date of onset

 of greenness or date of maximum NDVI should be

 useful indicators of watershed condition. These metrics

 are especially applicable in the central Plains, where it

 would be useful to assess the water quality benefits of

 the U.S. Department of Agriculture's Conservation Re-

 serve Program, which promotes the return of cultivated

 land to native grasses.

 This research is significant because broad-scale

 screening indicators are needed to monitor the condi-

 tion of the natural resources (Messer et al. 1991, Grif-

 fith 1998, Boulton 1999). Currently, about 80% of

 freshwater stream miles in the U.S. are not assessed or

 monitored (General Accounting Office [GAO] 2000).

 Many countries, including the U.S., are developing na-

 tional-scale monitoring programs and require indica-

 tors as surrogates of ecological condition (Bernes et al.

 1986, Hirvonen 1992, Stevens 1994). In particular,

 agroecosystems need to be assessed for their sustain-
 ability and impact on the natural components (such as

 streams) of the system (LeFroy and Hobbs 1992, Walt-
 ner-Toews 1995).

 To our knowledge, this research is the first demon-
 stration of empirical NDVI-stream water-quality re-
 lationships on a regional, multistate scale. Other re-
 gional studies have either focused on LULC only (Her-
 lihy et al. 1998), or have used NDVI to characterize

 watershed vulnerability to water quality impacts with-
 out testing any empirical relationships (Jones et al.
 1996). The findings from the current study showed the
 potential for satellite-derived NDVI and VPMs to sup-
 plement ground-based investigation and to meet the
 need for more efficient, more cost-effective indicators
 of ecological condition (Kelly and Harwell 1990, Fair-
 weather 1999). NDVI or VPMs have the characteristics
 needed for successful indicators: sensitivity to change
 across space and to stresses, integrative ability, and
 easily collected and used (Kelly and Harwell 1990,
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 Bruns et al. 1992). Thus, NDVI could be added to the

 suite of indicators needed to assess water resources

 (Jones et al. 2000).

 Another significant aspect of this work is that it re-

 vealed the ability of the NDVI or VPMs to distinguish
 water quality conditions in the central Plains. McDaniel

 et al. ( 1987) found it difficult to analyze spatial patterns
 of water quality in Kansas because of a lack of diverse

 water quality conditions. Results found here showed

 that NDVI or VPMs provided additional biological in-

 formation (e.g., production, biomass, timing), and were

 able to show distinct relationships with a gradient of
 water quality conditions across ecoregions in the U.S.

 Central Plains. More research on NDVI data from new,
 finer-resolution sensors (250 m and 500 m) such as

 MODIS, which has only slightly less temporal reso-

 lution than AVHRR, would be useful to investigate

 whether these data might perform better than those

 from the AVHRR.

 Conclusions

 Statistically significant relationships were found be-

 tween selected NDVI values and vegetation phenolog-
 ical metrics, and water quality parameters or indices

 of stream/fish community condition. These relation-

 ships can be examined outside the study area because

 of the physical linkages among plant physiology, land

 cover, and NDVI/VPMS, which in turn impact water

 quality (e.g., nutrient uptake in forested watersheds

 during different seasons). The VPMs or NDVI were

 more highly correlated to water quality than simple

 land cover proportions in most cases. General knowl-

 edge about the dominance of LULC within the water-

 sheds as well as regional crop types, however, was

 important to interpreting relationships of the VPMs and

 NDVI to the stream condition parameters. Although

 more recent land cover data are optimal because of

 LULC changes, the 200 m USGS data from the late

 1970s proved adequate as a reference source. Given

 that other important factors also determine water qual-

 ity and stream condition, the strength of correlation (r2
 from 0.47 to 0.76) described here is interesting. Be-

 cause these watersheds were chosen using random sam-

 pling, these contributing factors were not controlled

 for. Still, these results demonstrate that by using this

 sample design, the relationships between the NDVI or
 VPMs and stream conditions can be discerned.

 These results warrant further investigation of the use

 of NDVI and VPMs to serve as broad-scale ecological
 indicators and screening tools for watershed monitor-

 ing and assessment. In future studies, it may be helpful

 to choose watersheds in a manner controlling for var-

 ious environmental factors (e.g., size, LULC propor-

 tions, point pollution sources, etc.) and then observe

 temporal variation of these metrics as opposed to geo-

 graphic variation. Of note is that early season NDVI
 was most often correlated to the stream parameters col-

 lected from late May through September. More research

 is needed to determine whether this temporal relation-

 ship can be used in a predictive fashion. The issue of

 whether or not NDVI/VPMs are "better" than LULC

 in examining LULC/water quality relationships is a fu-

 ture research topic. Even if one could obtain detailed,

 accurate maps of crop types, producing these on a year-

 ly basis for large areas is not feasible. Using NDVI

 and VPMs obviates the costly and time-consuming step

 of processing satellite imagery into land cover on an

 annual basis. The AVHRR and NDVI thus can serve

 as yearly screening tools for large areas to determine

 watersheds at risk to degradation due to changing crop

 acreages. Results found in this study demonstrate the

 utility of NDVI and VPMs, in addition to LULC, as

 broad-scale indicators of environmental condition.
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