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Abstract

Differential cross sections for electromagnetic dissociation in nucleus-nucleus collisions
are calculated. The kinetic energy distribution is parameterized with a Boltzmann distri-
bution and the angular distribution is assumed isotropic in the projectile frame. In order
to be useful for three-dimensional transport codes, these cross sections are available in
both the projectile and lab frames. Comparison between theory and experiment is good.
The formalism applies to single and multiple nucleon removal, α particle removal, and
fission in electromagnetic reactions of nuclei.

PACS: 25.70.Mn,

Keywords: Heavy-Ion collisions. Electromagnetic dissociation.

1 Introduction

Nucleus-nucleus collisions can be mediated by either the strong or electromagnetic
(EM) force. A reaction proceeding via the EM force is often called Electromagnetic

Dissociation (EMD). There have been many studies of single [1, 2, 3, 4, 5, 6, 7, 8] and
double [9] nucleon removal via EMD. Fission processes have also been studied [10, 11].
For single and few nucleon removal, EMD cross sections can be just as large or larger
than strong interaction cross sections [12]. Pair production via EM processes can also
be significant [13]. Transport codes such as HZETRN [14] and FLUKA [15] include the
calculation of total EMD cross sections by using currently available parameterizations
of the total cross sections [16, 17, 18]. Differential EMD cross sections are necessary
because fully three-dimensional transport codes require energy and angular differential
cross sections. These cross sections are the subject of the present paper.
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To improve run-time, transport codes often require parameterizations of cross sections.
Parameterizations of total cross sections are available [16, 17, 18]. The differential cross
sections developed in the present work are written in terms of total cross sections. If the
parameterized form of the total cross sections [16, 17, 18] is used, then the differential
cross sections are also parameterized.

Even though the discussion will be presented in terms of single nucleon removal, the
results also apply to multiple nucleon removal and α particle removal, by changing the
branching ratios. Since fission usually involves three or more fission products, all of the
formalism for the kinematics presented also applies to fission. This requires using the total
fission cross sections [10, 11] as input to the differential cross sections. Using appropriate
branching ratios and fission decay product masses will result in differential fission cross
sections for a specified fission product.

2 Photonuclear cross sections

A vital component to any EMD cross section calculation is the related photonuclear
cross section, which is presented in this section. Included is a discussion of the differential
photonuclear cross section that will be important when deducing the nucleus-nucleus
differential EMD cross section. We also present a reminder of the total cross section
parameterization, because this will be used in obtaining differential cross sections.

2.1 Angular Distribution

In the simplest compound nucleus model, the photonuclear angular distribution is
approximately isotropic [19, 20, 21, 22], i.e.

dσγA(Eγ)

dΩN

= K (1)

where K is a constant with respect to angle (but of course it will depend on Eγ). It is
trivial to evaluate K from the total cross section because

σγA(Eγ) =
∫ dσγA(Eγ)

dΩN
dΩN = 4πK. (2)

Now an isotropic angular distribution can be written as

dσγA(Eγ)

dΩN
=

σγA(Eγ)

4π .
(3)
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2.2 Spectral Distribution

The energy level density can be approximated [23], [24] (pp. 326) by a Boltzmann
distribution ρ(E) ∼ e−E/kΘ with the nuclear temperature given by

kΘ =

√

10 Eγ

AP
(4)

where Θ is the nuclear temperature and k is the Boltzmann constant. Therefore, the
photonuclear spectral distribution is written as

dσγA(Eγ)

dEN
= C TN e−TN/kΘ (5)

where TN is the kinetic energy of the emitted nucleon. The constant C is determined by
the requirement

σtot(Eγ) =
∫

dEN
dσγA(Eγ)

dEN
(6)

where σtot(Eγ) is the photonuclear total cross section. For simplicty, we shall first assume
that the limits of integration are 0 and ∞. Then

σtot(Eγ) =
∫

∞

0
dEN

dσγA(Eγ)

dEN
= C

∫

∞

0
dTN TNe

−TN/kΘ = C(kΘ)2 (7)

giving

dσγA(Eγ)

dEN

=
σtot(Eγ)

(kΘ)2
TN e−TN/kΘ. (8)

The more general calculation with arbitrary limits, Tmin and Tmax, gives

dσ

dEN
=

σtot(Eγ)

kΘ(Tmin + kΘ)e−Tmin/kΘ − kΘ(Tmax + kΘ)e−Tmax/kΘ
TN e−TN/kΘ (9)

=
σtot(Eγ)

kΘ(Tmin + kΘ)e−Tmin/kΘ
TN e−TN/kΘ for Tmax = ∞. (10)

This reduces to the above result, equation (8), when Tmin = 0 and Tmax = ∞.

2.3 Double Differential Cross Section

From reference [22] (pp. 27, 40) (with f = 0), the photonuclear double differential
cross section can be expressed as

d2σγA(Eγ)

dENdΩN
=

1

4π

dσγA(Eγ)

dEn
(11)

which corresponds to an isotropic angular distribution.
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2.4 Total Cross Section

The above equations for the photonuclear differential cross sections (3),(8), and (11)
were all written in terms of the photonuclear total cross section. We now present relevant
equations to calculate the photonuclear total cross section. The photonuclear total cross
section for producing particle X is [25]

σ(Eγ , X) = gXσabs(Eγ) (12)

where gX is the branching ratio and σabs(Eγ) is the photonuclear absorption cross section,
which is parameterized as

σabs(Eγ) =
σm

1 +
[

(E2
γ −E2

GDR)
2/E2

γΓ
2
]

.

(13)

Here, EGDR is the energy at which the photonuclear cross section has its peak value and
Γ is the width of the electric dipole (E1) giant dipole resonance. Also, σm = σTRK

πΓ/2
with

the Thomas-Reiche-Kuhn cross section given by [25] σTRK = 60NPZP

AP
MeV mb with the

subscript P referring to excitation of the projectile. The GDR energy is

EGDR =
h̄c

[

m∗c2R2

0

8J
(1 + u−

1+ǫ+3u
1+ǫ+u

ǫ)
]1/2

(14)

with u = 3J
Q′
A

−1/3
P and R0 = r0A

1/3
P The parameters are ǫ = 0.0768, Q′ = 17 MeV, J =

36.8 MeV, r0 = 1.18 fm, and m∗ = 0.7 mnucleon.

3 Nucleus-Nucleus Cross Sections

In this section we shall be evaluating total and differential cross sections. Total cross
sections are, of course, Lorentz invariant. All differential cross sections are evaluated in
the rest frame of the compound nucleus. If the compound nucleus is the projectile, then
this must be transformed to the Lab frame for use in transport codes. No transformation
is necessary if the compound nucleus is the target, because the target is at rest in the
Lab.

3.1 Total Cross Section

The total absorption cross section for electromagnetic nucleus-nucleus reactions can
be written in the form

σAA =
∫

dEγ N(Eγ) σγA(Eγ) (15)
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where N(Eγ) is the Weiszacker-Williams virtual photon spectrum and σγA(Eγ) is the
photonuclear total cross section. The total cross section for producing a particle X is
again just the total absorption cross section multiplied by the branching ratio

σAA(X) =
∫

dEγ N(Eγ) σγA(Eγ , X) (16)

where σγA(Eγ, X) ≡ σ(Eγ , X) from equation (12) and σAA(X) = gXσAA. All the differ-
ential and total cross sections that follow can be written like the two equations above.
That is, they can either refer to absorption cross section or cross section for producing a
particle X .

3.2 Angular Distribution

The spectator nucleus is nothing more than a source of virtual photons, therefore the
angular and spectral distributions may also be written in the form of equation (16). Thus
the angular distribution, for emission of a nucleon N in the direction ΩN , is

dσAA

dΩN
=

∫

dEγ N(Eγ)
dσγA(Eγ)

dΩN
(17)

where
dσγA(Eγ)

dΩN
is the photonuclear angular distribution for emission of a nucleon N in the

direction ΩN . If the photonuclear angular distribution is approximately isotropic, then
the use of equations (1-3) and (17) gives

dσAA

dΩN

=
σAA

4π .
(18)

3.3 Spectral Distribution

The spectral distribution, for emission of a nucleon N with energy EN , may also be
written in the form of equation (16), namely

dσAA

dEN
=

∫

dEγ N(Eγ)
dσγA(Eγ)

dEN
(19)

where
dσγA(Eγ)

dEN
is the photonuclear spectral distribution for emission of a nucleon N with

energy EN . Note that the spectral distribution cannot be taken outside the integral
because the nuclear temperature Θ depends on the photon excitation energy Eγ .

3.4 Double differential Cross Section

The double differential cross section, for emission of a nucleon N with energy EN in
the direction ΩN , may also be written in the form of equation (16), namely

d2σAA

dΩNdEN
=

∫

dEγ N(Eγ)
d2σγA(Eγ)

dΩNdEN
(20)
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where
d2σγA(Eγ)

dΩNdEN
is the photonuclear double differential cross section for emission of a

nucleon N with energy EN in the direction ΩN . If the photonuclear angular distribution
is isotropic, we use (11) to give

d2σAA

dΩNdEN
=

1

4π

∫

dEγ N(Eγ)
dσγA(Eγ)

dEN
(21)

=
1

4π

dσAA

dEN
(22)

which is exactly analagous to (11).

4 Results

The nucleus-nucleus differential cross sections (17), (19), and (20) all involve a pho-
tonuclear differential cross section or a total cross section. The photonuclear differential
cross sections are all evaluated in the rest frame of the nucleus undergoing the photonu-
clear reaction. All differential cross sections in a radiation transport code are required in
the Lab frame. If the projectile nucleus is the one undergoing photodisintegration, then
the nucleus-nucleus differential cross sections (17), (19), and (20) are first evaluated in
the projectile frame. They must then be Lorentz transformed to the Lab frame. The
technique for doing this is described in reference [26]

The nucleus-nucleus double differential cross sections are presented in Figs. 1 and 2.
The cross sections are for the reaction

28Si + 208Pb → n + 27Si +208 Pb (23)

at 14.6 A GeV. These are all obtained simply by taking the corresponding photonuclear
cross section and integrating over the virtual photon spectrum. The double differential
cross section in the lab frame shown in Fig. 2 shows the double peak feature discussed
by Hagedorn [27]. This double peak comes about because there is a single peak in the
spectral distribution in the projectile frame. This single peak in the spectral distribution
in the projectile frame gets boosted both forward and backward in the lab frame, depend-
ing on the kinematic conditions. The single peak in the projectile frame shown in Fig.
1, contains contributions from particles which move both forward and backward in the
projectile frame. For example, a particle near the peak with a projectile kinetic energy
of 3 MeV can be either moving forward or backward in the projectile. Fig. 1 can only
show the 3 MeV energy and cannot show whether it moves forward or backward. However
after Lorentz transformation to the lab frame, and depending on the particle energy [27],
the forward moving particles receive a boost from the projectile frame velocity whereas
the backward moving particles end up with a different speed in the lab. Thus the single
peak which appeared in the projectile frame can appear as a double peak in the lab frame
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[27] The high energy of the projectile also causes angles in the lab frame to be strongly
forward peaked.
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Fig. 1. Nucleus-nucleus double differential cross section in Projectile frame.
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Fig. 2. Nucleus-nucleus double differential cross section in Lab frame.

4.1 Comparison to Experiment

There is very little experimental data concerning differential cross sections for elec-
tromagnetic dissociation. The best data available has been measured by Barrette et al.
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[28, 29], but much of their data involved spectral distributions of excitation energy. How-
ever, a notable feature of their measurements is that all of their angular distributions are
approximately isotropic in the projectile frame, which agrees with the assumption of the
present work. See equation (18). Some kinetic energy distributions have been measured
for outgoing neutrons and protons. See Fig. 13 of Barrette et al [29]. In Figs. 3 and 4, we
have compared our theory to this data. The experimental work quoted arbitrary units,
so that it was necessary to fit the absolute value (peak cross section) to the experiment.
The best fit is obtained by modifying equation (4) to

kΘ =

√

20 Eγ

AP .

(24)

The comparison between theory and experiment is good. A better fit can probably be
obtained with a more sophisticated approach to calculating the nuclear temperature and
the spectral distribution (8).

0 5 10 15 20 25 30
TN MeV

0

0.01

0.02

0.03

0.04

0.05

0.06

d

dEN
arb.

AA Projectile Frame

Fig. 3. Comparison between theory and experiment for proton kinetic energy
distribution in the projectile frame. The reaction is 28Si+Pb → 1p+27Al+Pb
at 14.6 A GeV. Cross section units are arbitrary. Experimental data is from
Fig. 13 (b) of reference [29]. Error bars are smaller than symbol sizes.
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TN MeV

0
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0.03

0.04

d

dEN
arb.

Fig. 4. Comparison between theory and experiment for neutron kinetic energy
distribution in the projectile frame. The reaction is 28Si+Pb → 1n+27Si+Pb
at 14.6 A GeV. Experimental data is from Fig. 13 (c) of reference [29]. Cross
section units are arbitrary. Error bars are smaller than symbol sizes.

4.2 Single and Multiple Nucleon, α particle removal, and fission

All the above examples have focused on single nucleon removal. However, this for-
malism also applies to multiple nucleon removal, α particle removal, and fission. For
multiple nucleon and α particle removal, just change the value of the branching ratio.
When α particles are produced, simply use the α particle mass in the differential cross
section formulas. When nuclei undergo fission, there are always three or more particles
produced as fission products [30]. Therefore, all of the relativistic kinematics formalism
developed above also applies to fission. The total cross section is given by that developed
in reference [10]. To find the total cross sections for a particular fission fragment just
use its branching ratio. The differential cross sections for a particular fission fragment is
obtained by inserting the fragment mass of interest.

5 Conclusions

This paper presents calculations of differential cross sections for electromagnetic disso-
ciation in nucleus-nucleus collisions. The kinetic energy distribution is parameterized with
a Boltzmann distribution and the angular distribution is assumed isotropic in the projec-
tile frame. The results are presented in a form in which they can be immediately used
in fully three-dimensional transport codes that require differential cross sections in the
lab frame. Cross sections are isotropic in the projectile frame and are in agreement with
experiment. Spectral distributions in the projectile frame are compared to experimental
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results and are found to be in good agreement. Using parameterized total cross sections
as input [16, 17, 18] yields parameterized differential cross sections. The results are ap-
plicable to single and multiple nucleon removal, α particle removal, and electromagnetic
fission.
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