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FRACTION-FREE COMPUTATION OF DETERMINANTS

DEANNA LEGGETT AND JOHN PERRY (FACULTY ADVISOR)

Abstract. Here we examine Dodgson's Method, a fraction-free methods for computing determinants. In
some cases, this method fails due to division by zero. We propose a workaround for Dodgson's Method that
ensures it also can be used to compute the determinant of any integer matrix.

1. Introduction: Fraction-free?

It is a fact of linear algebra that the determinant of a matrix of integers is an integer. Thus any fractions
introduced while computing its determinant will be eliminated at some step in the algorithm. Even if the
�nal step of such methods yields the correct integer for the determinant of A, the fractions introduced along
the way make the method more complex. This is true both if the calculations are done by hand or if they are
carried out by a computer program. Thus we need a fraction-free method, that is, a method of computing
determinants such that any divisions that are introduced are exact [4, p. 262].

Cofactor expansion is one of the most common fraction-free methods and is generally taught in elementary
linear algebra courses. However, it becomes cumbersome if the dimension of the matrix is nontrivial. Bareiss'
Algorithm is based on row reduction but can also be proven using Sylvester's Indentity ([2, 4]). Here we will
focus on third fraction-free method: Dodgson's Method.

2. Dodgson's Method

In each iteration of Dodgson's Method, create a new matrix whose entries are contiguous two-by-two
determinants made up of the entries of the matrix created in the previous iteration. We then divide each of
the entries of the new matrix by the corresponding entry in the interior of the matrix created two iterations
before. In this way, each iteration yields a matrix whose dimension is one less than that of the matrix
from the previous iteration. For this reason, Dodgson's Method, like Bareiss' Algorithm, is often called a
�condensation method.�

Example 1. Find det (A) using Dodgson's Method, where

A =


1 −2 1 2
−1 4 −2 1

3 3 3 4
2 5 2 −1

 .

Let A(4) = A. The �rst iteration of Dodgson's Method yields

A(3) =



∣∣∣∣ 1 −2
−1 4

∣∣∣∣ ∣∣∣∣ −2 1
4 −2

∣∣∣∣ ∣∣∣∣ 1 2
−2 1

∣∣∣∣∣∣∣∣ −1 4
3 3

∣∣∣∣ ∣∣∣∣ 4 −2
3 3

∣∣∣∣ ∣∣∣∣ −2 1
3 4

∣∣∣∣∣∣∣∣ 3 3
2 5

∣∣∣∣ ∣∣∣∣ 3 3
5 2

∣∣∣∣ ∣∣∣∣ 3 4
2 −1

∣∣∣∣


=

 2 0 5
−15 18 −11

9 −9 −11

 .

Since there is no A(5), there is no division involved in the �rst iteration of Dodgson's Method. However, in
the second iteration, we divide the determinant of each 2 × 2 by the corresponding entry in the interior of
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A(4):

A(2) =


∣∣∣∣∣∣ 2 0
−15 18

∣∣∣∣∣∣
4

∣∣∣∣∣∣ 0 5
18 −11

∣∣∣∣∣∣
−2∣∣∣∣∣∣ −15 18

9 −9

∣∣∣∣∣∣
3

∣∣∣∣∣∣ 18 −11
−9 −11

∣∣∣∣∣∣
3

 =

(
9 45
−9 −99

)
.

Likewise,

A(1) =

∣∣∣∣ 9 45
−9 −99

∣∣∣∣
18

=

(
−486

18

)
= (−27) .

Thus det (A) = −27.

The algorithm is based on a theorem of Jacobi [3, p. 48].

Theorem 2 (Dodgson's Condensation Theorem). Let A be an n× n matrix. After k successful condensa-
tions, Dodgson's method produces the matrix

A(n−k) =


|A1...k+1,1...k+1| |A1...k+1,2...k+2| . . . |A1...k+1,n−k...n|
|A2...k+2,1...k+1| |A2...k+2,2...k+2| . . . |A2...k+2,n−k...n|

...
...

. . .
...

|An−k...n,1...k+1| |An−k...n,2...k+2| . . . |An−k...n,n−k...n|


whose entries are the determinants of all (k + 1)× (k + 1) contiguous submatrices of A [3, p. 8].

Like Bareiss' Algorithm, Dodgson's Method also encounters division by zero for some matrices. However,
swapping rows of an intermediate matrix in Dodgson's Method and continuing does not yield the determinant
of the original matrix.

Example 3. Find det (A) using Dodgson's Method, where

A =


1 −4 1 2 1
−1 4 4 1 0

3 3 3 4 −2
2 5 2 −1 4
4 1 3 2 1

 .

Since there are no zeros in the interior of A(5), we apply Dodgson's Method as usual.

A(5) =


1 −4 1 2 1
−1 4 4 1 0

3 3 3 4 −2
2 5 2 −1 4
4 1 3 2 1

 =⇒ A(4) =


0 −20 −7 1
−15 0 13 −2

9 −9 −11 14
−18 13 7 −9

 .

Notice the zero that is introduced in a
(4)
22 . Since this is an interior element of A(4), we will encounter

division by zero when trying to �nd a
(2)
22 . We cannot swap the rows of A(4); this gives an incorrect answer.

Thus Dodgson's Method fails for this matrix.

Dodgson proposed a workaround by swapping rows of the original matrix but this does not work in all
cases. Neither does the solution of [3]. This leads us to ask the question �Is there a way to change Dodgson's
Method such that it can be used to �nd the determinant of any integer matrix?�

3. New Method: Modify Interior Row

The Modify Interior Row method uses the original Dodgson's Method until division by zero occurs. We
then use Theorem 2 to determine the �problem submatrix� B; that is, the submatrix of A whose interior has
a determinant of zero. Next we add a strategic multiple of row one of B to row two of B and use Dodgson's
Method to �nd the determinant of B. If we encounter division by zero while calculating the determinant of
B, then we add a strategic multiple of the last row of B to row two of B and recalculate the determinant of
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Algorithm 1

algorithm Dodgson's with Modify Interior Row

inputs

MεZn×n
outputs

det (M)
do

Let C = 0
Let A = M

while (number of columns in A)> 1 do
Let m be the number of rows in A
Let D be an (m− 1)× (m− 1) matrix of zeros
for i ∈ {1, . . . ,m− 1} do
for j ∈ {1, . . . ,m− 1} do
Let bij = aij · ai+1,j+1 − ai+1,j · ai,j+1

if C 6= 0 then
for i ∈ {1, . . . ,m− 1} do
for j ∈ {1, . . . ,m− 1} do
if ci+1,j+1 6= 0 then

Let dij =
dij

ci+1,j+1

else

Let l = n− (m− 1)
Let B be the submatrix of M whose interior corresponds to ci+1,j+1

Add to row 2 of B a strategic multiple of row 1 of B
Use Dodgson's Method to �nd det (B)
if Dodgson's Method fails for B then

Add to row 2 of B a strategic multiple of row n of B
if Dodgson's Method fails for B then

Let det (B) = 0
Let dij = det (B)

Let C = A
Let A = D

return A

B. We will show that if Dodson's Method fails a third time, the determinant of B is zero. We then continue
with Dodgson's Method to �nd the determinant of A. See Algorithm 1.

But what do we mean by �a strategic multiple� of these rows?

De�nition 4. Let vi and vj be rows i and j, respectively, of an n×n matrix A, and let b ∈ Z. Then b ·vj is
a strategic multiple of vj if the row vector b · vj + vi does not introduce any zeros in columns 2, 3, . . . , n− 1
that were not already zero in vi. That is, if aik 6= 0 then b · ajk + aik 6= 0 for k = 2, 3, . . . , n− 1.

Thus this method can be used to �nd the determinant of any integer matrix. It also has two other major
advantages: the reuse of calculations and the simplicity of the required calculations.

Example 5. Find det (A) using the modi�ed Dodgson's Method, where

A =


1 −4 1 2 1
−1 4 4 1 0

3 3 3 4 −2
2 5 2 −1 4
4 1 3 2 1

 .
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Recall from Example 3 that

A(4) =


0 −20 −7 1
−15 0 13 −2

9 −9 −11 14
−18 13 7 −9

 ,

which contains a zero at a
(4)
22 . Since this is an interior element of A(4), we will have to apply Modify Interior

Row. As indicated in Algorithm 1, we need to recalculate only the determinant of the submatrix whose
interior has a determinant of zero. The remainder of the calculations will be carried out using the traditional
Dodgson's Method:

A(3) =

 300
4

−260
4

27
1

135
3

117
3

160
4−45

9
80
2

1
−1

 =

 75 −65 27
45 39 40
−9 40 −1


A(2) =

(
0
0

−3653
13

2152
−9

−1639
−11

)
=

(
? −281
−239 149

)
.

By Theorem 2, we know that the determinant of the upper-right 4 × 4 submatrix of A is equal to a
(2)
11 .

That is,

a
(2)
11 =

∣∣∣∣∣∣∣∣
1 −4 1 2
−1 4 4 1

3 3 3 4
2 5 2 −1

∣∣∣∣∣∣∣∣
To �nd this determinant, we add a strategic multiple of row one to row two. Here it su�ces to subtract

the �rst row from the second. We can now use Dodgson's Method to calculate the determinant of the new
submatrix:

a
(2)
11

∣∣∣∣∣∣∣∣
1 −4 1 2
−1 4 4 1

3 3 3 4
2 5 2 −1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 −4 1 2
−2 8 3 −1

3 3 3 4
2 5 2 −1

∣∣∣∣∣∣∣∣ = 245.

By substituting this value into A(2), we have

A(2) =

(
245 −281
−239 149

)
=⇒ A(1) =

(
(245) · (149)− (−281) · (−239)

39

)
= (−786) .

In fact, det (A) = −786.

To prove that Algorithm 1 terminates correctly, we �rst need the following proposition and lemma.

Proposition 6. [1, p. 287] If A is an n× n matrix, then the following are equivalent.

(a) det (A) 6= 0.
(b) The column vectors of A are linearly independent.
(c) The row vectors of A are linearly independent.

Lemma 7. Let A be an n× n matrix whose interior has a determinant of zero. Suppose adding a constant
multiple of row 1 of A to row 2 of A still yields a zero for the determinant of the interior. Suppose the same
is true when a constant multiple of row n of A is added to row 2 of A. Then det (A) = 0.

Proof. Let A be an n× n matrix whose interior has a determinant of zero, and, for each i = 1, 2, 3, . . . n, let
ri = Ai,2...n−1. By Proposition 6, the row vectors of the interior of A, r2, r3, . . . , rn−1, are linearly dependent.
Suppose that the determinant of the submatrix created by adding a constant multiple b of r1 to r2 is zero.
That is,

det


r2 + br1

r3
...

rn−1

 = 0.
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This implies that r2 + br1, r3, r4, . . . , rn−1 are linearly dependent (by 6). Then, by de�nition of linear
dependence, there exist constants c3, c4, . . . , cn−1 such that

r2 + br1 = c3r3 + c4r4 + . . .+ cn−1rn−1.

Solving for r1 yields

r1 =
1

b
(−r2 + c3r3 + c4r4 + . . .+ cn−1rn−1)

= −1

b
r2 +

c3
b
r3 +

c4
b
r4 + . . .+

cn−1
b

rn−1.

Since r1 can be rewritten as a sum of constant multiples of r2, r3, . . . , rn−1, the vectors r1, r2, . . . , rn−1 are
linearly dependent. Likewise, suppose that

det


r2 + drn

r3
...

rn−1

 = 0.

Then an argument similar to the one above can be used to show that

rn = −1

d
r2 +

c′3
d
r3 +

c′4
d
r4 + . . .+

c′n−1
d

rn−1.

Then r2, r3, . . . , rn are also linearly dependent.
Create a new matrix by swapping columns 1 and n− 1 of A; then swapping rows 1 and n− 1 of the new

matrix yields:

A′ =



an−1,n−1 an−1,2 . . . an−1,n−2 an−1,1 an−1n
a2,n−1 a22 . . . a2,n−2 a21 a2n

...
...

. . .
...

...
...

an−2,n−1 an−2,2 . . . an−2,n−2 an−2,1 an−2,n
a1,n−1 a12 . . . a1,n−2 a11 a1n
an,n−1 an2 . . . an,n−2 an1 ann


.

Since r1, r2, . . . , rn−1 and r2, r3, . . . , rn are linearly dependent, we can use row reduction to create zero
entries in the �rst n− 2 columns of the last two rows of this matrix. This yields the matrix

A′′ =



an−1,n−1 an−1,2 . . . an−1,n−2 an−1,1 an−1n
a2,n−1 a22 . . . a2,n−2 a21 a2n

...
...

. . .
...

...
...

an−2,n−1 an−2,2 . . . an−2,n−2 an−2,1 an−2,n
0 0 . . . 0 a′′11 a′′1n
0 0 . . . 0 a′′n1 a′′nn


.

Let D be the (n− 2)× (n− 2) matrix in the upper left corner of A′′ and let B be the 2× 2 matrix in the
bottom right corner of A′′. Then A′′ has the form

A′′ =

(
D ∗
0 B

)
.

From linear algebra, we know that the determinant of matrices having this form is

det (A′′) = det (D) · det (B) .

Notice that, after n− 3 row swaps and n− 3 column swaps, D is the interior of A. So the determinant of D

is (−1)
2(n−3)

times the determinant of the interior of A, which is zero, so det (D) = 0. Thus

det (A′′) = det (D) · det (B)

= 0 · det (B)

= 0.
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Since A′′ was created from matrix A using a few row and column swaps,

det (A) = (−1)
α

det (A′′) = (−1)
α · 0 = 0.

By substitution, det (A) = 0. �

Theorem 8. Algorithm 1 terminates correctly.

Proof. Recall that we have already proven that Dodgson's method terminates correctly. Thus we need
only show that adding the steps required by Dodgson's Method: Modify Interior Row does not change the
determinant given by the original Dodgson's Method.

By the Condensation Theorem (Theorem 2),

a
(k)
ij = |Ai...i+n−k,j...j+n−k| .

Let
B = Ai...i+n−k,j...j+n−k.

By the Condensation Theorem, if Dodgson's Method failed at a
(k)
ij because of division by zero, then the

determinant of the interior of B is zero. Suppose we create a new matrix B̃ by adding to row two of B a
strategic multiple of row one of B. The determinant of B̃ is the same of B. Thus

a
(k)
ij = det (B) = det

(
B̃
)
,

which allows us to calculate a
(k)
ij and continue with Dodgson's Method to �nd det (A).

Suppose that we also encounter division by zero when using Dodgson's Method to calculate det
(
B̃
)
.

Create a third matrix B̌ by adding a strategic multiple of the last row of B to the second row of B. The

determinant of det
(
B̌
)

= det (B) = a
(k)
ij , so we may continue with Dodgson's Method to �nd det (A).

Suppose that, instead of being able to calculate det
(
B̌
)
, we again encounter division by zero. By Lemma 7,

we have
det (B) = 0,

so a
(k)
ij = 0.

In any case, we can �nd a
(k)
ij and continue with Dodgson's Method to �nd det (A). Since Dodgson's

Method terminates correctly, Modify Interior Row terminates correctly. �
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