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trigonometric basis function for solving heat conduction problems3
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SUMMARY

A boundary meshless method has been developed to solve the heat conduction equations through the use9
of a newly established two-stage approximation scheme and a trigonometric series expansion scheme to
approximate the particular solution and fundamental solution, respectively. As a result, no fundamental11
solution is required and the closed form of approximate particular solution is easy to obtain. The effective-
ness of the proposed computational scheme is demonstrated by several examples in 2D and 3D. We also13
compare our proposed method with the finite-difference method and the other meshless method showed
in Šarler and Vertnik (Comput. Math. Appl. 2006; 51:1269–1282). Excellent numerical results have been15
observed. Copyright q 2007 John Wiley & Sons, Ltd.

Received 8 February 2007; Revised 23 July 2007; Accepted 28 September 2007

KEY WORDS: method of fundamental solutions; particular solution; Chebyshev interpolation;17
C-expansion; diffusion equations

1. INTRODUCTION19

During the past decade, meshless methods have attracted great attention in the area of scientific
computing. Various types of numerical techniques for solving science and engineering problems21
without domain discretization have been developed. One of the common goals of developing
meshless methods is to solve a given set of partial differential equations (PDEs) with minimum23
human and computational costs. Hence, other than the accuracy and efficiency, the simplicity of
the implementation of the developed meshless algorithm is also of great importance.25

Among all the proposed meshless methods, Trefftz-type methods have been vigorously re-
investigated in recent years. A special type of Trefftz method is the method of fundamental solutions27

∗Correspondence to: C. S. Chen, Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS
39406, U.S.A.

†E-mail: cschen.math@gmail.com
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(MFSs) which has been extended to solve various elliptic and time-dependent problems [1–3].1
However, the fundamental solution of a given differential equation is not always available. The
ill conditioning of the MFS and the location of source points are also issues to be resolved. As a3
result, despite the effectiveness of the MFS, its applicability is somehow limited. To alleviate these
difficulties, we introduce the method of approximate fundamental solutions (MAFSs) [4] in which5
the trial function is approximated by the truncated trigonometric series. In this way, the fundamental
solution of the given partial differential operator is not required. For non-homogeneous equation,7
getting a closed form particular solution is not a trivial task [2, 3]. Recently, a novel and effective
numerical technique for approximating the particular solutions of a new class of differential9
equations has been developed [5]. It combines the advantages of polynomial interpolation and
trigonometric approximation to the source function so that the closed form approximate particular11
solution can be easily and accurately obtained. This technique includes two major steps: (i)
approximating the source function using Chebyshev polynomials, (ii) Chebyshev interpolants are13
further approximated by a C-Expansion approximation scheme, a trigonometric-based scheme.
One of the advantages of this technique is that the closed form of approximate particular solution15
can be easily obtained. This approach is also highly accurate due to the spectral convergence of
Chebyshev interpolation. We would like to note that such a two-stage approximation scheme is not17
necessary from the point of view of pure function approximation. However, our ultimate goal is
to develop an approximation scheme so that the approximate particular solution can be evaluated19
efficiently for a more general class of differential operators. Furthermore, it is interesting that an
approximate fundamental solution can be obtained in a way similar to the derivation of particular21
solutions using the same trigonometric basis functions [4, 5]. Encouraged by the success of these
novel approaches for solving elliptic problems [5], we extend these techniques to solve transient23
heat conduction problems.

There are various numerical approaches to solving heat conduction problems. The common25
approaches are (i) time–space separation [6]; (ii) Laplace transform or Fourier transform to remove
the time dependence [7, 8]; (iii) time difference scheme [9, 10]. There are advantages and disad-27
vantages in each approach. Apparently, the time difference scheme is the most popular approach
being applied for solving time-dependent problems. In this paper, we will focus on this approach.29

We consider the following initial boundary value problem

�u(x, t)

�t
= L[u(x, t)]+ f (x, t), x∈�⊂Rd , t>0, d=1,2,3 (1)

B[u(x, t)] = g(x,t), x∈�� (2)

u(x,0) = u0(x), x∈� (3)

where L is a time-independent linear differential operator, B is a boundary operator, and � is a31
simply connected domain bounded by a simple closed curve ��.

Finite difference in time transforms (1)–(3) to a sequence of elliptic equations. Using the likewise33
Crank–Nicholson (C–N) scheme with the second order approximation in time

u j+1(x)−u j (x)
�t

= 1

2
[L[u j+1(x)]+L[u j (x)]]+ f j+1/2(x)35
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we obtain a sequence of inhomogeneous equations
1

(L− p)[u j+1(x)] = −(L+ p)[u j (x)]−2 f j+1/2(x), x∈�, j =0,1,2, . . . (4)

B[u j+1(x)] = g j+1(x), x∈�� (5)

where u j (x)=u(x, t j ), f j+1/2(x)= f (x, (t j + t j+1)/2), g j+1(x)=g(x, t j+1), t j = j�t , �t is a
time step, and p=2/�t . The boundary value problem (4)–(5) can be solved by the method of3
particular solution in which an effective way of evaluating an approximate particular solution is
crucial. We refer the readers to the references in [2, 3] for further details for the evaluation of5
particular solutions. In this paper, we employ the newly established Chebyshev interpolation and
C-Expansion approximation scheme, which has been recently published in this journal, to evaluate7
the approximate particular solution [5].

For a homogeneous equation, many boundary meshless methods can be applied [2, 11].9
According to the MAFS, an approximate solution of (4) at the j+1th time step can be expressed
in the form11

u j+1(x)=u j+1
p (x)+

K∑
k=1

a j+1
k �k(x) (6)

where u j+1
p (x) is a particular solution at the j+1th time layer, and �k(x), k=1, . . . ,K are the13

approximate fundamental solutions. Note that, if differential operators of the form

L=
l∑

k1,k2=0
Ak1,k2

�2k1+2k2

�x2k11 �x2k22

, Ak1,k2 =const. (7)
15

are considered and if the right-hand side of (4) is approximated by the trigonometric series, e.g.

−(L+ p)[u j (x)]−2 f j+1/2(x)�
M∑
n=1

M∑
m=1

H ( j)
n,m sin

(
n�

x+1

2

)
sin

(
m�

y+1

2

)
(8)

17

then the particular solution u j+1
p can be written in the analytic form.

In the MAFS, the trial functions �k(x) in (6) satisfy (L− p)[�k]= I (x, y,�k,�k), where19
I (x, y,�k,�k) is a 2D delta-shaped function, in the infinite domain. The detailed formulation of
the MAFS will be given in the next section.21

The organization of this paper is as follows. In Section 2, we briefly introduce the basis functions
of the MAFS and provide three regularization methods for the formulation of MAFS. In Section 3,23
a finite-difference time-stepping scheme is employed to reduce the given heat conduction problem
to a sequence of modified Helmholtz equations. In Section 4, the method of particular solution25
has been employed to solve the modified Helmholtz equation for each time step. To demonstrate
the effectiveness of the proposed approach in this paper, numerical examples of heat conduction27
problems in regular and irregular domains in 2D and 3D are given in Section 5.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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2. BASIS FUNCTIONS OF THE MAFS1

In this section, we briefly introduce the formulation of trial function using MAFs. The Laplace
operator can be written as the sum of two 1D operators3

�2=−l(x)−l(y), l(x) =− �2

�x2
, l(y) =− �2

�y2

We use minus sign before the operators in order to obtain a positive spectra.5
We start the construction of the MAFS basis functions with the formal Fourier series for Dirac’s

delta function. It is well known that the eigenfunctions7

�n(x)=sin(�n(x+1)), �n = n�

2
, n=1,2, . . . (9)

are the solutions of the following Sturm–Liouville problem on the interval [−1,1]:9

l(x)�=�2�, �(−1)=�(1)=0 (10)

The eigenfunctions �n(x) form an orthogonal system on [−1,1] with the scalar product11 ∫ 1

−1
�n(x)�m(x)dx=�n,m =

{
0, m �=n

1, m=n

Thus, Dirac’s delta function can be formally expressed as follows:13

�(x−�)=
∞∑
n=1

�n(�)�n(x) (11)

Note that this series diverges at any point in the interval [−1,1]. With various kinds of regularization15
techniques, a smooth delta-shaped function, I (x,�), can be constructed through the formal series
expansion (11); i.e. the regularized delta-shaped functions have the form17

I (x,�)=
M∑
n=1

rn(M,�)�n(�)�n(x) (12)

Note that rn(M,�) is the regularization factor that can be obtained by the following regularization19
techniques:

1. The Lanczos regularization technique:21

rn(M,�)=[�n(M)]�, �n(M)= sin[	(n,M)]
	(n,M)

, 	(n,M)= n�

M+1
(13)

where �n(M) are called the Lanczos sigma factors that are used to overcome Gibb’s23
phenomenon in the Fourier series expansion of non-smooth functions [12]. This technique
was employed in [4, 13] for solving stationary and time-dependent problems. The parameters25
M and � should be taken in coupling. In all the calculations presented in this paper, we use
�=4,6,8,12,14, 16, 18 for M=10,20,30,40,50,80,100. This choice of the regularization27
parameter is found to be close to the optimal one.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
DOI: 10.1002/nme
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2. The Riesz regularization technique:1

rn(M,�)=
(
1− �2n

�2M+1

)�

(14)

This was proposed in [14] for solving elliptic PDEs with scattered data in irregular domains.3
3. The Abel regularization technique: Let us consider the following equation:

�w(t, x,�)

�t
= �2w(t, x,�)

�x2
(15)5

with the initial distribution

w(0, x,�)=�(x−�)=
∞∑
n=1

�n(�)�n(x) (16)
7

We consider diffusion of the initial delta distribution. Let us look for a solution in the same
form of the series9

w(t, x,�)=
∞∑
n=1

wn(t)�n(�)�n(x) (17)

From (15), we obtain11

wn(t)=exp(−�2nt)

The time t plays the role of the regularizing parameter. We have13

w(t, x,�)→0 when t→∞
for all x,�. We set the regularizing coefficients in the following way:15

rn(
)=exp(−
�2n) (18)

i.e. 
 is the time moment in which we consider w(t, x,�). This summation is also known as17
a heat-kernel regularized sum or a generalized Dirichlet series [15].
In the practical applications we use the truncated series19

I (x,�)=
M∑
n=1

rn(
)�n(�)�n(x) (19)

where rM+1(
)=ε is a small prescribed value. In all the numerical results presented in this21
paper, we use 
=0.005–0.01 for M=30, 
=0.001–0.005 for M=50, and 
=0.0012–0.0015
for M=100.23

The graph of 1D smooth approximations I (x,�) of Dirac’s delta function using the Lanczos
regularization techniques is shown in Figure 1. The graphs of I (x,�) using the Riesz and Abel25
regularizations are similar to that in Figure 1. Note that we place here the graphics of the scaled
values I (x,�)/I (�,�). As shown in the figure, I (x,�) can approximate Dirac’s delta function27
�(x−�) as closely as we want by properly choosing the regularization factors. One important
distinction between these two functions is that I (x,�)∈C∞ while �(x−�) is not a differentiable29
function.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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Figure 1. The Lanczos regularization. Approximations of the delta-function with M=20,
l=6 (left) and M=200, l=18 (right).

The 2D delta-shaped functions can be obtained through the tensor product of the 1D ones; i.e.1

I (x, y,�,�)= I (x,�)I (y,�)=
M∑

n,m=1
cn,m(�,�)�n(x)�m(y) (20)

where the coefficients cn,m(�,�) depend on the regularizing technique used.3
In Figure 2, we plot the graphs of 2D delta-shaped basis functions I (x, y,�,�) using Abel’s

regularization technique with M=20, 
=0.01 and M=200, 
=0.0003, respectively. They are5
infinitely differentiable and are not ‘identical’ to zero in any interval. However, by visual obser-
vation, I (x, y,�,�) differs from zero only inside some neighborhood of the center point (�,�). In7
a way, I (x, y,�,�) can be characterized as ‘approximate locally supported functions’.

Regardless of the type of regularization technique, all the approximations I (x, y,�,�) have the9
form of a truncated series over �n(x)�m(y). The approximate fundamental solution �(x, y,�,�)

of a given PDE can be obtained by using I (x, y;�,�) as the forcing term. For example, for the11
modified Helmholtz equation, we have

(∇2− p)�(x, y,�,�)= I (x, y,�,�) (21)13

Technically, �(x, y,�,�) in (21) is not only an approximate fundamental solution, but also a
particular solution. Since I (x, y,�,�) is a linear combination of trigonometric functions, the15
particular solution �(x, y,�,�) in (21) has to be a linear combination of trigonometric functions
also. Hence, �(x, y,�,�) has to be in the following form:17

�(x, y,�,�)=
M∑

m,n=1
Dn,m(�,�)�n(x)�m(y) (22)

where Dn,m are to be determined. Substituting (20) and (22) in (21), by the method of undetermined19
coefficients, we have

Dn,m(�,�)=− cn,m(�,�)

�2n+�2m+ p
(23)

21
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Figure 2. The graphs of 2D delta-shaped functions by Abel’s regularization technique with M=20,
=0.01
and M=200,
=0.0003, respectively.

The basis functions of the MAFS for the general linear differential operators such as (7) can be1
obtained in a similar way.

3. FINITE-DIFFERENCE TIME-STEPPING ALGORITHM3

As mentioned above, the trigonometric functions �n(x) and their products form a natural basis for
the problems we considered. Through this section we consider the following 2D heat conduction5
equation:

�u(x, t)

�t
=�∇2u(x, t)+ f (x, t) (24)7

where � is a constant.
Let us recall C–N scheme used in the finite-difference approximation of the parabolic equations.9

In particular, C–N scheme for the heat equation in one spatial dimension �t u=��xxu can be
expressed in the form11

un+1−un

�t
= �

2
[Dxx [un+1]+Dxx [un]]
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where Dxx denotes the finite-difference approximation of the second derivative. In the case �t u=1
�(�xxu+�yyu) with two spatial dimensions, the C–N scheme can be written in a similar form

un+1−un

�t
= �

2
[Dxx,yy[un+1]+Dxx,yy[un]]3

where Dxx,yy denotes the well-known finite-difference approximation of the Laplacian.
To approximate Equation (1), we follow a similar format as above5

un+1−un

�t
= 1

2
[Lxx,yy[un+1]+Lxx,yy[un]]+ f (x, tn+1/2)

which approximates the PDE with second order in time at the time moment tn+1/2. However,7
Lxx,yy here denotes the spectral approximation instead of the finite-difference approximation for
the space operator L in (1). Hence, strictly speaking, we do not use the C–N approximation scheme9
but the likewise C–N scheme that has the same second-order approximation in time and the average
of the space operators on un+1 and un. When L=�∇2, using the likewise C–N scheme, we obtain11

un+1−un

�t
= �

2
(∇2un+1+∇2un)+ f (x, tn+1/2) (25)

i.e.13

∇2un+1− 2

��t
un+1=−∇2un− 2

��t
un− 2

�
f (x, tn+1/2) (26)

The inhomogeneous Helmholtz equation (26) can be rewritten as15

∇2un+1− pun+1=hn (27)

where17

p= 2

��t
, hn =−∇2un− pun− 2

�
f (x, tn+1/2) (28)

We note that the evaluation of ∇2un in (26) at each time step is tedious and it may subject to the19
loss of accuracy due to the difficulty in evaluating the second derivative. To avoid these difficulties,
we modify the above numerical scheme by applying the algorithm proposed by Ramachandran21
and Balakrishnan [16]. By introducing the intermediate variable

ũ= 1
2 (u

n+1+un) (29)23

(26) can be re-casted in the following form:

2ũ−2un

�t
=�∇2ũ+ f (x, tn+1/2) (30)25

or

∇2ũ− 2

��t
ũ=− 2

��t
un− 1

�
f (x, tn+1/2) (31)27

The values of un+1 can then be obtained from (29) after ũ is computed from (31). We employ both
approaches (26) and (31) in the section of numerical results and observe little difference between29
them. In both cases, we need to evaluate the approximate particular solution.
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4. THE METHOD OF PARTICULAR SOLUTIONS1

We would like to start this section with a brief review of the two-stage approximation scheme
introduced in [5]. Here, we focus on the bivariate case since higher dimensional cases can be dealt3
with by a similar scheme. Let us consider a function g(x, y). The main idea of this approximation
scheme is to perform Chebyshev interpolation to g(x, y) first and then to further approximate the5
Chebyshev polynomials by the C-expansion.

The Chebyshev interpolant using Gauss–Lobatto nodes [17–19] for rectangular [a,b]×[c,d]7
takes the form

g̃(x, y)=
Nx∑
i=0

Ny∑
j=0

ai j Ti

(
2x−b−a

b−a

)
Tj

(
2y−d−c

d−c

)
(32)

9

where

ai j = 4

Nx Nyci c j

Nx∑
p=0

Ny∑
q=0

f (xp, yq)

cpcq
cos

(
�pi

Nx

)
cos

(
�q j

Ny

)
11

and c0=cNx =cNy =2, ci =1, 1�i�Nx −1, and c j =1, 1� j�Ny−1. Note that Nx and Ny are the
numbers of Gauss–Lobatto nodes in the x and y directions, respectively. It is well known that the13
use of Gauss–Lobatto nodes will ensure the spectral convergence for the Chebyshev interpolation.

The above Chebyshev interpolation is followed by the C-expansion procedure. Instead of using15
the multi-dimensional generalization of the C-expansion procedure, we use 1D C-expansion since
every term in the right-hand side of (32) is a product of 1D functions. For each 1D function17
Ti ((2x−b−a)/(b−a)), its C-expansion is in the form

Ti

(
2x−b−a

b−a

)
�

M∑
m=1

ti,m�m(x)
19

where �m are given in (9) and ti,m are the expansion coefficients. Thus, the C-expansion for
Ti ((2x−b−a)/(b−a))Ti ((2y−d−c)/(d−c)) is given by21

Ti

(
2x−b−a

b−a

)
Tj

(
2y−d−c

d−c

)
�

M∑
m=1

T i, j
m1,m2�m1

(x)�m2
(y)

where m=(m1,m2), M=(M1,M2), 1=(1,1), T i, j
m1,m2 = ti,m1 t j,m2 .23

By combining approximations for all terms ai j Ti Tj in the right-hand side of (32), the two-stage
approximation for the given function g(x, y) gives the following form:25

g(x, y)�
M∑

m=1
Gm1,m2

�m1
(x)�m2

(y)

where27

Gm1,m2
=

Nx∑
i=0

Ny∑
j=0

T i, j
m1,m2 (33)
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Hence, by the above two-stage approximation process, un in (28) can be approximated by the1
truncated trigonometric series:

un(x)�
M∑

m=1
Un
m1,m2

�m1
(x1)�m2

(x2) (34)
3

Similarly, f (x, tn+1/2) in (28) can be approximated as follows:

f (x, tn+1/2)�
M∑

m=1
Fn
m1,m2

�m1
(x1)�m2

(x2) (35)
5

where the coefficients Un
m1,m2

and Fn
m1,m2

in (34) and (35) are to be determined by (33). As a
result, the right-hand side of (27) can be expressed in the same form7

hn(x)�
M∑

m=1
Hn
m1,m2

�m1
(x1)�m2

(x2) (36)

where9

Hn
m1,m2

=(�2m1
+�2m2

− p)Un
m1,m2

− 2

�
Fn
m1,m2

(37)

and {�m1,�m2} are given in (9).11
Using the method of particular solutions [2], we can split the solution of (27) into the following

form:13

un+1=un+1
p +un+1

h

where un+1
p is a particular solution that does not necessarily satisfy the boundary condition (2)15

and un+1
h is the corresponding homogeneous solution. Since we approximate the right-hand side

hn(x) of (27) by the truncated series, it is easy to find un+1
p in the analytic form17

un+1
p (x)=

M∑
m=1

Un+1
p,m1,m2

�m1
(x1)�m2

(x2) (38)

where19

Un+1
p,m1,m2

=− Hn
m1,m2

�2m1
+�2m2

+ p
(39)

The homogeneous solution un+1
h satisfies the corresponding homogeneous Helmholtz equation21

∇2un+1
h − pun+1

h = 0, x∈� (40)

B[un+1
h (x)] = gn+1(x)−B[un+1

p (x)], x∈�� (41)

where gn+1(x)=g(x, tn+1). Note that un+1
h can be approximated by the linear combination of the

approximate fundamental solutions �(x,nk) in (22), i.e.23

un+1
h �

K∑
k=1

qk�(x,nk) (42)
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where qk are coefficients to be determined and the source points nk are placed outside the solution1
domain �. By fitting the boundary condition in (41) using collocation method, qk can be easily
determined [2]. It is interesting that the particular solution and the fundamental solution have the3
same basis functions. After qk are obtained, the solution at each time step can be obtained as
follows:5

un+1(x)�
M∑

m=1
Un+1
m1,m2

�m1
(x1)�m2

(x2) (43)

where
7

Un+1
m1,m2

=Un+1
p,m1,m2

+
K∑

k=1
qn+1
k Dk

m1,m2
(44)

Dk
m1,m2

(�,�) = −cm1,m2(�k,�k)

�2m1
+�2m2

+ p
(45)

Starting from the initial condition by the two-stage interpolation scheme, we carry out the9
proposed calculations (34)–(45) at each time step.

5. NUMERICAL RESULTS11

5.1. 2D cases

From our numerical experiments, the Riesz regularization technique (14) leads to the divergence13
of the solution. Hence, throughout this section we use Lanczos and Abel regularizing techniques
only. In all the calculations presented in this section the source points are distributed on a fictitious15
boundary which is a circle with its center at (0,0) and radius Rs =0.99. The number of the
collocation points on �� is taken as twice as many as that of the source points. We test our algorithm17
on problems with known exact solutions uex. We also compare some of the problems with the
traditional finite difference method and meshless method in [20]. To validate the performance of19
the proposed algorithm, the mean square root (MSR) errors

MSR=
√

1

Ne

Ne∑
i=1

[u(xi , yi , t)−uex(xi , yi , t)]2
21

are computed using a uniform 9×9 mesh for the square domain, where Ne is the total number
of nodes on the mesh. In the case of irregular domain the test points are obtained using RNUF23
pseudorandom number generator from the Microsoft IMSL Library.

Since approximations (34)–(36) vanish on the boundary of the square [−1,1]×[−1,1] due to25
the zero boundary condition (10) of �n(x), in the following we consider problems defined either
on the square [−0.5,0.5]×[−0.5,0.5] or in an irregular region that is strictly inside the square27
[−0.5,0.5]×[−0.5,0.5] and bounded away from [−1,1]×[−1,1]. If this is not the case originally,
appropriate translation and scaling operations are required. In the following examples, the numbers29
of Chebyshev’s polynomials for x and y directions are denoted, respectively, by Nx and Ny, the
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number of trigonometric harmonics in the C-expansion is denoted by M , and the number of source1
points for the MAFS is denoted by K .

Example 13
Let us consider the following diffusion equation:

�u(x, y, t)

�t
=∇2u(x, y, t)+ f (x, y, t), (x, y)∈�, t>0 (46)5

where �=[−0.5,0.5]×[−0.5,0.5]. The initial condition, the Dirichlet boundary condition, and
f (x, y, t) are chosen such that the exact solution is7

uex(x, y, t)=sin[(x+0.5)(y+0.5)]cos t
The numerical results with Lanczos regularization scheme for different time steps �t are shown9
in Table I. The numerical results in the first four columns are obtained using Nx =Ny =25,M=
30,K =30. Initially, the errors improved when �t decreased. This is consistent with the well-11
known C–N scheme. This means that the error in the approximation of the PDE was dominated
by these parameters. However, for �t� 1

16 the error does not improve with the further reduction13
of �t. This implies that the error in the approximation of the PDE becomes the non-dominating
one and the error in solution is caused by other reasons. To further reduce the error, we need to15
improve the approximation of the forcing term using Chebyshev and C-expansion scheme [5]. The
results in the last column of Table I are obtained using Nx =Ny =30, M=50, and K =50.17

The same problem is solved using the Abel regularization. We choose the same parameters
Nx ,Ny,M and K as in Table I. Some results are presented in Table II. The numerical results19
in the first four columns are obtained using 
=0.005 with M=30 and in the last column using

=0.002 with M=70.

Table I. The MSR errors in Example 1 using the Lanczos regularization in a squared domain.

t �t= 1
4 �t= 1

8 �t= 1
16 �t= 1

32 �t= 1
32

1 1.8×10−5 2.1×10−5 5.9×10−6 7.6×10−6 3.6×10−7

2 6.3×10−5 1.8×10−5 8.0×10−6 8.7×10−6 8.8×10−7

5 5.5×10−5 1.4×10−5 5.7×10−6 6.8×10−6 7.4×10−7

10 5.3×10−5 2.3×10−5 1.7×10−5 1.0×10−5 7.8×10−7

Table II. The MSR errors and CPU time in Example 1 using the Abel
regularization in a squared domain.

t �t= 1
4 �t= 1

8 �t= 1
16 �t= 1

32 �t= 1
32

1 1.8×10−5 9.8×10−6 2.4×10−6 7.6×10−6 3.6×10−7

2 6.3×10−5 1.6×10−5 4.1×10−6 8.7×10−6 8.8×10−7

5 5.5×10−5 1.2×10−5 3.6×10−6 6.8×10−6 7.4×10−7

10 5.3×10−5 1.5×10−5 6.5×10−6 1.0×10−5 7.8×10−7

CPU 7.4 14.3 28.0 55.6 137.0
21
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Table III. The MSR errors and CPU time in Example 1 using C–N approxi-
mation scheme of the FDM in a squared domain.

t �t= 1
4 �t= 1

8 �t= 1
16 �t= 1

32 �t= 1
32

1 1.3×10−5 4.6×10−6 1.6×10−6 8.0×10−7 4.0×10−7

2 5.0×10−5 1.2×10−5 3.3×10−6 1.1×10−6 8.6×10−7

5 4.1×10−5 1.0×10−5 2.7×10−6 8.5×10−7 7.0×10−7

10 4.4×10−5 1.3×10−5 3.5×10−6 1.5×10−6 8.9×10−7

CPU 0.31 0.64 1.22 2.43 36.35

Table IV. The MSR errors and CPU time in Example 1 using the Abel
regularization in a squared domain.

t �t= 1
4 �t= 1

8 �t= 1
16 �t= 1

32 �t= 1
32

1 1.4×10−3 4.6×10−4 2.3×10−4 1.1×10−4 4.8×10−5

2 5.4×10−3 8.1×10−4 1.7×10−4 7.9×10−5 3.6×10−5

5 1.0×10−3 3.8×10−4 1.1×10−4 5.5×10−5 2.5×10−5

10 5.4×10−3 1.2×10−3 3.5×10−4 1.8×10−4 7.5×10−5

CPU 19.1 35.9 69.7 137.3 170.2

Table V. The MSR errors and CPU time in Example 1 using C–N approximation
scheme of the FDM in a squared domain.

t 21×21 mesh 41×41 mesh 61×61 mesh 81×81 mesh

1 1.3×10−2 3.5×10−3 1.6×10−3 9.1×10−4

2 1.1×10−2 2.7×10−3 1.2×10−3 6.9×10−4

5 7.1×10−3 1.8×10−3 8.2×10−4 4.7×10−4

10 2.1×10−2 5.4×10−3 2.5×10−3 1.4×10−3

CPU 2.1 28.5 152.0 450.0

We compare our method with the classical finite difference method (FDM) using C–N scheme for1
this problem on �=[0,1]×[0,1] in which the corresponding exact solution is uex=sin(xy)cos(t).
The numerical results in the first four columns of Table III are obtained using 21×21 uniform3
mesh while the results in the last column are obtained using 41×41 uniform mesh. By comparing
the results shown in Tables II and III, it is evident that the FDM is more efficient than our method.5
However, the situation changes when we consider the problem with more complex exact solution
which has more oscillations:7

uex(x, y, t)=sin(20xy)cos(t)

on �=[0,1]×[0,1] by the FDM, which corresponds to the exact solution9

uex(x, y, t)=sin[20(x+0.5)(y+0.5)]cos(t)
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Figure 3. Oval of Cassini.

Table VI. The MSR errors in Example 2 using the Lanczos regularization
in the domain of oval of Cassini.

t �t= 1
4 �t= 1

8 �t= 1
16 �t= 1

16

1 4.6×10−6 2.8×10−7 2.2×10−7 2.5×10−7

2 1.3×10−5 2.2×10−6 5.3×10−7 5.6×10−7

5 5.7×10−6 1.7×10−6 4.5×10−7 4.3×10−7

10 7.2×10−6 1.8×10−6 3.9×10−6 4.3×10−7

on �=[−0.5,0.5]×[−0.5,0.5] by our method. The computational results are shown in Tables1
IV and V. We observe that our proposed method is better than FDM. The results shown in the
first four columns of Table IV are obtained using Nx =Ny =30, M=70, K =50, 
=0.002, and3
the results shown in the last column correspond to Nx =Ny =30, M=100, K =50, 
=0.0012. In
Table V, the results are obtained using FDM with �t= 1

32 and the best results are obtained using5
81×81 mesh which can be easily achieved using our proposed method with fairly large time step
�t= 1

8 as shown in the second column of Table IV. Furthermore, the CPU times are 450 and 35.9 s7
for FDM and our proposed method, respectively. The CPU time by FDM increases rapidly with
the growth of the mesh size. Hence, we conclude that our proposed method is more effective than9
FDM for the cases of complicated solution. For a regular domain such as square, FDM may have
the advantage for solving smooth problems. However, for irregular domains or high-dimensional11
problems, our proposed meshless approach has the clear advantage due to the difficulty of meshing
the domain using FDM.13

Example 2
In this example, we consider the same problem as in the previous example for an irregular-shaped15
domain as depicted in Figure 3 which is represented by the following parametric equation:

x(t)= R(t)cos(t), y(t)= R(t)sin(t)17

where

R(t)=c2 cos(2t)+
√
a4−c4 sin2(2t), 0�t�2�19

Here we set c=0.353, a=√
0.25−c2. The numerical results in Table VI are obtained using

Lanczos regularization scheme with Nx =Ny =25,M=30,K =30 in the first three columns of21
the table and Nx =Ny =30,M=50,K =30 in the last column.
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Table VII. The MSR errors in Example 2 using the Abel regularization in
the domain of oval of Cassini.

t �t= 1
4 �t= 1

8 �t= 1
16 �t= 1

32

1 4.7×10−6 4.2×10−7 3.2×10−7 8.3×10−8

2 1.3×10−5 2.2×10−6 5.8×10−7 1.8×10−7

5 5.7×10−6 1.8×10−6 4.5×10−7 1.6×10−7

10 7.4×10−6 5.5×10−6 5.4×10−7 1.3×10−6

Similar to the last example, the numerical results obtained using Abel’s regularization technique1
are shown in Table VII. The results in the first three columns are obtained using M=30 and K =20.
The results in the last column correspond to M=50 and K =25. The regularization parameter is3
taken as 
=0.005 in all the calculations placed in this table. The collocation points are distributed
uniformly, in terms of angle, on the boundary.5

For the irregular-shaped domain, it is a major task to meshing the domain using FDM. Our
proposed method is meshless and the solution procedure for the previous example with square7
domain and the current one with irregular domain is the same.

To further demonstrate the effectiveness of the proposed algorithm, in the following we show9
two examples with more complicated forcing term.

Example 311
Let us consider the problem with the same diffusion equation (46) in the domain �=[−0.5,0.5]×
[−0.5,0.5] with the initial and Dirichlet boundary conditions and f (x, y, t) being artificially13
imposed in such a way that the exact solution is

uex(x, y, t)= f1(x, y)cos t (47)15

where

f1(x, y) = 3

4
exp

(
− (9x+2.5)2+(9y+2.5)2

4

)
+ 3

4
exp

(
− (9x+5.5)2+(9y+5.5)2

49

)

+ 1

2
exp

(
− (9x−2.5)2+(9y+1.5)2

4

)
− 1

5
exp(−(9x+0.5)2−(9y−2.5)2) (48)

Note that f1(x, y) is a re-scaled Franke’s function (see Figure 4) which is widely used as a17
benchmark problem for surface reconstruction [21]. The function f1(x, y) in (48) was originally
defined in the unit square.19

To obtain the numerical results, we couple the Chebyshev and C-expansion approximation with
the Lanczos regularization scheme and let Nx =Ny =45, M=100,K =100. The numerical results21
with different time steps �t are shown in Table VIII.

The numerical results shown in Table IX are obtained using Abel’s regularization scheme with23

=0.0012,M=100, and K =100. As we can see, the numerical results in both approaches are
excellent.25
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Figure 4. Franke’s function f1(x, y).

Table VIII. The MSR errors in Example 3 using the Lanczos
regularization in the squared domain.

t �t= 1
8 �t= 1

16 �t= 1
32

1 1.6×10−4 4.3×10−5 1.1×10−5

2 1.4×10−4 3.3×10−5 8.2×10−6

5 9.0×10−5 2.2×10−5 6.4×10−6

10 2.7×10−4 6.7×10−5 3.0×10−4

Table IX. The MSR errors in Example 3 using the Abel
regularization in the squared domain.

t �t= 1
8 �t= 1

16 �t= 1
32

1 1.6×10−4 4.5×10−5 1.4×10−5

2 1.4×10−4 3.4×10−5 8.6×10−6

5 9.0×10−5 2.3×10−5 2.0×10−6

10 2.7×10−4 6.7×10−5 4.5×10−4

Example 41
In this example we consider the same diffusion equation (46) in the domain �=[−0.5,0.5]×
[−0.5,0.5]. The initial condition, the Dirichlet boundary condition, and f (x, y, t) are imposed3
such that the exact solution is

uex(x, y, t)= f2(x, y)cos t (49)5
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Figure 5. The PEAK’s function f2(x, y).

Table X. The MSR errors in Example 4 using the
Lanczos regularization in the squared domain.

t �t= 1
8 �t= 1

16 �t= 1
32

1 1.8×10−3 5.5×10−4 1.5×10−4

2 2.0×10−3 4.2×10−4 1.1×10−4

5 1.1×10−3 2.8×10−4 7.2×10−4

10 3.5×10−3 8.7×10−4 1.6×10−3

where
1

f2(x, y) = 3(1−6x)2 exp(−36x2−(6y+1)2)−10

(
6x

5
−(6x)3−(6y)5

)
×exp(−36(x2+ y2))− 1

3
exp(−(6x+1)2−36y2) (50)

is the re-scaled PEAKS function (see Figure 5) from MATLAB [22]. To evaluate the particular
solutions, we use the Chebyshev and C-expansion approximation with Lanczos regularization3
scheme and let Nx =Ny =40, M=100, and K =100. The numerical results with different time
steps �t are shown in Table X. Using Abel’s regularization scheme with the parameters 
=5
0.0012,M=100, and K =100, we obtain the numerical results as shown in Table XI.

We note that the FDM scheme cannot give any reasonable solution for the problems in7
Examples 3 and 4.

The previous examples have shown the effectiveness of our proposed method in solving problems9
with complicated domain or forcing term. In the next example, we will demonstrate how our
method can be applied to problems with different types of boundary conditions. By examining11
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Table XI. The MSR errors in Example 4 using the Abel
regularization in the squared domain.

t �t= 1
8 �t= 1

16 �t= 1
32

1 1.8×10−3 5.5×10−4 1.4×10−4

2 2.0×10−3 4.2×10−4 1.1×10−4

5 1.1×10−3 2.8×10−4 7.1×10−5

10 3.5×10−3 8.8×10−4 1.2×10−3

Table XII. The MSR errors in Example (5) using the Abel regularization
in a squared domain with mixed boundary conditions.

t �t= 1
4 �t= 1

8 �t= 1
16 �t= 1

32 �t= 1
32

1 9.4×10−5 3.8×10−5 4.9×10−5 8.2×10−6 1.8×10−6

2 1.3×10−4 7.0×10−5 2.3×10−5 9.3×10−6 6.1×10−6

5 1.2×10−4 4.0×10−5 7.2×10−6 8.3×10−6 4.7×10−6

10 1.3×10−4 3.1×10−5 1.1×10−5 1.8×10−5 6.6×10−6

Equations (40)–(42), we obtain a collocation system with the matrix B[�(xi ,nk)], i.e. the entries1
of the collocation matrix are obtained by applying the boundary operator B to the approximate
fundamental solutions �(x,nk), and then evaluating at the boundary collocation points xi . For3
example, the entries of the collocation matrix corresponding to Neumann boundary condition is
��(xi ,nk)/�n.5

Example 5
We consider the same diffusion equation in Example 1 with mixed boundary conditions in the7
domain �=[−0.5,0.5]×[−0.5,0.5]. The mixed boundary conditions are

u(−0.5, y, t) = g1(y, t), −0.5�y�0.5, t>0

u(0.5, y, t) = g2(y, t), −0.5�y�0.5, t>0

u(x,−0.5, t)+ �u
�n

(x,−0.5, t) = g3(x, t), −0.5�x�0.5, t>0

u(x,0.5, t)+ �u
�n

(x,0.5, t) = g4(x, t), −0.5�x�0.5, t>0

The boundary data gi , i=1,2,3,4, the source function f (x, y, t), and the initial condition u(x, y,0)9
are given according to the exact solution uex(x, y, t)=sin[(x+0.5)(y+0.5)]cos t. The results
using Abel regularization with various �t are given in Table XII. The results in the first four11
columns are obtained using Nx =Ny =25, M=50, K =30, 
=0.003 and in the last column using
Nx =Ny =25, M=50, K =50, 
=0.003. Again, the results in both tables are extremely accurate.13
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Example 61
We consider the following diffusion equation:

�u
�t

=�

(
�2u
�x2

+ �2u
�y2

)
, (x, y)∈D, t>0 (51)

3

with initial and boundary conditions

u(x, y,0) = 1, (x, y)∈D

u(x, y, t) = 0, (x, y)∈�D, t>0

where D=[−0.2,0.2]×[−0.2,0.2], and �=5.8×10−7. Note that the solution is not continuous5
at t=0.

To apply our method, we need to transform the domain D to the standard domain �=7
[−0.5,0.5]×[−0.5,0.5]. After the domain transformation, we have

�u
�t

= �

0.16

(
�2u
�x2

+ �2u
�y2

)
, (x, y)∈�, t>0

u(x, y,0) = 1, (x, y)∈�

u(x, y, t) = 0, (x, y)∈��, t>0

(52)

9

The exact solution is given by [23] as follows:

uex(x, y, t)= 16

�2
∞∑
n=0

∞∑
m=0

Ln,m cos[(2n+1)�x]cos[(2m+1)�y]exp(−Dn,mt)11

where

Ln,m = (−1)n+m

(2n+1)(2m+1)
and Dn,m = �

0.16

�2

4

[
(2n+1)2

0.25
+ (2m+1)2

0.25

]
13

In Table XIII, we present some numerical results using Lanczos regularization technique. In this
table, the results in the last column are obtained using (31). It should be noted that the calculations15
are performed with very large values of the parameter p as shown in (28). Note that � in (28)
should be replaced by �/0.16; i.e. p=0.32/(��t). Thus, p=110344 for �t=5 and p=55172417
for �t=1. In all the calculations in this example, the number of Chebyshev’s polynomials in
each axis direction is Nx =Ny =5; the number of the sources is K =50. The numerical results in19
Table XIV are obtained using Abel’s regularization with 
=0.0055,M=50.

Example 721
In this example we consider the problem given by Šarler and Vertnik [20]; i.e. the diffusion
equation (51) in D=[0,1]×[0,1] with �=1, and initial and boundary conditions

23

u(x, y,0) = 1, (x, y)∈D (53)

u(x,1, t) = 0, 0�x�1, t>0 (54)

u(1, y, t) = 0, 0�y�1, t>0 (55)
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Table XIII. The MSR errors in Example 6 using the Lanczos regularization.

�t=5 �t=1

t M=30 M=40 M=50 M=50 M=50, Reference [16]
1000 3.0×10−3 1.1×10−3 4.3×10−4 3.2×10−4 3.3×10−4

2000 1.0×10−3 3.3×10−4 2.7×10−4 6.4×10−5 4.1×10−5

5000 2.3×10−4 1.7×10−4 1.4×10−4 4.7×10−5 2.0×10−5

10000 1.3×10−4 9.8×10−5 8.3×10−5 2.8×10−5 1.2×10−5

Table XIV. The MSR errors in Example 6 using the Abel regularization.

t �t=5,M=50 �t=1,M=50 �t=0.5,M=50

1000 7.8×10−3 7.8×10−3 7.8×10−3

2000 4.6×10−3 4.6×10−3 4.6×10−3

5000 7.7×10−4 7.7×10−4 7.6×10−4

10000 7.1×10−5 3.7×10−5 3.0×10−5

�
�x

u(0, y, t) = 0, 0�y�1, t>0 (56)

�
�y

u(x,0, t) = 0, 0�x�1, t>0 (57)

The analytical solution [23] of the above problem is given by1

uex(x, y, t)=W (x, t)W (y, t)

where3

W (x, t)= 4

�

∞∑
n=1

(−1)n+1

(2n−1)
cos

(
2n−1

2
�x

)
exp

[
−
(
2n−1

2
�

)2

t

]
(58)

We would like to indicate that there is a misprint for W (x, t) in Equation (35) in [20].5
We apply the algorithm described in Example 6 using the Lanczos regularization. The numerical

results obtained in Table XV use the following parameters: Nx =Ny =5, M=50, K =50, �t=7
10−5. To compare our results with the results in Reference [20], we define the average absolute
error ‖u−uex‖avg and the maximal absolute error ‖u−uex‖∞ as in Reference [20] which are9

‖u−uex‖∞ = max
1�i�Nt

|u(t, xi , yi )−uex(t, xi , yi )|

‖u−uex‖avg= 1

Nt

Nt∑
i=1

|u(t, xi , yi )−uex(t, xi , yi )|11

The best results using �t=10−5 and 101×101 RBFs obtained in [20] are shown in Table XVI
(Table 12 in [20]). Comparing the results in Tables XV and XVI, we observe that our results are13
slightly more accurate using only K =50. Furthermore, in [20] the authors indicated that their
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Table XV. ‖u−uex‖avg and ‖u−uex‖∞ in Example 7 using the Lanczos regularization in a squared domain.

�t=10−5 �t=10−4 �t=10−3

t ‖u−uex‖avg ‖u−uex‖∞ ‖u−uex‖avg ‖u−uex‖∞ ‖u−uex‖avg ‖u−uex‖∞
0.001 2.9×10−4 3.8×10−3 7.9×10−4 9.7×10−3 — —
0.01 4.3×10−5 2.0×10−4 4.3×10−4 1.8×10−3 4.4×10−3 1.8×10−2

0.1 1.7×10−5 7.9×10−5 1.1×10−4 2.1×10−4 1.1×10−3 1.9×10−3

1 3.3×10−6 1.1×10−6 2.1×10−6 5.9×10−6 1.2×10−5 3.1×10−5

2 — — — — 9.5×10−8 2.5×10−7

5 — — — — 4.3×10−14 1.1×10−13

Table XVI. ‖u−uex‖avg and ‖u−uex‖∞ in Example 7 by Šarler and Vertnik [20].
�t=10−5

t ‖u−uex‖avg ‖u−uex‖∞
0.001 2.352×10−4 2.809×10−3

0.01 9.371×10−5 3.523×10−4

0.1 9.243×10−5 1.582×10−4

1 8.324×10−6 2.066×10−5

method diverges for the larger time step �t=10−3 because the explicit approach is unstable and1
thus requires very small time step in the time marching scheme (see page 1280 in [20]). The
method presented in our paper is implicit and stable for �t=10−3 as shown in Table XV. On3
the other hand, the method proposed in [20] is a local method that has the advantage for solving
complicated large-scale problems. Both methods have their own merits for solving different types5
of problems.

5.2. 3D cases7

The method described in the previous section can be easily extended to 3D problems using the
approximations in the form9

M∑
m=1

Um1,m2,m3�m1
(x1)�m2

(x2)�m3
(x3)

for the approximation of the delta function, the MAFS trial functions, and the solution on each11
time step.

Example 813
We consider the following diffusion equation in 3D:

1

�

�u
�t

= ∇2u+ a2−r2

a2
, (x, y, z)∈�, t>0

u(x, y, z,0) = 0, (x, y, z)∈�

u(x, y, z, t) = 0, (x, y, z)∈��, t>0

(59)

15
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Table XVII. The MSR errors in Example 8 using the Lanzcos regularization.

t uex(0,0,0, t) M=15,N =300 M=20,N =400 M=25,N =500

0.01 8.4×10−3 5.7×10−5 1.5×10−6 5.4×10−7

0.05 2.3×10−2 5.0×10−5 2.5×10−6 5.2×10−7

0.1 2.7×10−2 1.7×10−5 2.5×10−6 2.0×10−7

0.2 2.8×10−2 4.7×10−6 2.5×10−6 1.0×10−7

0.3 2.8×10−2 4.3×10−6 2.5×10−6 9.9×10−8

Table XVIII. The MSR errors in Example 8 using the Abel regularization.

t uex(0,0,0, t) M=15,N =300 M=20,N =400 M=25,N =500

0.01 8.4×10−3 1.7×10−4 6.7×10−5 9.2×10−6

0.05 2.3×10−2 6.3×10−4 6.0×10−5 1.7×10−5

0.1 2.7×10−2 7.3×10−4 3.0×10−5 1.9×10−5

0.2 2.8×10−2 7.4×10−4 1.9×10−5 2.0×10−5

0.3 2.8×10−2 7.4×10−4 1.9×10−5 2.0×10−5

where �∪��={(x, y, z) : x2+ y2+z2�a2},r2= x2+ y2+z2, and � is the diffusion coefficient.1
The exact solution is given by [23]

uex= (a2−r2)(7a2−3r2)

60a2
− 12a3

r�5
∞∑
n=1

(−1)n−1

n5
sin

n�r

a
exp

(
−�n2�2t

a2

)
3

In the following numerical computation, we consider a=0.5, �=1. To demonstrate that our
proposed approach can be easily extended to 3D problems, we choose to solve this problem in the5
Cartesian coordinates without considering the special property of its spherical symmetry.

For all the numerical results obtained in the example, the number of source points K is equal7
to the number of collocation points N . These points are randomly distributed using the subroutine
RNSPH from the IMSL Library. The source points are placed on the sphere with radius Rs =0.95.9
In all the calculations performed in this example the number of Chebyshev’s polynomials in each
axis direction is Nx =Ny =Nz =5. A total of 50 test points inside the sphere are randomly selected.11

Table XVII contains the MSR solution errors on a set of test points that are distributed uniformly
inside the sphere. The results are obtained by the Lanzcos regularization technique. We used the13
time step �t=0.01 for M=15, 20 and �t=0.001 for M=25.

In Table XVIII, we show some of the numerical results using Abel’s regularization technique.15
We use the time step �t=0.01 for M=15, 20 and �t=0.001 for M=25. The regularization
parameter is 
=0.02 for M=15 and 
=0.01 for M=20, 25. In this example, numerical results17
obtained using Lanzcos regularization scheme seems superior than those from Abel’s regularization
scheme. Both schemes produce excellent results.19
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6. CONCLUDING REMARKS1

The numerical technique presented in this paper can be classified as a boundary meshless method.
The Chebyshev polynomial and trigonometric basis functions for the evaluation of approximate3
particular solution [5] are coupled with the approximate fundamental solution for finding the
corresponding homogeneous solution [4]. We extend these novel approaches to solve the heat5
conduction problems.

In the past, the fundamental solution has been used as the trial function for the approximation7
of homogeneous solution and the radial basis functions have been widely used as the trial function
for the approximation of particular solution. One special feature presented in this paper is that we9
apply the same trial function for the approximation of fundamental solution and particular solution.
Since the particular solution and approximate fundamental solution are easy to derive using the11
proposed trial function, the same numerical scheme can be extended to a large class of linear
PDEs. The proposed method is highly accurate. Hence, we expect other types of linear or non-13
linear time-dependent problems such as wave equations, Burger equation, convection–diffusion
equations, etc. can be solved effectively using the proposed technique. Further work in extending15
our approach beyond the heat conduction problems is currently under investigation.

One of the challenges of the proposed approach is the optimal choice of the various parameters.17
The excellent numerical results in this paper merit further investigation in this respect.
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