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ACCURATE 3-D MORPHOLOGICAL MEASUREMENT USING A
STRUCTURED-LIGHT RANGE SENSOR
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1Robot Vision Laboratory, School of Electrical and Computer Engineering, Purdue University
West Lafayette, IN 47907-1285, USA E-mail: cromwell@ecn.purdue.edu
2Gulf Coast Research Laboratory Museum, Institute of Marine Sciences, The University of
Southern Mississippi, P.O. Box 7000, Ocean Springs, MS 39566-7000, USA,
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ABSTRACT A single-plane structured light range-sensor was tested to establish its usefulness in acquiring 3-D
measurements of fish skulls. Twenty-one distances among 22 landmark points for each of 12 neurocrania of the
scorpaenid fish Neomerinthe hemingway were taken with digital calipers, with a video-based 2-D imaging system
widely used in systematic studies, and with a single-plane structured-light range sensor of inexpensive and simple
design. Measures taken by 3-D sensor are highly correlated with those obtained from caliper measurement (r =
0.9995, P << 0.001 ), with a precision ranging from 0.08–0.43 mm. Like caliper-based measurements, they are
less strongly correlated with measurements derived from projected video-imaging. Most skulls were scanned in
just over 3 minutes each. Range maps, typically establishing the (x,y,z) coordinates of more than 75,000 points
per scan, can be obtained in about 40–50 CPU seconds using software running on multiple platforms. Sensor data
taken from different views can be merged to build a more complete 3-D reconstruction. System design,
calibration, and use are discussed. By eliminating error due to perspective effects inherent in measuring from
projected video images, such sensors hold considerable promise in quantifying biological shape in 3-D for
comparative and functional studies.

When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge of it is of a meager and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely, in your thoughts, advanced it to the stage of science.

Sir William Thompson, Lord Kelvin (1824–1907)

INTRODUCTION

Since measurement of anatomical dimensions pro-
vides an extremely important means to distinguish
among taxa, it is central to the practice of taxonomy and
systematics. Measurement is essential to studies of
growth and development, as well as comparative inves-
tigations of function. Mensuration also forms a neces-
sary element in the advancement of theoretical
systematics by providing empirical data needed to re-
fute hypotheses. Measurable differences, although sel-
dom actually taken, are also implicit in establishing
morphological character states for cladistic study and in
providing identifications that unify morphological and
molecular systematics.

Perhaps because of their ubiquity, much attention
has been directed at what measures might be most appro-
priately taken and how they can be evaluated. Much less
attention has been given to the study of how measure-
ments may be acquired more accurately and precisely,
with numerous publications often failing to indicate
what acquisition methods were used. Given the unifica-
tion and standardization measurement provides science
(Klein 1974, Wise 1994), the constant need to obtain

more and better data, and recent advances in computer
imaging, it is useful to investigate alternative approaches
of measurement.

In taxonomy and systematics, measurements of mac-
roscopic objects have been taken primarily with vernier
or dial calipers. In the past, such measurements were
transcribed from data sheets and then analyzed. When
linked via RS-232 interfaces, electronic calipers now
provide a means of acquiring measurement data directly
without the need of a separate data entry step. Although
this has resulted in data capture rates roughly 5 to 10
times faster than traditional methods, a relatively lim-
ited number of measurements can be captured by this
means. Consequently, calipers are seldom used to study
quantitatively many complex shapes, such as those ob-
served in fish bones. The development of digitizers has
permitted morphometricians to use more readily pro-
jected images to measure specimens (e.g., Currents et al.
1989, Reilly 1990, Brooks 1991, Hastings 1991), with
the use of video-digitizers becoming increasingly com-
mon (e.g., Fink 1987, White and Prentice 1988, White et
al. 1988, Lindberg 1990, Ray 1990, Sanfilippo and
Riedel 1990, Ehlinger 1991, Douglas 1993, Fink 1993,
Meacham 1993, McElroy and Kornfield 1993, Newton
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and Kendrick 1993, Wimberger 1993, Kaiser et al. 1994,
Robinson and Wilson 1995, Zelditch and Fink 1995,
Zelditch et al. 1995, McElroy and Douglas 1995). Ap-
plications of such 2-D techniques can increase the rate
of data acquisition an additional one or 2 orders of
magnitude. However, for strongly 3-dimensional ob-
jects for which measures can extend out of the plane of
the projected image, error resulting from measurement
of a foreshortened projected image can be significant.
Measurement in multiple orientations and repeated cali-
bration may be required to correct for error due to fore-
shortening. Although some (e.g., Corner et al. 1992,
Richtsmeier et al. 1993) have employed 3-D digitizers
to circumvent this problem, most existing tools provide
only a limited number of data points for larger objects.
Bookstein et al. (1991) successfully demonstrated agree-
ment between measures of the human skull taken from
lateral and posteroanterior projections of 3-D
cephalograms produced using computed tomography
and caliper measures of the same landmarks.

Machine vision offers a variety of sensing methods
for accurately and more comprehensively measuring in
3-D. Confocal microscopy provides 3-D measurement
for suitably small objects (e.g., Foster et al. 1990,
Birkmann and Lundin 1996). Computed Tomography
(CT), Nuclear Magnetic Resonance Imaging (NMRI),
and Positron Emission Tomography (PET) scanning tech-
niques are powerful, in wide use for medical applica-
tions, and have considerable potential for use in
measuring biological materials (e.g., Conroy and Vannier
1984, Zangrel and Schultze 1989, Schultze 1991a,b,
Kalvin et al. 1995). However, costs associated with these
sensors make their use impractical for most systematists.
Consequently, development of low-cost imaging sys-
tems capable of accurate measurement will likely re-
main focused on systems utilizing visible light, at least
in the near future.

Typically (x,y,z) locations, visible on a target ob-
ject, are gathered as an array of measured points. This 2-
dimensional array of (x,y,z) positions is commonly called
a “range map”. Range maps may be passively or actively
produced. Active methods require special lighting to
illuminate the object. Passive methods do not. Without
such lighting, range maps are often sparse. Light from a
given point on the target may not reach the sensor or it
may result in ambiguous values. Nonetheless, one pas-
sive method, stereopsis, has seen wide use (Kaufman
1964, Julesz and Miller 1975, Mayhew and Frisby 1976,
Yakimovsky and Cunningham 1978, Marr and Poggio
1980, Baker and Binford 1981, Grimson 1981, Mayhew
and Frisby 1981, Barnard and Fischler 1982, Marr 1982,

Boyer and Kak 1988). However, stereopsis requires
matching points between “left-eye” and “right-eye” im-
ages, an ambiguous task without tightly controlled or
structured lighting. The resultant range maps can be
noisy as well as sparse. Automated steroeopsis thus
produces significant measurement error. Manual meth-
ods reduce ambiguity, but require much work per mea-
sured point. Other passive techniques, such as
range-from-focus and shape-from-shading methods (Horn
1975) also provide sparse maps, and they provide rela-
tive position only.

Active sensing methods provide more complete
range maps. Laser radar probes a target with a collimated
beam (e.g., Caulfield et al. 1977, Lewis and Johnston
1977, Nitzan et al. 1977, Riggs et al. 1986). Time of
flight is measured for pulsed systems, while FM or AM
systems modulate the frequency or amplitude of the
transmitted beam and compare the transmitted signal to
the return signal to determine distance. However, system
cost and complexity are high. Because beams used in
such systems dwell on any given point on the target for
only a very brief moment, power must be increased to
provide sufficient lighting. As a result, such systems are
not necessarily eye-safe and are relatively expensive.
Flying-dot systems can gather good range data (Rioux
1986, Blais et al. 1988), but again system cost and
complexity are high for designs that gather data quickly.

Structured light is a relatively simple active sensing
method. Although complex designs involving multiple
light stripes (Yeung and Lawrence 1986, Boyer and Kak,
1987) or Gray-coded binary patterns (Inokuchi et al.
1984) are possible, simple sensors that produce range
maps of high quality can be built from inexpensive
components. A single-plane structured light range sen-
sor is simply a projector, which produces a plane of light,
and a camera, which views the intersection of that light
plane with the target. The system shown in Figure 1
provides an example of one possible arrangement. When
the light plane from the projector intersects a staircased
target it forms a light stripe that the camera sees as a
series of line segments. With a monochromatic light
source and a bandpass filter on the camera, the image
contains only those line segments. It is easy to see that
the shape of the target defines the general shape of the
camera’s image. Less obvious, but critical to this sens-
ing method, is that if the optical characteristics of the
camera and the geometric relationships of the camera
and projector are known, then the (row, column) loca-
tion of an illuminated point in the image defines a
unique (x,y,z) location on the target.
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A single-plane structured light sensor is really a 2-
D sensor—it gathers 3-D data by assembling a series of
2-D slices. The sensor (or target) is moved so that the
light plane sweeps across the volume of interest. Assem-
bling data for individual slices yields a 2-dimensional
array of (x,y,z) measures. Each digitized video frame,
corresponding to a 2-D slice, yields one column of
(x,y,z) values. In our experiments we moved the sensor
on an overhead track; moving the target on a stage
would yield identical results.

Single-plane structured light range-sensing tech-
nology has been widely employed in industrial robotics
applications (e.g., Shirai 1972, Agin and Binford 1976,
Posdamer and Altschuler 1982, Sato et al. 1982, Yang
and Kak 1986, Kak et al. 1987, Wang et al. 1987, Hu and
Stockman 1989, Hutchinson et al. 1988, Hutchinson et
al. 1989, Hutchinson and Kak 1988, Hutchinson and
Kak 1989, Kak et al. 1988, Chen and Kak 1989, Kim and
Kak 1991, LaValle and Hutchinson 1991, Cromwell
1992, Cromwell 1993, Wang et al. 1994, Grewe and Kak
1995). However, its use for measuring biological objects
has been limited (McLeod 1991).

In this paper, we describe the design, calibration,
and use of a 3-D sensor, and the steps involved in
processing sensor data for presentation and investiga-
tion. We then compare measurements between landmark
points on osteological materials using data obtained
from the sensor against those gathered using methods
already familiar to most systematists. Such comparison
provides an estimate of their relative accuracy and a
demonstration of their potential usefulness in system-
atic studies.

Figure 1. Range-data gathering with a structured light
sensor. C = camera position; P = laser projector; IP = image
plane; LS = light stripe.

METHODS

Our approach is to scan a target with a low-cost laser
range finder to produce a dense array of (x,y,z) measures.
A set of images is then displayed on a workstation. As
the user selects landmarks of interest, 3-D distances
between landmarks are displayed. The overall process
may briefly be described as: 1) calibrate the sensor; 2)
sweep the sensor across the volume of interest, produc-
ing a 2-D array of initial sensor data; 3) convert the
sensor data into a 2-D array of (x,y,z) measures; 4)
calculate a 2-D array of local surface orientation from
the (x,y,z) data; 5) resample the (x,y,z) and local surface
orientation arrays to ensure that the displayed images
will have appropriate aspect ratios when displayed with
square pixels, if necessary; 6) produce images to present
the (x,y,z) data in a variety of forms; 7) present those
images to the user for specification of landmark points
from among the approximately 75,000 to 100,000 mea-
sured points; and 8) derive distance measures between
landmarks and report these values to the user.

Sensor Design Considerations
There are 2 primary criteria for designing a struc-

tured light range sensor. The first is the field of view. The
volume within the camera’s field of view beyond the
image plane is the “viewing frustum”. The intersection
of the frustum with the light plane generated by the
projector forms a trapezoid. Points within this trapezoid
can be simultaneously illuminated and viewed, thereby
defining the field of view of the sensor. This imposes a
limit on the cross-sectional dimensions of the target
object.

The second criterion is resolution, or more appropri-
ately, the spatial quantization. The number of rows and
columns in the digitized image limit the possible (x,y,z)
measurements to a finite set. The spacing of the corre-
sponding points within the trapezoidal field of view of
the range sensor determines the achievable resolution.

Spatial quantization is a function of several vari-
ables, including field of view. It is defined in terms of the
3-D distance between points corresponding to adjacent
image locations. The 3-D distance between adjacent
points on a single row of the image is of particular
importance. As illustrated in Figure 2, spatial quantiza-
tion is a complicated function of the following param-
eters: 1) the baseline distance, B the perpendicular
distance from the light plane to the camera; 2) the toe-in
angle, Φ—the angle between the camera’s optical axis
and the baseline; 3) thehorizontal angular field of view

of the camera, θ h
—the angle between the left and right
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design parameters (B, Φ, θ
h
, θ v

, N
r
, and N

c
), sensor

design tends to be an iterative process. The best values
for these parameters for a particular class of target size
and shape are obtained through experimentation.

As for physical construction, Figure 3 depicts a
compact sensor design. For this experiment, we used a
Pulnix TM-540 camera and a series of lenses, selected
and positioned depending on the size and orientation of
target skulls. The lens used for each of the scans is given
in Table 1. Lateral and dorsal views were taken with the
sensor position at location L1 of Figure 3. Ventral views
required a top-down orientation (location L2). A wider-
angle lens was used for larger targets. The sensor-to-
target distances were adjusted so that the target just fit
within the field of view. The Pulnix camera has a
510× 492 pixel CCD array and produces an RS-170
video signal. This signal was sampled to produce a
512× 480 image using an Imaging Technologies FG-
100-V video digitizer attached to a Sun 3/280. The light
source was a low-cost 0.5 mW HeNe laser producing
collimated red light at a wavelength of 632.8 nm.

To spread the collimated beam into a plane we used
a 3-element lens system. The beam first passed through
a pair of cylindrical lenses separated by 7 mm. The first
lens had a focal length of 1.2 mm. The second “lens” was
simply a 4 mm glass rod, carefully aligned to present a
section free from surface and internal defects. To focus
the width of the light stripe to about 0.3–0.5 mm, the
beam was passed through a biconvex lens with a focal
length of 30 cm separated from the preceding lens by 20
mm.

The sensor can be arbitrarily positioned along a rail.
We adjusted the position to view the target from the

planes of the viewing frustum; 4) the vertical angular

field of view of the camera, θ
v
—the angle between the

top and bottom planes of the viewing frustum; 5) the
number of rows in the digitized image, N

R 
; and 6) the

number of columns in the digitized image, N
C
.

Formally, spatial quantization has row and column
components:

A complete derivation of spatial sampling mea-
sures, including some sensor design guidelines, is pre-
sented in Cromwell (1992). Because δ R

( r , c ) and δ
C
( r

, c ) can not be readily used to determine the sensor

Figure 2. Geometric relationships among sensor elements
that determine the level of spatial quantization for a given
sensor design. B = baseline distance, Φ = toe-in angle,
θ h = horizontal angular field of view of the camera,
θ v = vertical angular field of view of camera.

Figure 3. Sensor design used in this study. B = ball screw
carriage; C = camera; G = gantry; L 1 = position 1;
L2 = position 2; P = projector; R = rail; S = stepper motor.
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desired direction and to attain an adequate field of view.
The rail was mounted to a ball-screw carriage, with the
long axis of the rail perpendicular to the carriage’s
direction of travel. The ball screw was mounted above
the work table, and was driven by a stepper motor that
received drive signals from a serial port of the Sun 3/280.

Data Gathering
Operation is quite simple and takes under 4 minutes

per scan. The video digitizer grabs a 512 × 480 frame, the
computer processes the resulting image to extract (row,
column) positions of illuminated points, and the stepper
motor moves the sensor. Movement (translation) is per-
pendicular to the projected light plane, and the distance

TABLE 1

Spatial Sampling Granularity For All Datasets 2 Camera views (dorsal, lateral, and ventral) are indicated in
parentheses by D, L, and V respectively, with the camera position (position 1—toward end of arm, position 2—
directly overhead) as specified in Figure 3.

Spatial Quantization, mm
Dataset Name Minimum Maximum TypicalLens
GCRL 26643 (D1)0.2115 0.6479 0.3379 75mm@f/5.6
GCRL 26666 (D1)0.1661 0.2579 0.2038 75mm@f/8
GCRL 26668 (D1)0.0655 0.1006 0.0799 75mm@f/8
GCRL 26669 (D1)0.2326 0.6212 0.3539 75mm@f/5.6
GCRL 26670 (D1)0.1526 0.2769 0.1997 75mm@f/8
GCRL 26671 (D1)0.1471 0.2789 0.1963 75mm@f/8
GCRL 26672 (D1)0.1400 0.2954 0.1946 75mm@f/8
GCRL 26674 (D1)0.2068 0.6662 0.3356 75mm@f/5.6
GCRL 26676 (D1)0.1432 0.2940 0.1967 75mm@f/8
GCRL 26677 (D1)0.2021 0.6709 0.3307 75mm@f/5.6
GCRL 26678 (D1)0.1269 0.2102 0.1602 75mm@f/8
GCRL 26689 (D1)0.1772 0.7227 0.3105 75mm@f/5.6
GCRL 26643 (L1)0.1605 0.2650 0.2025 75mm@f/8
GCRL 26666 (L1)0.1524 0.2727 0.1986 75mm@f/8
GCRL 26668 (L1)0.0677 0.0968 0.0800 75mm@f/8
GCRL 26669 (L1)0.1546 0.2742 0.2010 75mm@f/8
GCRL 26670 (L1)0.1374 0.2960 0.1929 75mm@f/8
GCRL 26671 (L1)0.1342 0.2994 0.1909 75mm@f/8
GCRL 26672 (L1)0.1580 0.2641 0.2001 75mm@f/8
GCRL 26674 (L1)0.1595 0.2690 0.2030 75mm@f/8
GCRL 26676 (L1)0.1466 0.2812 0.1965 75mm@f/8
GCRL 26677 (L1)0.1602 0.2987 0.2122 75mm@f/8
GCRL 26678 (L1)0.1456 0.2095 0.1728 75mm@f/8
GCRL 26689 (L1)0.1432 0.3391 0.2081 75mm@f/8
GCRL 26643 (V2)0.1786 1.9185 0.4154 25mm@f/4
GCRL 26666 (V2)0.1171 0.4121 0.1970 75mm@f/8
GCRL 26668 (V2)0.0962 0.1786 0.1278 75mm@f/8
GCRL 26669 (V2)0.1644 3.2031 0.4286 25mm@f/4
GCRL 26670 (V2)0.1471 0.3079 0.2047 75mm@f/8
GCRL 26671 (V2)0.1452 0.2976 0.2006 75mm@f/8
GCRL 26672 (V2)0.1535 0.2879 0.2049 75mm@f/8
GCRL 26674 (V2)0.1786 1.9443 0.4161 25mm@f/4
GCRL 26676 (V2)0.1432 0.3171 0.2045 75mm@f/8
GCRL 26677 (V)0.2094 0.9245 0.3781 25mm@f/4
GCRL 26678 (V2)0.1364 0.3390 0.2035 75mm@f/8
GCRL 26689 (V2)0.1953 1.1991 0.3943 25mm@f/4
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moved per step is the total target length divided by the
number of slices. This continues until the desired num-
ber of slices have been digitized. Each slice contributes
a 480-point column of data to the range map.

For processing a single image, consider the sensor
image in of an arbitrary “slice” in Figure 4. Due to
orientation of the camera relative to the light plane, the
light stripe will be roughly perpendicular to the scan
lines in the image. Some rows may have no illuminated
points. We describe the shape of the illuminated stripe
segment(s) in a frame by a series of numbers, one per row,
where zero indicates that no point in that row was illumi-
nated and any number other than zero indicates the
column location of the illuminated point. For a 512× 480
image, this generates a sequence of 480 numbers in the
range 0 through 512 inclusive. In the terminology of
machine vision, this is frequently called “offset data”, as
it expresses the offset of the light stripe from the left
margin of the image.

Offset data is stored in a 2-D array. Each column of
the array represents a slice derived from one digitized
video frame. The row position within a column is the row
position from the associated frame. The value stored at
offset [i,j] is thus the offset data from the j’th row of the
i’th frame. If zero is stored, the point is invalid—there
was no measurement made for row j of frame i. If a non-
zero offset distance d is stored, then a 3-D position was
measured. It has been stored in terms of an image-plane
(row, column) position equal to (j,d).

The data structure just described assumes an ideal
image. An actual video image will present a somewhat
fuzzy stripe, more than one pixel wide, against a back-
ground that is not entirely dark. To deal with real im-
ages, we have achieved acceptable results with the
following procedure. As shown diagrammatically in Fig-
ure 5A, for each scan line we find the brightest pixel. If
that pixel is not above some absolute threshold, T

A

(which may depend on light source, lens speed, and
stand-off distance), then store zero. If that pixel is at
least as bright as T

A
, then we test pixels at an outlier

distance w on either side of the peak. If they are not
dimmer than T

R
, a percentage of the intensity of the

brightest pixel, store zero. As shown in Figure 5B, this
avoids artifacts caused where the light plane grazes a
nearly coincident surface, keeping only isolated peaks.

To reduce fuzziness caused by vibration, which may
result from using long focal length lenses positioned
toward the end of the rail, short time delays were added
between frames during sensor movement. To limit noise
introduced by low light performance of the Pulnix cam-
era, we averaged 4 digitized frames for each slice when
using long focal length lenses.

Figure 4. Arbitrary single image of light stripe.

Figure 5. Measured Intensity Values Across Light Stripe. A = Valid peak; TA = absolute threshold; TR = relative thresh-
old; W = outlier distance; B = Invalid peak resulting from grazing.
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The distance to these outlier pixels and the absolute
threshold of the brightest pixel are specific to a particu-
lar sensor design. For the sensor used in these experi-
ments, with pixels digitized to take intensity values
from zero through 255, we used an absolute threshold of
20, a relative threshold of 0.66 times the peak intensity,
and an outlier distance of 10 pixels. If the pixel in
question meets the criteria associated with the absolute
and relative thresholds, then its column position is stored
in the offset data. We also save the intensity of the
original point. This means that we have intensity data
that is registered to (x,y,z) location—the utility of this is
explained in a later section. The intensity is stored in the
same order as the offset data. While the offset data
encodes (x,y,z) in a somewhat indirect way, it is possible
to plot the offset data to produce a composite light-
stripe image (Figure 6). This image strongly suggests the
3-D shape of the surface. It provides immediate feedback
to the user regarding the quality of the measurements.

We store both offset and intensity as ASCII values,
for maximum portability. The data are run-length-en-
coded, so that stretches of missing data are replaced by
their lengths. The file has a header that includes the
calibration matrix, sensor use characteristics, date of
capture, the name of the user, and a user-specified com-
ment field, which allows us to record information about
the specimen. Our comment field included the catalog
number of the specimen and other relevant information
about the scan.

Calibration
The sensor records provides only (row, column)

information. Measurement requires (x,y,z) locations. Sen-
sor calibration provides a mapping from image plane
coordinates—(row, column), or (r,c)—into world coor-
dinates—(x,y,z). It might seem appropriate to calibrate
the sensor by trigonometric analysis, as done in equa-

tion 1.3 to define X
r
(r,c). However, this is not the case, as

the optical and geometric characteristics are difficult to
measure and small errors have profound effects. The best
method is to solve analytically for a calibration matrix,
using known (x,y,z) and (r,c) pairs. In other words, image
a calibration target with features in known (x,y,z) posi-
tions, measure the resulting (r,c) image locations, and
solve for the relationship providing the mapping from
image coordinates (r,c) to world coordinates (x,y,z).

Our calibration target was a small panel with 6 pins
protruding from known locations. We use the calibra-
tion method described in Chen and Kak (1987) to map
the image plane onto the light plane. This yields a
calibration matrix  T, where:

Figure 6. Unrectified, composite light-stripe image (GCRL 26643 in dorsal view).
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plane. The translation per step is just enough to cover
the long dimension of the target in 256 slices. If each
step is s millimeters, then every (x,y,z) vector stored in
column i has (0, s . i, 0) added to it. In other words, for
every i in the range [0,256] and each j in [0,480], if point
[i,j] was valid, we make the assignment:

By “valid”, recall that we mean those points for
which we extract an offset value and thus are able to
calculate (x,y,z). This is typically about 50–70% of the
points per scan.

Self-Occlusion
The only measurable points are those that can be

simultaneously illuminated with the laser and viewed
with the camera. If the light source and detector were
coincident, as is the case with laser radar, there would be
no missing data. Of course, for such a sensor the light
stripe would be a straight line in every image and thus
reveal no 3-D information.

With the camera outside the light plane, as it must
be, there is a set of points that can be viewed but not
illuminated, and a set that can be illuminated but not
viewed. This is what is referred to as self-occlusion.
Consider a smooth spherical target. Almost 50% of the
surface can be viewed, and almost 50% can be illumi-
nated, but the overlap is perhaps only 30–40% of the
total surface area. If the target has protruding structures,
those structures may cast 2 “shadows”. One shadowed
region is the set of points that cannot be illuminated
because an occluding structure blocks the light plane.
These illumination-occluded points will lie in the same
slice, thus the same range map column, as the occluding
surfaces. The other shadowed region is the set of points
that cannot be viewed because an occluding structure
blocks the camera’s line of sight. These view-occluded
points will not necessarily lie in the same slice, but for a
“left-eyed” sensor configuration like ours, with sensor
translation to the right, they appear to the right of the
occluding structure in the range map. Many points near
an occluding structure will belong to both occlusion
sets.

Processing the Range Map
The above section describes how offset data can be

captured and converted to a 2-D array of (x,y,z) vectors.

or:

Each pair of image and world coordinates yields 3
equations in twelve unknowns, the elements of T. A set
of 4 calibration points would be adequate to solve for  T.
Our problem is overdetermined, so we form the normal
equations as described in Chen and Kak (1987), and find
the linear least-squares solution as described in sections
2.0–2.1 of Press et al. (1988).

Given T, we would like to calculate bounds on its
spatial quantization. The finest and coarsest sampling
will both occur along the margins of the image, as long
as the image does not include the point on the light
plane that is closest to the camera. The error to consider
is a one-pixel error in column position for a given row,
as that is the error associated with incorrectly choosing
the peak in a row of the image. So, for each border pixel,
we calculate the 3-D distance between the (x,y,z) coordi-
nates corresponding to that pixel and its neighbor to the
left or right. A typical error is that same measure carried
out for a pixel in the region of the frame where illumi-
nated points typically appear. The calculation of this
error is critical, as error in peak detection and selection
is the source of practically all error in establishing (x,y,z).
Sub-pixel peak detection and selection provides a means
of improving spatial quantization. We recalibrated the
sensor before every scan of every target to minimize
error. The typical and bounding spatial sampling values
for all datasets are shown in Table 1. Note that these
values provide the bounds on the best possible accuracy
for a given configuration. Typical best-case calibration
errors, e(T), were in the range 0.05–0.2 mm. If e(T) is
within or below the spatial quantization (as it always
was in this study), that provides high confidence in the
accuracy of the calibration matrix T.

Applying the calibration matrix to the offset data
yields a range map X

r
, a 2-D array of 3-D vectors. X

r
[i,j] is

the vector (x,y,z) stored in column i, row j of this array.
This corresponds to the (x,y,z) position obtained from
the j’th row of the i’th digitized frame. We then add in
the slice-to-slice translations. We translate the sensor
along the y-axis, as the projected light defines the x-z
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Figure 7. Reconstruction of Measured Target. A = Registered intensity data; B = Z-value coded as intensity; C = Rendered
image D = Encoding of position and orientation.

The next step is the calculation of the local surface
normals. A detailed description of the calculation of
surface normals and local curvatures from a range map is
given by Yang and Kak (1986). Simply stated, X

r
u and X

r
v

are 2-dimensional arrays of 3-D vectors, just as X
r
 is a 2-

dimensional array of (x,y,z) locations. X
r

u[i,j] and X
r

v [i,j]

are the partial derivatives of the range map X
r
 with

respect to row and column position, respectively and
where “*” implies convolution:

This means that  S
r
 would be defined only at points

that have 8 valid neighbors. If a point is valid, but lacks
a completely valid neighborhood, the surface normals
are examined at its 8 neighbors. If a surface normal could
be calculated at one or more neighbors, then a neighbor-
ing surface normal vector is assigned. If there is a choice
of more than one neighboring surface normal vector,
then we select the one for which the point in question
best fits the plane of the corresponding 3× 3 neighbor-
hood.

Image Rectification
If we simply display the range map, coding intensity

or hue for 3-D vectors (as discussed indetail below), then
depending on the sensor field of view and the sensor
translation per slice, we may or may not have an image
that appears correct when displayed with square pixels.
The (x,y,z) vectors will be correct, but the row and
column dimensions of the image may be such that it has
the appearance of being compressed or stretched. This
can be corrected by resampling the range map through a
step we refer to as “rectification”.

The range map is first transformed so that the aver-
age surface normal vector points in the direction (0,0,1).
Since the range map is filled with one column per mea-
sured slice, points lying along one column are at a
constant value of x. Therefore, the derivative dx/di
describes the step per slice, and dx/dj is zero (where i,j
are indices within the range map corresponding to the
ith row in the jth original frame). After the transforma-
tion, dy/di is essentially zero, dy/dj is essentially some
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The surface normal vector at the location [i,j] is thus:
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non-zero constant, and both dz/di and dz/dj vary with
the 3-D shape of the measured surfaces. We resample the
range map to make dx/dj and dy/di roughly equal, which
ensures that images displayed with square pixels present
the expected aspect ratio. The surface normal map is

then recalculated for the resampled X
r
.

Presentation and Visualization
Given a range map and a map of surface normal

vectors, we can produce a rendered image. This rendered
image displays the intensities we would expect if the 3-
D surface were lit by a point light source, ignoring
shadow effects. Given a location of a point on a surface,
the expected intensity is a function of the angles be-
tween 3 vectors: 1) the local surface normal vector, 2) the
vector to the hypothesized viewpoint, and 3) the vector
to the hypothesized light source. The precise function
used is defined by the lighting model (see Foley and van
Damm 1984, Ballard and Brown 1982, Marr 1982 for
specific algorithms). We used a combination of Marr and
Minnaert lighting models, positioning the light source
location to illuminate the surface from above our left
shoulder. Note that this is rendering only, not raytracing,
which is far more computationally expensive. Render-
ing alone presents adequately realistic imagery for land-
mark selection.

We now produce 4 images. The first, (Figure 7A) is
the registered intensity data, and it resembles a photo-
graph of the target. The second (Figure 7B) encodes z as
intensity. The third (Figure 7C) is the rendered image.
The fourth (Figure 7D) encodes both position and orien-
tation. We can use hue on a computer monitor to encode
z, with blue furthest from the sensor and red closest
(Cromwell, 1997). The intensity is that of the rendered
image. The combination of these 4 images guarantees
that any measured feature will be visible in at least one
of them. Suture lines, for instance, are too small to show
up in the range map but they frequently appear in the
registered intensity image. Many uniform regions within
the intensity image have complex 3-D shapes revealed
by other images.

Data Extraction
The above steps produce a 2× 2 panel of 4 images.

This panel is displayed on a workstation screen, and the
user selects points. We have developed a simple inter-
face in the X Window System\(J that allows the user to
accurately select points for measurement using a mouse.
The corresponding (x,y,z) location follows immediately
from the [i,j] index of the selected image point. The user

can extract positions and orientations of single points,
distances between selected points, or cross sections along
arbitrary cutting planes. The selection can be done on
any of the 4 images presented, so a pair of points does not
have to be visible in a single image.

Registration, Range-map Merging, and Raytracing
Thus far, we have limited discussion to a single

translational scan of the target. In addition to the small
regions of self-occlusion described earlier, this sensing
mode restricts the range map to less than 50% of the
target. An obvious next step is to integrate range maps
gathered from a variety of directions to fully image the
object in 3-D. To do this we must solve several problems.

First consider the problem of merging 2 range maps
taken from views perhaps 90E apart. Let us refer to these

range maps as X
r

1 and X
r

2. We have thus far used rows and
columns of such range maps to define an appropriate
grid for presentation. In merging range maps it is conve-
nient to use the points as vertices in a mesh, representing
the surface as one or more contiguous regions of triangu-
lar facets that tessellate the surface. If the target were
roughly spherical, we would expect about half of each

range map to cover a common area. Thus, half of X
r

1

would form a mesh roughly coincident with the mesh

formed by X
r

2. We say “roughly coincident” because
spatial quantization and measurement error will prevent
exact coincidence. Even in the absence of measurement

error, X
r

1 and X
r

2 will, in all probability, sample the 3-D
spaces slightly differently with individual points not
falling exactly at the same locations.

Consider the union of these range maps, which forms
a more complete model of the object and can be ex-
pressed as,

with X
r

1 and X
r

2 transformed so that their coordinate

frames are coincident. X
r

u could be formed in 3 ways: 1)
by moving the target mechanically between scans, with
sufficient precision to provide the reverse translation; 2)
by a human expert picking landmarks visible in both
range maps to derive the needed transformation; 3) by a
procedure in which corresponding landmarks in the 2
range maps are identified automatically, without human
intervention. Presently, only the first 2 approaches are

practical and we have used both. After the union, X
r

u now
describes roughly 75% of the object. However, approxi-
mately one-half of X

r
u is redundant.

(2.7)21 XXXu
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A second major problem is that we can no longer
display the range map using the indices as a grid. In-
stead, we must resort to raytracing to create a realistic
image. Since our measured points are described by sev-
eral sets of points gathered from rectangularly sampled
grids, for each range map we form a triangular mesh. We
thus have a (rather long) list of triangular facets de-
scribed by the (x,y,z) positions of their vertices. To
perform raytracing we follow techniques described in
detail by Glassner (1989). For each pixel in the image,
raytracing determines which, if any, facet will appear
and how it will be rendered. If the 2 range maps are of
high quality and if the registration between the maps is
accurate, the region they share will appear as a finely-
mixed combination of the 2 meshes. However, it is
possible for many facets of one range map to be com-
pletely obscured by facets of the other. In such cases,
there may be facets that are completely inside the sur-
face, so that they would not appear from any exterior
viewpoint. Although it would be difficult to establish a
list of such facets analytically, it would be relatively
easy to generate a number of raytraced views from ca-
nonical positions and then search the union range map
for facets that appear in none of these views. Figure 8
shows the results of multi-scan registration and merging
using 3 views (dorsal, lateral, and ventral).

For many applications it may be reasonable to de-
lete such facets from later consideration, given the com-

putational expense of raytracing. If they were visible
only from very limited regions of space, their deletion
would have little effect on overall accuracy or complete-
ness. Nonetheless, more work needs to be done to facili-
tate landmark selection and measurement from raytraced
imagery.

Computer Hardware Used
As previously mentioned, a Sun 3/280 was used to

drive the scanner and digitize the images. The sensor
used was a general-purpose machine vision tool, and
was not specially designed for biological applications.
In fact, it was designed for far coarser sampling of larger
targets. The use of the Sun was due to the arrangement of
available hardware rather than to any specialization.
Since then, we have implemented the system on a PC
platform running the Linux operating system. Readers
interested in constructing such a system may contact the
senior author.

Data analysis, from offset data to presentation im-
ages, was done on both Sun (4/390S and Sparc 1000) and
PC (K6-333 MHz CPU, 32 MB RAM) platforms. On both
Sparc platforms, a 256× 480 range map can be processed
and presented in 40 to 50 CPU seconds. On the PC
platform, range map processing and presentation takes
only 10 CPU seconds.

Figure 8. Composite reconstruction produced through the union of 3 “canonical” views (dorsal, lateral, and ventral) of
GCRL 26666. Note the reduction in self-occlusion as compared to Figure 7.
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Specimen Preparation and Caliper and 2-D
Measurement

Specimens of the scorpaenid fish Neomerinthe
hemingway were taken near the mouth of the Mississippi
River and frozen for subsequent skeletonization. Cata-
log numbers for these specimens are provided in Table 1.
This species was selected because of its relatively large
size and availability. Partially frozen specimens were
autoclaved for 6 to 12 minutes at 123EC, depending on

size, to facilitate removal of muscle and other tissues
without disarticulating the skulls. Posttemporal bones
of some specimens were subsequently reattached. To
minimize reflections that can result in beam deflection
and image loss and to insure that adequate light is more
uniformly returned off more translucent regions, all skulls
were spray painted with a flat white enamel prior to
measurement of any kind.

Figure 9. Selected landmark points and distances (in white) used to compare sensor-derived measures with those taken
using caliper and projected-video imaging. A = Lateral view; B = Ventral view. 1) anteriormost median tip of median
ethmoid, 2) posteriormost ventral margin of basioccipital, 3) lateralmost extension of median ethmoid on left side [4 on
right side], 5) lateralmost point on lateral extension lateral ethmoid immediately anterior to palatine socket, [6 on right],
latero-anterior most point on lateral extension of lateral ethmoid immediately posterior to palatine socket [8 on right side],
9) lateralmost point of ventroposterior margin of lateral ethmoid at anterior rim of orbit [10 on right side], 11) tip of left
preorbital spine [12 on right side], 13) tip of supraorbital spine [14 on right side], 15) anterolateral tip of left dermosphenotic
[16 on right side], 17) posteriormost tip of left postemporal spine [18 on right side], 19) tip of left posttemporal spine, 20)
tip of left nuchal spine, 21) tip of left pterotic spine, 22) tip of anteriorprojection of left frontal. Landmark points 19–2 not
consistently visible or damaged in some specimens and not used in computations shown in Figure 10.
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Upon skeletonization, caliper based measures were
taken by one of us (SGP) to the nearest 0.1 mm using a set
of Fowler digital calipers connected to microcomputer
using the convenient and flexible DataQTM interface
software. Landmark points (Figure 9) were selected (again
by SGP) to insure a reasonable sampling of the 3-dimen-
sional conformation of the skulls and to provide data on
dimensions important to comparison with other
scorpionfishes. Twenty-one measured distances among
these landmark points were used to compare measuring
techniques. The skulls were then subsequently mea-
sured for the same landmark points using the MorphoSys
video digitization (Meacham 1993) using an Olympus
35 mm lens at the maximum possible working distances
(50 to 70 cm) to minimize parallax, while providing a
sufficiently large and clear image. Because some of the
chosen measurements can not be visualized in a single
plane, measurements were obtained from lateral, dorsal,
and ventral projections.

Comparison with Caliper and Projected Image Video
Measurement

 Data extracted from 3-D sensor based measurements
and data taken for the same inter-landmark points using
dial calipers were very nearly identical, with r = 0.9995

and P << 0.001 (Figure 10).The corresponding correla-
tion for inter-landmark distances measured by sensor
and projected video-imaging is somewhat lower
(r = 0.9934 and varies depending primarily upon the
orientation used for a given measurement). Four mea-
sures that, when taken in ventral view exhibit notable
foreshortening are primarily responsible for the differ-
ence between projected video-based measurement and
either caliper and sensor based methods (distance be-
tween points 2 and 15, 2–16, 9–11 and 10–12). The first
2 distances are relatively distant, but extend simulta-
neously from the broadest dorso-lateral part of the skull
(dermosphenotic) to the postero-ventral margin of the
medial skull axis (basisphenoid). The second pair of
measurements (posterior margin of lateral ethmoid pro-
cess to tip of preocular spine) appear proximate in ven-
tral view, but extend strongly dorso-ventrally, when
viewed laterally.

DISCUSSON

Although our system was not specifically designed
to measure biological objects, our results indicate it
produces abundant data within the range commonly
used in comparative morphometrics. Data storage costs
increase roughly linearly with an increase in the number
of pixels measured. However, this is not prohibitive as
compression can result in considerable savings. Our
offset data files ranged from 69–158KB compressed and
about 3.2 MB uncompressed. Processing time is also
roughly linearly related to the number of points in the
range map. Increases in the number of optical slices per
scan, as well as increases in pixel density per digitized
video frame, could be accommodated without exorbi-
tant computational expense. For a system costing only
about $2,000, excluding the workstation and labor costs,
we believe our results demonstrate the practicality of
single-plane structured light measurement of osteologi-
cal materials.

At sharp edges, finite beam width and optical bloom
limit achievable accuracy. We have coated our targets
with a matted surface, carefully selected camera optics,
and used appropriate lens speed to minimize ambiguity
and loss of resolution. For this reason, we limited our
inquiry to relatively large, non-specular objects that are
relatively hard, opaque, and dry. Nonetheless, signifi-
cant scope for improvement at relatively low cost exists
and additional experimentation will likely improve ac-
curacy and the range of objects that may be examined.
Since these experiments were conducted, we have built
a more capable sensor capable of gathering (x,y,z) data

Figure 10. Comparison of methods of measurement of
inter-landmark distances between landmarks seen in Fig-
ure 9 (shown as lines). Closed circles = correlation between
range-sensor and caliper-based measurements; Open
circles = correlation between projected video and caliper
based measures. Open circles denoted by A are measures of
distances between points 2 and 15 and 2 and 16; Open
circles denoted by B are measures of distances between
points 9 and 11 and 10 and 12. Note divergence due to
foreshortening in these measurements. Circles may repre-
sent more than one measurement because of overlap.
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with a precision of 0.2–0.05 mm at about the same cost
as the original sensor.

For measures of the kind described here, error due to
perspective effects can be significant when measuring
from projected 2-D imagery. Although MorphoSys was
designed to measure plant leaf shapes, use of projected
measurement of more 3-dimensional objects requires
greater circumspection. Studies utilizing such measures
to analyze shape must account for potential errors aris-
ing from perspective effects. Our results indicate that
use of a single-plane structured-light range sensor can
essentially eliminate errors due to perspective effects.

In our experiments we used only 21 of the more than
75,000 available points with estimated (x,y,z) coordi-
nates per scan. Although these are sufficient to demon-
strate the relative accuracy and considerable potential
of this approach, we believe that future research will be
usefully focused on developing automated methods ca-
pable of analyzing more numerous and more informa-
tive elements of the data set, thereby better characterizing
subtle shape differences among objects. Such studies
may lead to more objective methods of establishing
landmarks among a neighborhood of potentially corre-
sponding points. Such studies may also lead to more
precise understanding of mechanisms, selection, and
constraints that lead to and control shape differences.
They may also aid in developing a better understanding
how humans recognize taxonomically useful characters.
However used, one of the greatest strengths of single-
plane structured light sensing methods is that 3-D data
from the rest of the scanned object remains readily avail-
able for display and a variety of additional new measure-
ments become possible without subsequent rescanning
of the original object.

Like 3-D data obtained from tomographic methods
using other energy sources, these data can be archived
and distributed electronically to provide relatively com-
plete representations and to assure the same bases of
comparison. See http://rvl4.ecn.purdue.edu/~cromwell/
3d.html and http://lionfish.ims.usm.edu/~musweb/
lasermeasure.html. Although limited to surface features,
single-plane structured light imaging can secure data at
relatively limited cost, unlike CT, PET, or NMRI imag-
ing. By facilitating quantitative characterization and
thus common understanding among scientists with a
diverse range of perspectives, objects of common inter-
est may be more accurately studied.
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