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[1] We have examined historical distributions of sea surface salinity (SSS) observations
in a data set consisting of a combination of the World Ocean Database 1998 (WOD98) and
a thermosalinograph and bucket salinity database collected from volunteer observing
ships. It is well known that SSS in much of the world’s ocean is measured infrequently or
not at all. We find that 27% of one-degree squares in the world ocean (open and coastal,
excluding the Arctic Ocean) had no observations of SSS in the historical database, and
70% had 10 or fewer. Systematic sampling of SSS (more than 10,000 observations per
year globally) did not start until after 1960. Most SSS observations in the WOD98 are
concentrated in the North Sea and coast of northern Europe, the east and west coasts of
North America, and around Japan. About 28% of SSS measurements are in coastal waters.
We plotted frequency histograms of SSS for some selected well-sampled one-degree
squares in the North Atlantic and tropical Pacific. We found most frequency histograms to
be non-Gaussian. The main departure from normal distribution is due to anomalous
low-salinity measurements creating a negative skewness. This conclusion is verified as
a global phenomenon by examining statistics of mean-median SSS difference within one-
degree squares. This quantity is found to be predominantly negative over the global ocean.
These anomalous low-salinity values may be due to rainfall events, but there are other
plausible physical mechanisms, like frontal movement and eddy activity. There were also
areas where the distributions were bimodal due to the presence of meandering fronts with
little cross-frontal mixing. Examples are shown where the non-Gaussian nature of the
distributions in the areas examined is both a short-term and a long-term phenomenon. That
is, the distributions are skewed on a nearly instantaneous (�1 month) basis and averaged
over long time periods (1 + years). This has important implications for climatologies
because the differences between mean and modal SSS, for the analyzed one-degree
squares, is of order 0.1. Furthermore, the implication for validation studies for remote
sensing missions is that the studies must make enough measurements of SSS to determine
the extent to which the probability density is not Gaussian. INDEX TERMS: 4532

Oceanography: Physical: General circulation; 4572 Oceanography: Physical: Upper ocean processes; 4283

Oceanography: General: Water masses; KEYWORDS: Sea surface salinity, historical data, frequency histogram,
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1. Introduction

[2] Sea surface salinity (SSS) has long been known to be
an important, though difficult to monitor, state variable in
the coastal regime. However, only relatively recently has the
measurement of SSS taken on much interest among large-

scale physical oceanographers and climate scientists.
Indeed, an emphasis on the need for global salinity data
to improve coupled climate prediction models is being made
by the Climate Variability Program (CLIVAR) of the World
Climate Research Program and the Global Ocean Data
Assimilation Experiment (GODAE). The Salinity and Sea
Ice Working Group (http://www.esr.org/lagerloef/ssiwg/
ssiwgrep1.v2.html) has documented some of the scientific
importance of accurate determination of SSS. Global maps
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of average SSS and standard deviation have been published
(Levitus [1982], Newell et al. [1992], http://www.nodc.
noaa.gov/OC5/WOA98F/woaf_cd/search.html, Boyer et al.
[1998a, 1998b, 1998c]); so we have some idea of the
distribution of mean SSS on the largest global scale. The
main features of the mean SSS include large high-salinity
areas in the middle of the subtropical gyres of each ocean
and lower salinities in high latitudes and in the tropics
[Boyer et al., 1998a, 1998b, 1998c]. Such descriptions are
formulated by using sparsely distributed data mapped with a
large-scale (550 km [Boyer et al., 1998a, 1998b, 1998c])
spatial filter. With a few exceptions based on ship-of-
opportunity measurements [e.g., Delcroix et al., 1998;
Hénin et al., 1998; Poulos et al., 1997], we have almost
no information about the variability of SSS on monthly,
seasonal, or interannual timescales.
[3] SSS variations are important for a range of processes

in the coupled ocean-atmospheric system. Salinity, along
with temperature, controls the buoyancy of the mixed layer.
Changes in buoyancy of the mixed layer affects its dynam-
ics and thermodynamics and hence affects both the
exchange of heat and salt with the underlying ocean and
the sensible and latent heat with the overlying atmosphere.
The net gain of fresh water by the atmosphere from the
ocean (evaporation minus precipitation, or E � P) is a
poorly measured, but important, forcing for SSS. However,
where time series of sufficient length are available, the
relationship between E-P and SSS is not always straightfor-
ward and illustrates the necessity of including many of the
terms in the salinity budget of the mixed layer to understand
the relationship. For example, in the tropical Pacific, SSS
minima have been found 4�–6� poleward of the mean
maximum precipitation axes associated with the Intertrop-
ical Convergence Zone and the South Pacific Convergence
Zone [Delcroix and Hénin, 1991]. The first step beyond
looking at seasonal and annual means and standard devia-
tions is examining probability density. There are processes
such as rainfall, frontal meandering and mixing, and eddy
activity that may cause the probability density of SSS to be
non-Gaussian.
[4] In the coastal regime, where the dynamic range of

salinity variability is high, remote sensing of SSS using L
band radiometers on aircraft has demonstrated the ability to
retrieve useful data at a precision of about 1 [e.g., Miller et
al., 1998]. There have been recent developments in the
technology of measuring SSS remotely, either from space or
from an aircraft [Lagerloef et al., 1995] which promises
retrieval precision of about 0.1 at weekly to monthly time-
scales and 100 km length scales. At this level of precision,
remotely measured SSS would be useful for open ocean
measurements where the dynamic range is about 0.5
(though at any given location the temporal dynamic range
is usually much smaller). Over the past year, several NASA-
funded field campaigns have been conducted to demonstrate
the ability to retrieve open ocean SSS variability [Le Vine et
al., 2000; Wilson et al., 2000]. As of this writing, there are
plans to prepare and launch missions which will remotely
measure SSS from space (http://www.cesbio.ups-tlse.fr/
indexsmos.html).
[5] Before launching new missions to space, however,

we need to understand what the current state of knowl-
edge is regarding SSS. How well has it been measured in

the past? What areas of the ocean are well measured and
what areas are not? Are there areas in which we have any
sort of time history of SSS variability? What are typical
probability densities of SSS in given areas of the ocean?
In addition, we need to begin to formulate plans for
validation experiments that will test the accuracy of
remote measurement of SSS. What kind of validation
experiments will be necessary, and where are the optimal
regions? Various potential platforms for validation experi-
ments are or will become available: volunteer observing
ships, ARGO floats [ARGO Science Team, 1999], and
surface drifters with conductivity sensors, to name a few.
Which of these platforms could provide the accuracy and
coverage required to test remote sensing SSS retrieval
algorithms?
[6] In this paper we will try to address some of these

questions, using a database of historical SSS observations.
As we will see, the current database of SSS observations is
only barely adequate to characterize the gross features of the
salinity over most of the ocean and, except for a few
locations, completely inadequate to characterize the varia-
bility. In contrast, the sea surface temperature (SST) has
been measured much longer and is better understood.
Moreover, since the first NOAA satellites were launched
in the late 1970s, we have had continuous and comprehen-
sive remote measurement of SST. There has been great
interest in low-frequency regime shifts of SST [e.g., Tren-
berth, 1990; Tanimoto et al., 1993] and their role in the
planet’s changing climate. Could SSS play a similar role or
have similar regime shifts?

2. Data Processing

[7] Part of the SSS data set we used in this analysis was
extracted from the World Ocean Database 1998 (WOD98
[Levitus et al., 1998]). The WOD98 is a historical database,
containing measurements of SSS going back to 1874. We
extracted a subset of the database with SSS observations,
using salinities measured at 5 m or less in depth which
passed the WOD98 criteria for data quality. The creators of
the WOD98 put the data through a number of quality
control checks, checks for duplicates, standard deviation
checks, density inversion checks, etc. [Conkright et al.,
1999]. The extracted data set consists of approximately 1.1
million measurements of SSS, about half of which are from
the North Atlantic. Some discussion of the WOD98 salin-
ities can be found in the work of Boyer et al. [1998a, 1998b,
1998c]. This discussion includes smoothed maps of surface
mean and seasonal data distributions.
[8] The remainder of the SSS data set was taken from a

recently released CD-ROM issued by the Etudes Clima-
tiques de l’Océan Pacifique Tropicale (ECOP) project
[Delcroix et al., 2000] containing thousands of measure-
ments of SSS taken over 30 years, mainly from volunteer
observing ships. The data set consists of two parts, a set of
154,000 bucket measurements from 1969 to 1999 and a set
of thermosalinograph (TSG) measurements collected from
1990 to 2000 (they are still actively being collected). These
data were collected almost entirely in the tropical Pacific,
between 30�N and 30�S. Delcroix et al. [1996] have plotted
the distribution of observations from an earlier version of
this database (see their Figure 1).
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[9] There are approximately 1.45 million observations in
the TSG database. The data are collected by using contin-
uous instruments and reported typically every 5 min along a
particular ship track. Because of the high rate of sampling,
not all 1.45 million observations are independent. The 5-
min along-track observations were filtered by using a 2-
hour median filter, reducing the spatial resolution of the
sampling to approximately 0.5�. This procedure reduced the
size of the TSG database to about 86,000 observations.
[10] The bucket and reduced TSG data were combined,

and a few duplicate stations between the two data sets were
discarded. The combined ECOP data set was compared
with the WOD98 database. Any observation taken within
1� latitude and longitude and 10 days in time of a
comparable observation in the WOD98 database was con-
sidered duplicate and was discarded. The resulting TSG/
bucket database provided approximately 200,000 nondupli-
cate observations which were added to the WOD98. The
combined WOD98 and ECOP data set contains close to 1.3
million observations.
[11] In order to distinguish between land, coastal ocean,

and open sea, we used the ETOPO5 global bathymetry data
set [National Geophysical Data Center, 1988]. ETOPO5
contains estimates of elevation every 5 min, 169 estimates
per 1� square (including the edges), throughout the globe.
One-degree squares where all 169 of the elevations were
positive, or above sea level, were characterized as land.
Squares where some of the elevations were negative and
some positive were characterized as coastal ocean, and
squares where all of the elevations were negative were open
sea. By these criteria, 361,000, or about 28%, of the 1.3
million SSS observations were coastal.
[12] We plotted frequency histograms of SSS in some 1�

squares using the WOD98 data. A frequency histogram is
an estimator of the probability density function of a random
variable from a finite data set [Bendat and Piersol, 1971].

3. Results

[13] Sampling of SSS did not commence in earnest until
after 1900 (Figure 1). The number of SSS samples taken per
year in the global ocean rose exponentially between 1900

and 1970, with pauses for World Wars I and II, and then
held steady throughout the 1970s and 1980s. The dip in
number of observations after the early 1990s is likely due to
institutions not submitting their data to their countries’
oceanographic data centers in a timely manner. An anima-
tion of this is available1, or a nonanimated version using an
older data set can be found in the work of Levitus and
Gelfeld [1992]. A few major features can be pointed out,
though. SSS was sampled primarily in the North Atlantic
until the mid-1920s, when systematic observations of SSS
began to be carried out in the western North Pacific. Any
sort of global coverage, with measurements taken outside of
coastal areas, did not occur until the 1930s, with a few
exceptions. In the mid-1970s volunteer observing ship lines
began routine measurement of SSS along regular routes
across the open ocean, particularly in the and tropical
Pacific. It was not until after about 1960 that the number
of SSS measurements per year in the entire world’s oceans
exceeded 10,000.
[14] There are approximately 43,000 1� squares in the

world’s oceans (open and coastal, excluding the Arctic
Ocean, defined as being north of 80�N); so even a data
collection rate of 10,000 per year translates to less than 1
measurement per 2� � 2� box per year. Additionally, those
measurements that have been made are concentrated in a
few small areas: the east and west coasts of the United
States, the North Sea and coastal areas of Europe, near
Japan, and a few other areas (Figure 2). There are many
other areas of the ocean that are badly undersampled; 27%
of the oceans’ 1� squares have never been sampled for SSS
(Table 1), or the SSS measurements have not made it into
our database; 70% of 1� squares have less than 10 obser-
vations. Many of these undersampled areas are, as expected,
remote regions: the subtropical South Pacific and high-
latitude Southern Hemisphere oceans. However, there are
even large areas of the central North Atlantic with less than
10 observations per 1� square throughout history (Figure 2).
An analysis (not shown) of the zonally averaged number of
observations underscores a severe Northern Hemisphere
bias in the distribution. Zonally averaged around the globe,
there are 20–30 measurements per 1� square between 80�S
and 20�N. Between 20�N and 60�N, one finds a zonal
average of over 100 observations per 1� square.
[15] In order to understand probability density of 1�

square SSS, we concentrated on a few well-sampled 1�
squares in the North Atlantic (Figures 3 and 4, Table 2) and
tropical Pacific (Figures 5 and 6, Table 3). Future satellite
missions are projected to estimate SSS over a 100 km � 100
km area over a time period of 1 month. One-degree squares
have approximately the same area as a 100-km square,
depending on latitude. We use 1� squares in this paper for
convenience.
[16] One such square in the Sargasso Sea (Figures 4a and

7) shows the poor distribution of the sampling. Most of the
sampling was done during a 5-year period around 1970 with
only a few scattered measurements before or after. These
observations were taken by the U.S. Coast Guard and come

Figure 1. Distribution of SSS observations by year. Note
logarithmic scale of vertical axis.

1 Supporting material is available via Web browser or via Anonymous
FTP from ftp://ftp.agu.org, directory ‘‘apend’’ (Username = ‘‘anonymous’’,
Password = ‘‘guest’’); subdirectories in the ftp site are arranged by paper
number. Information on searching and submitting electronic supplements is
found at http://www.agu.org/pubs/esupp_about.html.

BINGHAM ET AL.: HISTORICAL SEA SURFACE SALINITY MEASUREMENTS SRF 20 - 3



from what is known as Ocean Weather Station ‘‘E’’ [Din-
smore, 1996; T. Boyer, personal communication, 2000]. The
distribution of SSS in this square (Figure 4a) is typical of
many mid-ocean areas in that it is strongly skewed toward
low salinity by a relatively small number of low outliers.
Examination of the record in this square shows that these
outliers are the signature of a small number of discrete low-
salinity events. One particularly strong event occurred in
July–November of 1970, with salinity between 35.2 and 36.
We calculated the skewness for this distribution [Press et
al., 1986] and found it to be significantly different from
zero. A useful indicator of the skewed nature of the
distribution is the difference between the mean and median
values of SSS, �0.03. This is a significant fraction of the
contemplated accuracy of satellite-based SSS platforms
(�0.1). More important, the difference between the mode
(most likely value) and the mean is 0.093, which is almost
1/2 the standard deviation. The skewness of the histogram is
possibly a result of local rainfall events temporarily low-
ering the surface salinity. Another possibility is that the Gulf
Stream front separates relatively constant and high Sargasso
Sea salinities from relatively more variable and lower-
salinity slope waters. That means that eddies that make it
across the Gulf Stream front could have a range of salinities

(all lower than the Sargasso Sea waters), and so eddies
could also create a salinity distribution that is negatively
skewed rather than strictly bimodal.
[17] A square in the Gulf Stream (Figures 3, 4b) was

sampled over a 10-year period during the 1970s. Most of
these data were collected for the purpose of studying Gulf
Stream meanders [Robinson et al., 1974]. This square has a
SSS distribution that is somewhat bimodal owing to the
presence of the Gulf Stream front that meanders back and
forth across the square. It still shows a strong negative
skewness, with a significant number of observations at very

Table 1. Number of 1� Squares With Given Number of

Observationsa

Number of Observations Number of 1� Squares

0 11,768b

1 5,074
2–10 13,304
11–100 10,090
101–1000 2,350
1001–10,000 144
>10,000 1

aFor example, there are 5,074 1� squares that have only one observation
of SSS. The total number of 1� squares on Earth is 64,800. The total
number of squares that are either open ocean or coastal and are not in the
Arctic Ocean is approximately 43,000.

bNot including land areas.

Figure 3. Number of historical SSS observations per 1�
square in the North Atlantic. Note slightly different scale
from Figure 2. Light gray, �30 observations; dark gray,
�100 observations; and black, �1000 observations. No fill
means less than 30 observations. Dark circles at (35.5�W,
52.5�N), (69.5�W, 36.5�N), and (47.5�W, 34.5�N) are
squares listed in Table 2 and have details of data distribution
shown in Figures 4a–4c.

Figure 2. Number of historical SSS observations per 1� square. Blue, >10 observations; green, >100
observations; and red, >1000 observations. No color means less than 10 observations.

SRF 20 - 4 BINGHAM ET AL.: HISTORICAL SEA SURFACE SALINITY MEASUREMENTS



low salinity. The example of this square shows another type
of SSS distribution that may be common in the ocean, that
is, a bimodal distribution. One would expect to find this
type of distribution near salinity fronts and especially in
coastal areas. Again, the difference between the mode and
the mean is large, being over 1/2 the standard deviation.
[18] A square in the central North Atlantic (Figures 3, 4c)

has an enormous number of observations (Table 2). Thou-
sands of samples per year were taken here from the mid-
1960s to the late 1980s. This is the site of Ocean Weather
Station ‘‘C’’. It was occupied by the U.S. Coast Guard from
1948 to 1973 (who made temperature measurements only)
and by the Soviet Hydrometeorological Service from 1975
to 1989 [Levitus et al., 1994]. The total number of obser-
vations at this square is over 25,000, or about 3% of all
open ocean observations in the WOD98 database. There is
again a small but significant number of observations at low
salinity; the difference between the mean and median is
�0.06, and the difference between the mode and mean is
0.73, which is over 1/2 the standard deviation. Two further
analyses of the data from this square are done. First, we
calculated the frequency histogram of temperature anomaly
from the monthly mean (Figure 8). This histogram is quite
different from the SSS distribution. It has relatively few
outliers and appears normally distributed. The skewness is

Figure 4. Frequency histograms of SSS in selected 1�
squares in the North Atlantic. See Table 2 for square
locations.

Figure 5. Number of historical SSS observations per 1�
square in the western tropical Pacific. Light gray, >30
observations; dark gray, >100 observations. There are no
squares with more than 1000 observations in this region. No
fill means less than 30 observations. Dark circles at (4�S,
156�E) and (19.5�S, 173.5�E) are squares listed in Table 3
and have details of data distribution shown in Figures 6a
and 6b.

Table 2. Individual 1� Squares in the North Atlantic

Latitude Longitude Description Figure
Number of
Observations

34.5�–35.5�N 47.5�–48.5�W Sargasso Sea 4a 1,948
36�–37�N 69�–70�W Gulf Stream 4b 614
52�–53�N 35�–36�W central N. Atlantic 4c 25,267
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nonzero but much smaller than the standard deviation,
unlike many of the SSS distributions examined. The mean,
median, and mode are all very close to each other. The
nonskewed nature of the SST has allowed comparison of
remotely sensed and in situ SST to be carried out success-
fully for many years. Second, we calculated a time history
of the SSS frequency histogram as a function of year from
1975 to 1990 (Figure 9). This figure shows the changing
shape of the frequency histogram over the years and some
fascinating interannual variability in the yearly mean. Most

individual yearly distributions are negatively skewed,
although some years are more so than others. In most years
the mean salinity is different from the mode by at least 0.1.
[19] As we have seen, frequency histograms of SSS for

various squares vary, and the temporal sampling varies, but
for most areas of the ocean the skewness of the data
distribution is apparent. Most oceanic SSS data are not
normally distributed with the data tailing off toward the
negative end of the distribution. This is not always the case,
though. An example from the Coral Sea [Hénin et al., 1980,
1982] shows a 1� square where the distribution has a
positive skewness (Figures 5, 6a). (An area such as this,
where the distribution of SSS is not skewed, would be a
good candidate for validation study for a SSS mission. This
area is relatively warm and fresh. Salinity variability in

Figure 6. Frequency histograms of SSS in 1� squares in
tropical Pacific centered at (a) (19.5�S, 173.5�E) and (b)
(4�S, 156�E). In Figure 6b, Note all observations were
collected in a 2-month period, December 1992–February
1993, as part of the TOGA-COARE experiment.

Figure 8. Frequency histogram of surface temperature
anomaly for the central North Atlantic 1� square (Figures 3
and 4c). Temperature anomaly was calculated by computing
a monthly mean for all observations in the square and taking
anomalies from that monthly mean.

Figure 7. Time history of sampling in the 1� square at
(35.5�W, 52.5�N) (Figures 3 and 4c).

Table 3. Individual 1� Squares in the Western Tropical Pacific

Latitude Longitude Description Figure
Number of
Observations

3.5�–4.5�S 155.5�–156.5�E western Pacific 6a 335
19�–20�S 173�–174�E Coral Sea 6b 253
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warm and fresh waters has a relatively larger effect on
brightness temperature than it does in colder waters [Lager-
loef et al., 1995].) This area is one where there is a network
of SSS observations currently being carried out at a high
intensity [Delcroix et al., 2000].
[20] A final example is from the western equatorial

Pacific. This region is the site of the TOGA-COARE
experiment during 1992 and 1993 [Webster and Lukas,
1992]. The only measurements of SSS here are from

Tropical Ocean–Global Atmosphere/Coupled Ocean-
Atmosphere Response Experiment (TOGA-COARE), in
an area centered at 4�S, 156�W during an approximately
2-month period, December 1992–February 1993. As in the
other squares, the SSS distribution is skewed (Figures 5, 6b)
with the mode 0.27 above the mean. The mode is again over
1/2 of the standard deviation of 0.430.
[21] Negative skewness in the salinity frequency histo-

gram is a common feature throughout the ocean. To show
this, we have calculated the difference between mean and
median SSS for all 1� squares in the world ocean with more
than 10 observations. A histogram of this quantity shows it
to be negative for most 1� squares (Figure 10). When the
distribution of SSS is negatively skewed, we would expect
this quantity to be negative. The ensemble mean SSS is
offset low in relation to the ensemble median as a result of
low outliers. Maps of the mean-median difference over the
globe were examined but are not reproduced here. If our
conjecture about this negative skewness being a result of
rainfall is correct, we would expect the mean-median differ-
ence to be correlated with areas of documented high rainfall
[Baumgartner and Reichel, 1975; Spencer, 1993; Huffman
et al., 1997]. They showed some slight correlation but were
somewhat noisy and inconclusive. With the present data set
we were not able to detect a clear pattern.
[22] Although the global ocean average precipitation (P)

and evaporation (E) are in near balance, P occurs in a more
episodic fashion than E, and during these episodes the
volume flux of fresh water across the surface is greater
than for P than for E. For example, Johnson et al. [1996]
show daily averaged P and E values from the TOGA-
COARE intensive flux array over a 3-month period. Over
the time period, P rates are highly variable with peaks of
about 20 mm/d. E rates are more stable, hovering in the
range 3–5 mm/d. Given that E is a slower but steadier
process and is destabilizing (cooling and increased salinity),
it is likely that negative skewness would occur. Even at a
location where P and E are in balance, salinity anomalies

Figure 9. Frequency histograms of SSS for 15 years of
intensive observations in the central North Atlantic 1�
square (Figures 3 and 4c). A scale is indicated in the
histogram for the year 1980. The box offset from the line
shows the scale for 500 observations. Heavy circles in each
year are mean SSS values.

Figure 10. Histogram of the mean-median SSS difference
for all 1� squares with more than 10 observations over the
globe. Note logarithmic scale on the vertical axis. For
comparison, bar heights from the negative axis are reflected
onto the positive axis by a dashed line.
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due to P would be longer lived, and those due to E would
mix away more quickly with the underlying water. To show
a small example of how rainfall events influence the SSS,
we have extracted SSS and precipitation data (Figure 11)
from a mooring at 0�, 165�E from the TOGA Tropical
Atmosphere-Ocean (TAO) array [McPhaden et al., 1998].
This 1-month piece of record is typical in that it shows the
strong and short-term nature of the influence of rainfall on
the surface layer. Low-salinity events occur in association
with precipitation. The frequency histogram of the entire
record of SSS at this location (not shown) is skewed very
much like that at the western tropical Pacific area described
earlier (Figure 6b). It is easy to see why from this part of the
time series.

4. Discussion

[23] Salinity is a notoriously difficult quantity to measure
accurately, and thus there are many possibilities for errors. It
is important to address the question of whether the negative
skewness results could be due to measurement errors. TSG
intakes on fast-moving ships can become contaminated by
bubbles and give low readings. Conductivity and associated
temperature sensors can have timing mismatches, leading to
salinity spiking. Conductivity cells are subject to calibration
drift. Bucket measurements can be contaminated by rain-
water or excessive evaporation before being run through a
salinometer. The relevant question is whether any of these
types of errors can result in the overwhelmingly negative
bias shown in this paper. We cannot make any definitive
conclusion on this question here; however, we can make

some statements. Most of the examples studied in Figures 4
and 6 are derived from bucket measurements, making these
examples exempt from problems associated with TSGs.
Indeed, except for the data from the tropical Pacific, bucket
measurements dominate our database. Even the TSG data
we used were processed with a median filter, which is
specifically designed to reduce the number of outliers. It is
difficult to imagine a process by which bucket salinities
could have an overwhelmingly negative bias. Reverdin et al.
[1994] specifically note the main problem with bucket
measurements collected in the North Atlantic is the presence
of salt crystals in the buckets before collection and evapo-
ration from samples during storage. Both of these problems
would tend to lead to salinity measurements biased high
rather than low. Thus although measurement error cannot be
ruled out as the source of the negative skewness, it seems
unlikely.
[24] We have found negative skewness in the SSS dis-

tribution over decadal scales (e.g., Ocean Weather Station
C) to monthly scales (e.g., the TOGA-COARE site). Satel-
lite systems will most likely measure some weighted aver-
age of the SSS over the footprint of the spacecraft.
Validation experiments designed to test satellite algorithms
must take the basic skewness of the SSS field into account.
What a satellite measures may be very different from what
is measured by one-point measurement, even one repeated
over the course of a month. One of the main ways of
validating the remotely sensed SSS may be through com-
parison with ARGO floats. Since ARGO floats pop up in
random times and at random places, the value of SSS
measured by an ARGO float will be closest to the mode

Figure 11. (top) Precipitation rate and (bottom) SSS from TOGA TAO mooring at 0�, 165�E, May–
June 1999 [McPhaden et al., 1998]. The record shown is a piece of a longer record of length
approximately 1 year.
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of the SSS distribution, the most likely value. We will likely
find that the satellite measurement, since it is close to the
average SSS as opposed to the mode, is biased low as
compared with the floats. The amount of bias will depend
on the probability density of SSS at the time of comparison
and may be between 0 and 0.1. A better type of validation
study for the satellite mission would be one where the
measurements were intensive enough in one area to
adequately measure SSS to get values for the mean, median,
and mode of the field. This type of information might best
be collected by volunteer ships that frequently cross a
particular area or by a seeding of an area with surface
drifters equipped with conductivity cells (assuming their
calibration drift could be corrected). Another option is to
find areas of the ocean where the SSS is normally distrib-
uted. We speculate that such an area would be one of very
low rainfall. We found one such square in the Coral Sea, but
a further search of the historical database may reveal other
areas.
[25] A caveat to the above analysis is that the importance

of the skewed SSS distribution for calibrating and validating
measurements from space will depend upon the relative
contributions of skewness due to temporal and spatial
variability and the length scales of those variations. For
example, if the skewness is due to temporal variations with
longer timescales than the separation between in situ and
remote measurements and the length scales of variability are
larger than the satellite footprint, then there is not a problem
in comparing the measurements. Skewness in regions of
large-scale organized convection may be coherent over a
satellite footprint. In these regions a more fundamental
problem may be temporary fresher rain lenses riding on
top of the mixed layer.
[26] The conclusions reached here also have implications

for published climatologies like the climatology of Boyer et
al. [1998a, 1998b, 1998c]. The algorithm used to calculate
such climatological values is a weighted average of histor-
ical measurements over some area. What values the algo-
rithm calculates in a given area is a function of how the
weighting works and what influence radius is chosen. If
there is a significant skewness in the observations, the
climatology will be biased low in comparison with what
would be typically observed. How much bias depends on
the probability density of SSS in the area but, from the
results shown here, may be up to 0.1. Because subsurface
waters are not as directly affected by rainfall events,
frequency histograms of subsurface salinity away from
frontal regions may not be negatively skewed like the
surface distributions. Whether this effect is present or
significant in climatological profiles is a subject for future
research.

5. Conclusions

[27] We have examined historical distributions of SSS
observations in the WOD98 database. Figures 1 and 2 and
Table 1 give a good indication of how poorly sampled SSS
is in the ocean. This is especially true given that about 28%
of the measurements in the database are in coastal waters. If
we believe that SSS is an important variable for under-
standing ocean circulation, this analysis gives strong justi-
fication for increased efforts to measure it. The analysis

points out that a significant benefit from satellite measure-
ments of SSS will be in the discovery process when SSS
data are collected from the 27% of the (non-Arctic) 1�
squares in the world ocean that have no SSS measurements
and the 70% that have 10 or fewer measurements.
[28] We plotted frequency histograms of SSS for some

selected 1� squares in the North Atlantic and tropical
Pacific. We found most frequency histograms to be non-
Gaussian. The main departure from normal distribution is
due to anomalous low-salinity measurements creating a
negative skewness. Fronts such as the Gulf Stream are
locations of non-Gaussian, bimodal distributions. The
non-Gaussian nature of the distributions in the areas exam-
ined may be both a short-term and a long-term phenom-
enon. We have seen examples of histograms skewed on a
nearly instantaneous (�1 month) basis and averaged over
long time periods (1 + years). The implication for validation
studies for remote sensing missions is that the studies must
make enough measurements of SSS to determine the extent
to which the probability density is not Gaussian. A region
(Coral Sea) was identified where SSS is normally distrib-
uted which would make calibration/validation studies sim-
pler. Future work will focus on finding similar regions.
[29] There are three basic sources of data for calibration/

validation studies of a future satellite mission: ARGO floats
and surface drifter data, TSG-equipped ships of opportunity,
and dedicated measurements. The former two types are the
most economical from the standpoint of mission funding.
While ARGO floats will prove to be invaluable, care must
be taken in the comparison with satellite data where the SSS
statistics are not well known. Volunteer observing ships
provide very good SSS statistics on a regional basis and
have the important property that the measurements are
repeated. However, funding is tenuous for many of these
measurements. Currently, NOAA has no funding committed
for replacing TSGs should any of the systems become
unrepairable on the vessels in its program (G. Thomas,
personal communication, 2000). Future work will identify
which areas and vessels are most suitable for calibration/
validation efforts so that suggestions can be made of where
to set priorities for funding in the event of TSG system
failures.

[30] Acknowledgments. S. Levitus and T. Boyer helped in the
interpretation of WOD98. Two anonymous reviewers, J. Toole (JGR
editor), and G. Lagerloef read the manuscript carefully and gave thoughtful
comments. TOGATAO data provided by the TAO Project Office, Michael
J. McPhaden, Director. Funding was provided by the National Science
Foundation under grant OCE-9711300. CMS contribution 275.

References
ARGO Science Team, On the design and implementation of ARGO: An
initial plan for a global array of profiling floats, 32 pp., Int. CLIVAR Off.,
Southampton, UK, 1999.

Baumgartner, A., and E. Reichel, The World Water Balance, 179 pp., Else-
vier Sci., New York, 1975.

Bendat, J. S., and A. G. Piersol, Random Data: Analysis and Measurement
Procedures, 407 pp., Wiley-Interscience, New York, 1971.

Boyer, T., S. Levitus, J. Antonov, M. Conkright, T. O’Brien, and C. Ste-
phens, World Ocean Atlas 1998, vol. 4, Salinity of the Atlantic Ocean,
166 pp., Nat. Oceanogr. Data Cent., Ocean Clim. Lab., Silver Spring,
Md., 1998a.

Boyer, T., S. Levitus, J. Antonov, M. Conkright, T. O’Brien, and C. Ste-
phens,World Ocean Atlas 1998, vol. 5, Salinity of the Pacific Ocean, 166
pp., Nat. Oceanogr. Data Cent., Ocean Clim. Lab., Silver Spring, Md.,
1998b.

BINGHAM ET AL.: HISTORICAL SEA SURFACE SALINITY MEASUREMENTS SRF 20 - 9



Boyer, T., S. Levitus, J. Antonov,M. Conkright, T. O’Brien, and C. Stephens,
World Ocean Atlas 1998, vol. 6, Salinity of the Indian Ocean, 166 pp., Nat.
Oceanogr. Data Cent., Ocean Clim. Lab., Silver Spring, Md., 1998c.

Conkright, M., et al., World Ocean Database 1998, CD-ROM data set doc.
version 2.0, 144 pp., Ocean Clim. Lab., Nat. Oceanogr. Data Cent., Silver
Spring, Md., 1999.

Delcroix, T., and C. Hénin, Seasonal and interannual variations of sea sur-
face salinity in the tropical Pacific Ocean, J. Geophys. Res., 96(C12),
22,135–22,150, 1991.

Delcroix, T., C. Hénin, V. Porte, and P. Arkin, Precipitation and sea-surface
salinity in the tropical Pacific, Deep Sea Res., Part I, 43(7), 1123–1141,
1996.

Delcroix, T., L. Goudreau, and C. Hénin, Sea surface salinity changes along
the Fiji-Japan shipping track during the 1996 La Niña and 1997 El Niño
period, Geophys. Res. Lett., 25(16), 3169–3172, 1998.

Delcroix, T., C. Hénin, F. Masia, and D. Varillon, Three decades of in situ
sea surface salinity measurements in the tropical Pacific Ocean, CD-
ROM, Inst. de Rech. pour le Dev., Noumea, New Caledonia, 2000.

Dinsmore, R., Alpha, Bravo, Charlie . . ., Oceanus, 39(2), 9–11, 1996.
Hénin, C., H. Ferrer, J. Marcille, P. Waigna, S. Waigna, H. Walico,
F. Fougerie, T. Boely, and Y. Dandonneau, Data from the cruise Hydro-
thon 04 of R.V. Coriolis: 19 June–13 July 1979, Orstom, Noumea, New
Caledonia, 1980.

Hénin, C., L. Chabert, and J. M. Guillerm, Surface oceanographic data on
R.V. Vauban from 1978 to 1980, Orstom, Noumea, New Caledonia,
1982.

Hénin, C., Y. D. Penhoat, and M. Ioualalen, Observations of sea surface
salinity in the western Pacific fresh pool: Large-scale changes in 1992–
1995, J. Geophys. Res., 103(C4), 7523–7536, 1998.

Huffman, G. J., et al., The Global Precipitation Climatology Project
(GPCP) combined precipitation data set, Bull. Am. Meteorol. Soc., 78,
5–20, 1997.

Johnson, R. H., P. E. Ciesielski, and K. A. Hart, Tropical inversions near the
0 degree C level, J. Atmos. Sci., 53(13), 1838–1855, 1996.

Lagerloef, G. S., C. T. Swift, and D. M. Le Vine, Sea surface salinity: The
next remote sensing challenge, Oceanography, 8(2), 44–50, 1995.

Le Vine, D. M., C. Koblinsky, S. Howden, and M. Goodberlet, Salinity
Measurements during the Gulf Stream Field Experiment, in IGARSS
2000, Inst. of Electr. and Electron. Eng., New York, 2000.

Levitus, S., Climatological Atlas of the World Ocean, NOAA Prof. Pap. 13,
173 pp., Natl. Oceanic and Atmos. Admin., Silver Spring, Md., 1982.

Levitus, S., and R. Gelfeld, National Oceanographic Data Center Inventory
of Physical Oceanographic Profiles, 242 pp., Nat. Environ. Satell., Data
and Inf. Serv., Natl. Oceanic and Atmos. Admin., Washington, D. C.,
1992.

Levitus, S., J. Antonov, and T. Boyer, Interannual variability of temperature
at a depth of 125 meters in the North Atlantic Ocean, Science, 266(5182),
96–99, 1994.

Levitus, S., T. Boyer, M. Conkright, T. O’Brien, J. Antonov, C. Stephens,
L. Stathopolos, D. Johnson, and R. Gelfeld, World Ocean Database

1998, vol. 1, Introduction, 346 pp., Nat. Oceanogr. Data Cent., Ocean
Clim. Lab., Silver Spring, Md., 1998.

McPhaden, M. J., et al., The Tropical Ocean–Global Atmosphere obser-
ving system: A decade of progress, J. Geophys. Res., 103(C7), 14,169–
14,240, 1998.

Miller, J., M. A. Goodberlet, and J. B. Zaitzeff, Airborne salinity makes
debut in the coastal zone, Eos Trans. AGU, 14(79), 173, 1998.

National Geophysical Data Center, Digital Relief of the Surface of the
Earth, Boulder, Colo., 1988.

Newell, R. E., A. Cano-Ruiz, T. J. Houghtby, and J. Hsuing, Global salinity
patterns from the MOODS, Ocean Air Interact., 1, 311–343, 1992.

Poulos, S. E., P. G. Drakopoulos, and M. B. Collins, Seasonal variability in
sea surface oceanographic conditions in the Aegean Sea (eastern Medi-
terranean): An overview, J. Mar. Syst., 13, 1–4, 1997.

Press, W. H., B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical
Recipes: The Art of Scientific Computing, 818 pp., Cambridge Univ.
Press, New York, 1986.

Reverdin, G., D. Cayan, H. D. Dooley, D. J. Ellett, S. Levitus, Y. Du
Penhoat, and A. Dessier, Surface salinity of the North Atlantic: Can we
reconstruct its fluctuations over the last one hundred years?, Prog. Ocea-
nogr., 33(4), 303–346, 1994.

Robinson, A. R., J. R. Luyten, and F. C. Fuglister, Transient Gulf Stream
meandering, part I, An observational experiment, J. Phys. Oceanogr.,
4(2), 237–255, 1974.

Spencer, R. W., Global oceanic precipitation from the MSU during 1979–
1991 and comparisons to other climatologies, J. Clim., 6, 1301–1326,
1993.

Tanimoto, Y., N. Iwasaka, K. Hanawa, and Y. Toba, Characteristic varia-
tions of sea surface temperature with multiple time scales in the North
Pacific, J. Clim., 6, 1153–1160, 1993.

Trenberth, K. E., Recent observed interdecadal climate changes in the
Northern Hemisphere, Bull. Am. Meteorol. Soc., 71, 988–993, 1990.

Webster, P. J., and R. Lukas, The Tropical Ocean/Global Atmosphere
Coupled Ocean-Atmosphere Response Experiment (COARE), Bull.
Am. Meteorol. Soc., 73, 1377–1416, 1992.

Wilson, W. J., S. H. Yueh, F. Li, and S. D. Howden, Open ocean test of
precision microwave aircraft instrument for ocean salinity remote sen-
sing, Eos Trans. AGU, 90(49), Ocean Sci. Meet. Suppl., 05150, AGU,
Washington, D. C., 2000.

�����������������������
F. M. Bingham, Center for Marine Science, University of North Carolina

at Wilmington, 5600 Marvin K. Mass Lane, Wilmington, NC 28409, USA.
(bigkahuna@fredbingham.com)
S. D. Howden, Department of Marine Science, University of Southern

Mississippi, Stennis Space Center, MS 39529, USA.
C. J. Koblinsky, NASA Goddard Space Flight Center, Greenbelt, MD

20771, USA.

SRF 20 - 10 BINGHAM ET AL.: HISTORICAL SEA SURFACE SALINITY MEASUREMENTS


	The University of Southern Mississippi
	The Aquila Digital Community
	12-18-2002

	Sea Surface Salinity Measurements in the Historical Database
	Frederick M. Bingham
	Stephan D. Howden
	Chester J. Koblinsky
	Recommended Citation


	Sea surface salinity measurements in the historical database

