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Integral and Nonnegativity Preserving

Approximations of Functions

J. Ding

Department of Mathematics, The University of Southern Mississippi, Hattiesburg,

MS 39406-5045, USA

Larry Eifler, N.H. Rhee ∗

Department of Mathematics and Statistics, University of Missouri at Kansas City,

Kansas City, MO 64110-2499, USA

Abstract

In this paper we consider the problem of approximating a function by continuous
piecewise linear functions that preserve the integral and nonnegativity of the original
function.

Key words: Integral preserving, Positivity preserving

1 Introduction

The problem of approximating a function by piecewise polynomials is central
in many branches of mathematics. In this paper we consider the following
problem: given a finite uniform partition of the unit interval I = [0, 1] or the
unit square I×I = [0, 1]×[0, 1], find a continuous piecewise linear function that
is integral and nonnegativity preserving for every integrable function. This
problem has applications in, e.g., the numerical analysis of Markov operators
in stochastic analysis and Frobenius-Perron operators in ergodic theory [2].
For example, the famous Ulam conjecture [6], [5] is related to integral and
nonnegativity preserving approximations via piecewise constant functions.
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In the next section we give two results for L1 spaces. Then in Sections 3 and
4 we concentrate on the context of L1(I) and L1(I × I), respectively.

2 Some Averaging Operators on L1(X)

Let (X,A, P ) be a probability space and let ψ0, ψ1, . . . , ψm be nonnegative
A-measurable functions on X such that ψ0 +ψ1 + · · ·+ψm = 1. Assume that
ψ0, ψ1, . . . , ψm are linearly independent in L1(X) and let Ψm denote the linear
span of ψ0, ψ1, . . . , ψm in L1(X).

Let T be a continuous linear operator from L1(X) to Ψm. Given f ∈ L1(X)
and g ∈ L∞(X), define 〈f, g〉 =

∫
X fg dP . Since the dual of L1(X) is L∞(X),

there exist w0, , w1, . . . , wm ∈ L
∞(X) such that

T (f) =
m∑

i=0

〈f, wi〉ψi for each f ∈ L1(X).

T is called nonnegative if T maps nonnegative functions to nonnegative func-
tions. We say that T preserves integrals if

∫
X T (f) dP =

∫
X f dP for each

f ∈ L1(X). We say that T is an averaging operator from L1(X) to Ψm if
T (1) = 1 and if T is nonnegative and preserves integrals.

Theorem 1 Let ψ0, ψ1, . . . , ψm and Ψm be as above. Let w0, w1, . . . , wm ∈
L∞(X) and define T : L1(X)→ Ψm by

T (f) =
m∑

i=0

〈f, wi〉ψi for each f ∈ L1(X).

(1) T (1) = 1 if and only if 〈1, wi〉 = 1 for i = 0, 1, . . . ,m.
(2) T is nonnegative if wi ≥ 0 a.e. for i = 0, 1, . . . ,m.
(3) T preserves integrals if and only if

∑m
i=0 〈ψi, 1〉wi = 1 a.e.

PROOF. (1): Suppose T (1) = 1. Then
∑m
i=0 ψi = 1 = T (1) =

∑m
i=0 〈1, wi〉ψi.

Hence, 〈1, wi〉 = 1 for i = 0, 1, . . . ,m. The converse is clear. (2): Clearly T is
nonnegative if wi ≥ 0 a.e. for i = 0, 1, . . . ,m. (3): If f ∈ L1(X), then

〈T (f), 1〉 =

〈
m∑

i=0

〈f,wi〉ψi, 1

〉

=
m∑

i=0

〈f, wi〉 〈ψi, 1〉 =

〈

f,
m∑

i=0

〈ψi, 1〉wi

〉

.

Hence,
∑m
i=0 〈ψi, 1〉wi = 1 a.e. if and only if 〈T (f), 1〉 = 〈f, 1〉 for each f in

L1(X). �
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Note. Let X = I with the Lebesgue measure. Suppose ψ0(x) = 1− x/2 and
ψ1(x) = x/2. If we choose w0 = 1 and w1 = −1, then Tf(x) = 〈f, 1〉 (1 − x)
and so T is nonnegative. Thus T is nonnegative does not imply that wi ≥ 0
for all i.

Theorem 2 Let ψ0, ψ1, . . . , ψm and Ψm be as above. Let V0, V1, . . . , Vm ∈ A
such that P (Vi) > 0 for each i = 0, 1, . . . ,m. Define Q : L1(X) → Ψm by

Q(f) =
m∑

i=0

〈

f,
1

P (Vi)
χVi

〉

ψi for each f ∈ L1(X).

Assume P (Vi ∩ Vj) = 0 if i �= j. Then Q is an averaging operator from L1(X)
to Ψm if and only if 〈ψk, 1〉 = P (Vk) for each k = 0, 1, . . . ,m.

PROOF. Set wi = 1
P (Vi)

χVi for i = 0, 1, . . . ,m. Assume Q is an averaging

operator from L1(X) to Ψm. By Theorem 1(3),
∑m
i=0 〈ψi, 1〉wi = 1 a.e. Thus,

for k = 0, 1, . . . ,m, we have

P (Vk) = 〈χVk , 1〉 =
m∑

i=0

〈χVk , wi〉 〈ψi, 1〉 = 〈ψk, 1〉 .

Assume 〈ψk, 1〉 = P (Vk) for each k = 0, 1, . . . ,m. Then

1 = 〈1, 1〉 =

〈
m∑

k=0

ψk, 1

〉

=
m∑

k=0

〈ψk, 1〉 =
m∑

k=0

P (Vk).

Since P (Vi ∩ Vj) = 0 for i �= j, it follows that
∑m
k=0 χVk = 1 a.e. and so

∑m
i=0 〈ψi, 1〉wi =

∑m
i=0 χVi = 1 a.e. Thus Q preserves integrals by Theorem

1(3). �

3 Some Averaging Operators on L1(I)

Divide I = [0, 1] into n equal subintervals Ii = [xi−1, xi] for i = 1, 2, . . . , n.
Let h = 1/n = m (Ii), where m is the Lebesgue measure. Let Φn denote the
space of all continuous piecewise linear functions associated with the partition
0 = x0 < x1 < · · · < xn = 1. Let ϕi be the unique function in Φn such that ϕi
is 1 at the node xi and 0 at all other node points. The (n+1) nodal functions
{ϕi}

n
i=0 form a canonical basis for Φn.

Let T be a continuous linear operator from L1(I) to Φn. There exist wi ∈
L∞(I) for i = 0, 1, . . . , n such that

T (f) =
n∑

i=0

〈f,wi〉ϕi for each f ∈ L1(I).
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Theorem 3 Let w0, w1, . . . , wn ∈ L
∞(I) and define T : L1(I)→ Φn by

T (f) =
n∑

i=0

〈f,wi〉ϕi for each f ∈ L1(I).

(1) T (1) = 1 if and only if 〈1, wi〉 = 1 for i = 0, 1, . . . , n.
(2) T is nonnegative if and only if wi ≥ 0 a.e. for i = 0, 1, . . . , n.
(3) T preserves integrals if and only if w0 + 2

∑n−1
i=1 wi + wn = 2n a.e., or

equivalently, 1
n

∑n
i=1(wi−1 + wi)/2 = 1 a.e.

PROOF. Parts (1) and (3) follow from Theorem 1. In part (3), we need to
use 〈ϕ0, 1〉 = 〈ϕn, 1〉 = 1/2n and 〈ϕi, 1〉 = 1/n for 1 ≤ i ≤ n − 1. Clearly T
is nonnegative if wi ≥ 0 a.e. for i = 0, 1, . . . , n. Suppose T is nonnegative. Let
Ai = {x : wi(x) < 0}. Then

0 ≤ T (χAi)(xi) =
n∑

j=0

〈χAi , wj〉ϕj(xi) = 〈χAi , wi〉 .

Hence m(Ai) = 0 and so wi ≥ 0 a.e. for i = 0, 1, . . . , n. �

Note. Let T be defined as in Theorem 3. If T (1) = 1 and if T preserves
integrals, then T need not be nonnegative even for the case n = 1. Simply
take w0 = 3χ[0,1/2] − χ[1/2,1] and w1 = 3χ[1/2,1] − χ[0,1/2].

Let Si be the closed support of ϕi and let Vi be a closed subinterval of Si such
that m(Vi) > 0 for i = 0, 1, . . . , n. Define Qn : L1(I)→ Φn by

Qn(f) =
n∑

i=0

〈

f,
1

m(Vi)
χVi

〉

ϕi for each f ∈ L1(I).

Then Qn satisfies the conditions in (1) and (2) of Theorem 1. We wish to find
V0, V1, . . . , Vn such that Qn is an averaging operator from L1(I) to Φn.

Example 4 Set wi =
1

m(Si)
χSi for i = 0, 1, . . . , n. Define αn : L1(I) → Φn by

αn(f) =
n∑

i=0

〈f, wi〉ϕi for each f ∈ L1(I).

Using Theorem 3, it is easy to check that αn is an averaging operator from
L1(I) to Φn. Clearly wi ≥ 0 and 〈1, wi〉 = 1 for i = 0, 1, . . . , n. Also, w0 +
2
∑n−1
i=1 wi + wn = 2n except at the points {x1, . . . , xn−1}.
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Note. αn was first constructed in [1] to calculate fixed densities of Frobenius-
Perron operators associated with chaotic interval mappings.

Example 5 Let W0 = [0, h/2], Wn = [1−h/2, 1] and Wi = [xi−h/2, xi+h/2]
for i = 1, . . . , n−1. Set wi =

1
m(Wi)

χWi
for i = 0, 1, . . . , n. Define βn : L1(I) →

Φn by

βn(f) =
n∑

i=0

〈f, wi〉ϕi for each f ∈ L1(I).

Using Theorem 3, it is easy to check that βn is an averaging operator from
L1(I) to Φn. Clearly wi ≥ 0 and 〈1, wi〉 = 1 for i = 0, 1, . . . , n. Also, w0 +
2
∑n−1
i=1 wi + wn = 2n except at the points {x0 + h/2, . . . , xn−1 + h/2}.

Note. It has been shown [3] that βnf is a better approximation to f ∈ L1(I)
than αnf .

Let V0, . . . , Vn and Qn be as above. If Qn is integral preserving and if E is a
subinterval of [xk, xk+1] and 0 ≤ k < n, then

m(E) = 〈χE, 1〉 = 〈Qn(χE), 1〉 =
n∑

i=0

〈

χE,
1

m(Vi)
χVi

〉

〈ϕi, 1〉

and so

m(E) =
m(E ∩ Vk)

m(Vk)

m(Sk)

2
+
m(E ∩ Vk+1)

m(Vk+1)

m(Sk+1)

2
. (1)

If Qn is an averaging operator from L1(I) to Φn, then we will show that either
Qn = αn or Qn = βn.

Lemma 6 Let V0, . . . , Vn and Qn be as above. Assume Qn is an averaging
operator from L1(I) to Φn. If m(Vi ∩ Vi+1) = 0 for i = 0, 1, . . . , n − 1, then
Qn = βn.

PROOF. Assume m(Vi ∩ Vi+1) = 0 for i = 0, 1, . . . , n− 1. By Theorem 2, it
follows that m(Vk) = 〈ϕk, 1〉 for 0 ≤ k ≤ n. Thus, m(V0) = m(Vn) = h/2 and
m(Vi) = h for i = 1, . . . , n− 1. It follows that Vi = Wi for i = 1, . . . , n where
W0,W1, . . . ,Wn are as in Example 2. Hence, Qn = βn. �

Lemma 7 Let V0, . . . , Vn and Qn be as above. Assume Qn is an averaging
operator from L1(I) to Φn. If 0 ≤ k < n and if m(Vk ∩ Vk+1) > 0, then
Vk = Sk and Vk+1 = Sk+1.
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PROOF. Let 0 ≤ k < n and assume m(Vk ∩ Vk+1) > 0. Applying equation
(1) with E = Vk ∩ Vk+1, we see that

m(Vk ∩ Vk+1) =
m(Vk ∩ Vk+1)

m(Vk)

m(Sk)

2
+
m(Vk ∩ Vk+1)

m(Vk+1)

m(Sk+1)

2
.

It follows that 2 = m(Sk)/m(Vk) + m(Sk+1)/m(Vk+1) and so Vk = Sk and
Vk+1 = Sk+1. �

Lemma 8 Let V0, . . . , Vn and Qn be as above and assume n > 1. Assume Qn
is an averaging operator from L1(I) to Φn. If Vk = Sk for some 0 < k < n,
then Qn = αn.

PROOF. Let 0 < j < n and assume Vj = Sj. Applying equation (1) with
E = [xj, xj+1], we see that

m([xj, xj+1]) =
m([xj , xj+1])

2
+
m([xj , xj+1] ∩ Vj+1)

m(Vj+1)

m(Sj+1)

2
.

Hence, m(Vj ∩ Vj+1) ≥ m([xj , xj+1] ∩ Vj+1) > 0. By Lemma 7, Vj+1 = Sj+1.
By a similar argument, we see that Vj−1 = Sj−1. Thus if Vk = Sk for some
0 < k < n, then Vi = Si for i = 0, 1, . . . , n and so Qn = αn. �

Theorem 9 Assume Qn is an averaging operator from L1(I) to Φn. Then
either Qn = αn or Qn = βn.

PROOF. Suppose Qn �= βn. By Lemma 6, we may choose k such that m(Vk∩
Vk+1) > 0 and such that 0 ≤ k < n. By Lemma 7, we have Vk = Sk and
Vk+1 = Sk+1. If n = 1, then V0 = S0 and V1 = S1 and so Qn = αn. Suppose
n > 1. By Lemma 8, we have Qn = αn since either 0 < k < n and Vk = Sk or
0 < k + 1 < n and Vk+1 = Sk+1. �

4 Some Averaging Operators on L1(I × I)

We use the standard Kuhn triangulation of the domain I × I. Divide the
square I × I into n2 equal sub-squares Ii× Ij = [xi−1, xi]× [yj−1, yj ] with area
h2 = 1/n2. Then divide each Ii × Ij into two simplicies

co{(xi−1, yj−1), (xi−1, yj), (xi, yj)}, co{(xi−1, yj−1), (xi, yj−1), (xi, yj)},

where co A denotes the convex hull of the set A. Thus, we obtain a triangu-
lation Th of I × I into a family of 2n2 triangles and each triangle has area
h2/2.
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Let ∆h be the space of continuous piecewise linear functions associated with
the triangulation Th. Let ϕij be the unique function in ∆h such that ϕij is
1 at the node (xi, yj) and 0 at all the other nodes of Th. The (n + 1)2 nodal
functions {ϕij}

n
i,j=0 form a canonical basis for ∆h and

∑n
i=0

∑n
j=0 ϕij = 1.

Let T be a continuous linear operator from L1(I × I) to ∆h. There exist
wij ∈ L

∞(I × I) for 0 ≤ i, j ≤ n such that

T (f) =
n∑

i=0

n∑

j=0

〈f, wij〉ϕij for each f ∈ L1(I × I).

Again Theorem 1(2) can be strengthened. As before one can show that if T is
nonnegative then wij ≥ 0 a.e. for 0 ≤ i, j ≤ n. Besides, like Theorem 3 (3), T
preserves integrals if and only if

1

n2

n∑

i=1

n∑

j=1

2wi−1,j−1 + wi,j−1 + wi−1,j + 2wi,j
6

= 1 a.e..

Let Sij be the closed support of ϕij and let Vij be a closed convex subset of
Sij such that m(Vij) > 0 for 0 ≤ i, j ≤ n. Define Qh : L1(I × I)→ ∆h by

Qh(f) =
n∑

i=0

n∑

j=0

〈

f,
1

m(Vij)
χVij

〉

ϕij for each f ∈ L1(I × I).

Then Qh satisfies the conditions in (1) and (2) of Theorem 1. We wish to find
{Vij}

n
i,j=0 such that Qh is an averaging operator from L1(I× I) to ∆h, that is,

Qh satisfies the condition (3) in Theorem 1.

Example 10 Set wij = 1
m(Sij)

χSij for 0 ≤ i, j ≤ n. Define αh : L1(I × I) →

∆h by

αh(f) =
n∑

i=0

n∑

j=0

〈f, wij〉ϕij for each f ∈ L1(I × I).

Using Theorem 1, it is easy to check that αh is an averaging operator from
L1(I × I) to ∆h.

Note. The numerical scheme αh was developed in [4] to compute absolutely
continuous invariant measures associated with two dimensional transforma-
tions.

Now the question is whether we can construct an averaging operator Qh such
that m(Vij ∩ Vkl) = 0 whenever (i, j) �= (k, l). Because of Theorem 2, all boils
down to finding {Vij}

n
i,j=0 such that 〈ϕij , 1〉 = m(Vij) for each 0 ≤ i, j ≤ n.

The answer is yes, but we first show that a most intuitive construction of

7



{Vij}
n
i,j=0 fails. Let

Vij = (I × I) ∩

([

xi −
h

2
, xi +

h

2

])

×

([

yj −
h

2
, yj +

h

2

])

, 0 ≤ i, j ≤ n.

But the corresponding Qh fails to be integral preserving. It fails at the four
corner nodes. For example, m(Vnn) = h2/4, but 〈ϕnn, 1〉 = h2/3. Hence by
Theorem 2, Qh is not an averaging operator.

It turns out that a correct approach is to use a centroid of each triangle in Th.
We construct Wij as the convex hull of the centroids of the triangles in Sij .
The construction of Wij is shown in Figure 1.

Fig. 1. Partitioning of the Unit Square for n = 4

Example 11 Set wij = 1
m(Wij)

χWij
for 0 ≤ i, j ≤ n. Define βh : L1(I × I) →

∆h by

βh(f) =
n∑

i=0

n∑

j=0

〈f,wij〉ϕij for each f ∈ L1(I × I).

Now we prove that βh is an averaging operator from L1(I × I) to ∆h.

Note. From the theoretical analysis in [3] and the fact that each Wij is a
subset of Sij with much smaller area, one can see that the numerical method
based on βh has a better convergence property than αn in the computation
of two dimensional absolutely continuous invariant measures; see [2] for more
details on approximations of invariant measures.

PROOF. By Theorem 2, it suffices to show that 〈ϕij , 1〉 = m(Wij) for 0 ≤
i, j ≤ n. There are four cases to consider.
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Case 1 (i, j) = (0, 0) or (i, j) = (n, n).
We consider the case (i, j) = (n, n). Notice that 〈ϕnn, 1〉 = h2/3. From Figure
2 we see that Wnn is a pentagon ABCEF and it is made of the square ABDF
of dimension h/2 by h/2 and two congruent triangles BCD and DEF whose
base and height are h/2 and (h/2− h/3), respectively. Hence

AB

C

D
E

F

Fig. 2. Upper Right Corner Case

m(Wnn) =
h

2
·
h

2
+ 2 ·

1

2
·
h

2

(
h

2
−
h

3

)

=
h2

3
.

Case 2 (i, j) = (0, n) or (i, j) = (n, 0).
We consider the case (i, j) = (0, n). Notice that 〈ϕ0n, 1〉 = h2/6. As in Case 1
one can show that

m(W0n) =
h

3
·
h

3
+ 2 ·

1

2
·

(
h

2
−
h

3

)

=
h2

6
.

Case 3 1 ≤ i, j ≤ n− 1 (Interior Nodes).
Notice in this case that 〈ϕij , 1〉 = h2. From Figure 3, we see that Wij is a
hexagon ABCDEF and it is made of the parallelogram BCEF , whose base
is h and height is 2h/3, and two congruent triangles ABF and CDE whose
base and height are h and h/3, respectively. Thus

m(Wij) = h ·
2

3
h+ 2 ·

1

2
· h ·

h

3
= h2.

Case 4 All other cases (Boundary Nodes except Four Corner Nodes).

9



A

B

C

D

E

F

Fig. 3. Interior Case

Notice that in this case 〈ϕi,j , 1〉 = h2/2. As in Case 3 one can verify that

m(Wij) = h ·
h

3
+

1

2
· h ·

1

3
h =

h2

2
.

So by Theorem 2, βh is an averaging operator. �

Note. It is an open question whether if Qh is an averaging operator from
L1(I × I) to ∆h then Qh = αh or Qh = βh.
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