e p Escola Politécnica Superior
de Castelldefels

UNIVERSITAT POLITECNICA DE CATALUNYA

DIPLOMA THESIS

TITLE: “Linux-Box: DVB and VoD Streaming Over Local Area Networks”
DEGREE: “Enginyeria Técnica de Telecomunicacio”

AUTHORS: Juan José Colmena Pablos, “Comunication Systems”
Oscar Molina Fernandez, “Computer Networks”

Director: Gregorio Procesi
Tutors: Michele Pagano
David Rincon Rivera

DATE: May 14, 2007

Titol: “Linux-Box: DVB and VoD Streaming Over Local Area Networks”
Autor: Juan José Colmena Pablos
Oscar Molina Fernandez

Director: Gregorio Procesi
Tutors: Michele Pagano
David Rincon Rivera

Data: 14 de Maig de 2007

Resum

Aquest treball tracta sobre un projecte comld anomenat Linux-Box portat a terme
per diferents persones al departament de Telecomunicacions (IET) de la
Universitat de Pisa. Linux-Box és un sistema dotat amb targetes TDT (DVB-T) i
de televisio per satél-lit (DVB-S) que permet transmetre aquestes senyals fins a
un ambit domeéstic. Més endavant podria ser utilitzat en ambits privats com les
cases de clients o en institucions publigues com escoles, universitats,
biblioteques i també seria possible en ambits empresarials. El projecte esta
dividit en 4 apartats:

1. Ubuntu 6.06 LTS. Explica perque s'utilitza Ubuntu en el projecte. A més
també s’explica de forma breu que és Linux i les distribucions més utilitzades.

2. Multimedia Network Protocols: s’expliquen els diferents protocols desde la
capa de xarxa fins la capa d’'aplicacio que s'utilitzen en el projecte Linux-Box.
Aquests protocols son utilitzats tant en streaming, com en anunciacio,
unicast/multicast, encapsulat de video i codecs. Els diversos temes tractats aqui
es fan amb el proposit de comparar i no només com a recerca teorica. A la fi es
veuen els programes utilitzats en el projecte per analitzar el trafic de la xarxa.

3. Linux-Box: s’explica el funcionament i els objectius globals del projecte. Es
dedica un sub-apartat a “VideoLan - VLC” part important a nivell de sofware. Més
endavant es parla de les caracteristigues de la Linux-Box de forma acurada:
streaming de VoD i senyals de TV i s’analitzen els problemes coneguts i les
seves solucions proposades. A la fi s’enumeren els llenguatges de programacio
utilitzats al projecte i en quina part s'utilitzen. Observarem que és una aplicacio
on diversos llenguatges de programacié estan continuament solapats.

4. Developed Part: es posa en practica la teoria estudiada a la resta del treball.
Esta dividida en 4 seccions:

e Desenvolupar una aplicacié en codi C per convertir la llista de Canals
(tan terrestre com de satél-lit) en format XML.

e Una secci6é dedicada al streaming de Canals de TV a la pagina web
principal.

e Un analisis profund dels paquets creats per la Linux-Box i la seva
activitat a la xarxa.

e Finalment s’analitzen els diferents scripts i les seves configuracions.
Alguns son utils per a un futur desenvolupament i d'altres s'utilitzen en
seccions préevies.

5. Conclusions: conté les conclusions i linies futures. El projecte compta amb
diverses opcions que encara poden ser implementades i estudiades. Aqui
exposem les nostres interpretacions i possibles linies futures d’estudi.

Title: “Linux-Box: DVB and VoD Streaming Over Local Area Networks”
Author: Juan José Colmena Pablos
Oscar Molina Fernandez

Director: Gregorio Procesi
Tutors: Michele Pagano

David Rincon Rivera
Date: May 14, 2007

Overview

This work is about a common project carried on by different people in the IET
department of Pisa University, called Linux-Box. Linux-Box is a device provided
with DTT (DVB-T) and satellite television (DVB-S) sources that permits to
transmit these signal in a domestic area. Further on will be reliable in private
homes and public places such as schools, universities, libraries and
environments like enterprises or offices. The work is divided in the following
sections:

1. Ubuntu 6.06 LTS: In this section is explained why is used Ubuntu in the
project. Also it is explained what is Linux and their most famous distributions.

2. Multimedia Network Protocols: in this section diverse protocols are
explained starting from the network layer until the application layer that appear in
the Linux-Box project related with streaming, announcement, Unicast/Multicast,
video encapsulation and codecs. The diverse topics will be treated with a spirit of
comparison and not only as a theoretical research. At the end there will be
treated each other programs involved in this work to analyze the network traffics.

3. Linux-Box: In this section is explained what is their operation way and the
objectives of the global project. It is dedicated a sub-section to the main part of
the working mode at software level: “VideoLan-VLC”. Later on, the Linux-Box
characteristics are treated deeply: streaming of VoD and TV signals, known
problems analysis and possible solutions. To finish, programming languages
involved in the global thesis are enumerated and put in the global situation. It is
interesting to see that it is a truly distributed application where diverse
programming languages are constantly interlaced.

4. Developed Part: Here the theory studied in the rest of the research is put in
practice. It is divided in four sub-sections:
e Developing an application in C code to convert channels lists (as much as
Terrestrial as Satellite) to XML format.
e Section dedicated to the TV channels streaming in the main Web Page.
e Deep analysis of the created packets by the Linux-Box and their activity in
the net.
e Finally different scripts with different configurations are tested. Some of
them are useful for future developments and others used in the previous
sub-section.

5. Conclusions: This section contains the conclusions and the future lines. The
project has many options that can be implemented and studied. Here are
explained our interpretations and future possibilities.

Index 1

INTRODUCGTION ... irrrercesssmessss s s s e s s s s s nm s s s s s e s s s s e e e e s s nmmnnsssssssnnnnns 7
PART 1: THEORETICAL RESEARCH........o et e r e 10
1. UBUNTU B.06 LTS ... rses s s s s mms s s e s s s s s smnn s e s s e s e m e 11
1.1. T T 1
1.1.1. WAL IS LINMUX?...etiiieeiiiiee sttt et e e sttt e e e e e st e e e snbaeeesnsaneeesnnes 11
1.1.2. VWY LINMUX?. ettt ettt e e st e e sttt e e e st e e e e snbaeeeesnbaeeesreeaeans 11
1.2. DiStribUtIONS..... ..o e —————————— 12
1.2.1. =T I o - PSPPSRI 12
1.2.2. U ittt ettt e e e e e e et e e e e rerreeeeeaaanne 13
1.2.3. =0 (o] - PR 13
1.2.4. Y= U o = =P 13
1.2.5. L 01U L S 13
1.25.1. Why UBUNTU 6.06 LTS.....coiiiiiiiiiiiiiie i ittt 14

1.3. ENVIFONMENES ... e s e 14
1.3.1. (€] 00] 1 o1 ST PPPPPPPRPP 14
1.3.2. KDE ...ttt ettt e et bt e e e e — e e e a e e e e re e e ara e e e ataeeeennnaes 15
1.3.3. Others (3D ENVIFONMENTS).......ccoiiiiiiiiiieeeeee e aaanaees 15
2. MULTIMEDIA NETWORK & VIDEO PROTOCOLS...........coceeceeereeenees 16
21. D e snreeennnr e e aesneeeenaneeeenaneeenanreeeananneneanannennanan 17
2.2, QIO oY= 1 0] PSRN 19
2.3. Headers and effiCiencCy........oo i e 22
24. RTP (Real-time Transport Protocol)..........ccocooiiiiiiiicii s 25
2.4.1. WHAE'S RTP? et et e e e nres e 25
2.4.2. CRAACTEIISTICS. ...cee ittt et e e e e e e e 25
2.4.3. Header FOMMALooiiiiiiieiiie ettt e 26
2.4.4. HOW dOES It WOIK? ...ttt ettt 27
2.5. RTSP (Real Time Streaming ProtocCol).........ccccciiiiiiiiinniss s 27
2.5.1. LAV S IS R 27
2.5.2. (O 0T 1o o] 1=] 1100 RSO STR 28
2.5.3. FOMMAL ... e e e ettt e e e e e et e e e e e e e e e eeeenen 28
2.6. Announcement and Session Description Protocols..........ccccociiicciiemnnniccicennnnn. 30
2.6.1. S A PP 30
2.6.0.1. WAt iS SAP 2 et e 30
2.6.1.2. PaCKet FOMMAL.. ..ottt et e e e 31
2.6.2. T = SRR 32
2.6.2.1. WhA IS SDP?...ciiiiiiii ittt ettt 32
2.6.2.2. CharaCteriStCSuciiiiiiiiie ittt et e e e naaeeeean 32

2.7. Other Network Protocols Used In Streaming..........cccccccmmriiiciccscennssscsnsceeensesssnnns 33
2.7.1.] Y U=] 33

P % S N [€11/ | o] {0] (o oo | PP PPN 34
2.7.2. ProtoCOIS COMPATALIVE.ueiiiiiiiie e e 35
2.8. Video Codecs and Encapsulation Protocolscccccceiomimiiicccienninccccceeeeeeen 38
2.8.1. 1Y o R S PSP 38
2.8.2. Codecs and Payload TYPESuuuiiiiieiiiiiieiie ettt e e e e 43
2.8.2. 1. AUAIO.....eeiie it sttt e et b e e et e e e ate e e araea e 43

W S B V(o 1= o PO PPPRRRRTRRN 43

2.9. 5 L 44
2.9.1. 11 (0] YOO 44
2.9.2. 157/ 81 45
2.10. ProtoCol ANAIYZErScccccomummmennnnnnmnnerr s s r e rs s s s s s s s s ssssssssssssssssssnss s 45
2.10.1. WireShark (Ethereal).........occiiiiiiiiiiiiiiieiee e 45

2.10.2. (000 1010 4 1Y/ =3 2R 46

Linux-Box: DVB and VoD Streaming Over Local Area Networks 2

PART 2: APPLICATIVE PART ... s s s s s s s ss s s s s s s s s s ss s s s s s s s e s mmmnnes 47
3. LINUX-BOX.....coiiiiiiiiecmniinisiinsmssssessssssssssssssssssssssnnnss sessssnnssssssssssssssnnnnnnns 48
3.1. 01 e T LW T2 4T o 48
3.2 Operation Way ... s e 50
3.3. 7 OSSPSR 56
3.3.1. TeINet INTEITACE e s 56
3.3.2. Streaming WIth VLC......ooo it e e e e neeees 57
3.4. L P 10 TV - N 58
3.5. Network Streaming ... e 59
3.5.1. VoD (Video on Demand) ... 60
3.5.2. AOD (Audio 0N Demand)cooooiiiiiii e 61
3.5.3. TV Streaming (DVB-S & DVB-T) ..ccieciiiiiiieiieie e eisiiee e e sssintaeee e e e e s snnenaee e e e ennnnees 61
3.6. KNown Problems........iiiiii s s 62
3.6.1. DVB-S + DVB-T ittt sttt e et e e e s nbbe e e e sbreea s 62
3.6.2. Web-Browsers, plug-ins and Others..........ccuviiiiee i 62
3.6.3. TV Channels LIMItationNsccvuiiiiiieiiiciiies st e e e s e e enereene e e e e e e nnnes 62
3.6.4. NAT in the Routers (Operation inside the network)cccoveiiiiin e, 63
3.7. Firewalls and Streaming Servers.........ccccccciiiniiniiinies s 63
3.8. ST A - T (- N 65
3.8.1. L@ 1 SRR 65
3.8.2. [I I OO RPR 65
3.8.3. PH P e e e e et e e e nnnees 65
3.8.4. XIMIL <ttt e e e et e e bt e e e nb bt e e et e e e annreee s 65
3.8.5. B N NS Yol] o) SO 65
4. DEVELOPED PART ... r s r s s 67
4.1. Developed Software Application: “Convert”ccooviiiiiiiiinisrsisssssssessnessnnnnnnnnes 68
4.1.1. INEFOAUCTION. ...t e e e s e e e e e nneneee 68
4.1.2. =T To 11T SRR 69
4.1.3. 0o 1SS o o S 71
4.1.4. SaviNg (XML FOIMAL)cciiieiiiieieee e ceciiiies e eseie e e e e e s e e e e et e e e e e e e e snrnnees 73
4.1.5. QLI L= Lo B 1T S 75
4.1.6. Minimal Memory SPENUING ...ccovuiiieiiiiee e 76
4.2, Streaming Web-Page ... s 76
4.3. Network Analysis and Modularityccceviiiniiininnis e s 77
4.3.1. ENVIFONMENT ...t e et e e e e e e e e e e e e e e e e aann eeeens 78
4.3.2. LI SR T =T I o 11 | TR 78
4.3.3. HYPOLNESIS Of FESUILS ..o 79
4.34. LOF=1 o] U] (= PO PP PP PP PP PP PP PP UPPTRTRRRRN 80
4.3.5. Better Theoretical Protocols (FEC and BER considerations)cccccvvvvinn. 87
4.3.6. Encapsulation Analysis of MPEG2-TS.........ccccciiiiiiii e, 88
4.4, Tests with different Scripts and Transport Streams.......c..cccccccccceirrericcceeenenne, 88
4.4.1. Ry O T] o) PR 88
4.4.2. MPEG2-TS @NAIYSISutiiieiiiiiie ittt srre e et e e sbaeeeeaa 91
5. CONCLUSIONS........cooiiitiiimirrnnrrnrrrns s sn s s s s s s s s s s s s s s nnens 96
5.1. Innovation, improving and Future Linescccceviiiiiiiisesssssss s 98
5.1.1. DVB-S SEUAY ...uvviiieiiiiie ettt st ettt e ettt e e st e e e st e e s sabe e e e s snbeeeesnan eeens 98
5.1.2. SrEAMING OVEL [PVuiiiiiiie ettt e e e e e e s st e e e e snnrnreeeeeeeeeannns 98
5.1.3. Gigabit ETNEINELcooiiiiii e e 99
5.1.4. POD-casting (discovering ProtoCol)ocoveiiiiiieiiiiiieiiee e e 99
5.1.5. Transcode the VOD StrEAMScooi it 99
5.1.6. Streaming OVEr the NET.........oi i e 99
5.1.7. Y= Tol U] 1 TP UP TP 99
5.1.8. ECONOMICAI ASPECESciiiiiiiieie ettt e s b e e e e e e e eeenreees 100
5.1.9. ENVironmental ASPECES.........uuiiiiiieiiiiiii et e 100

Index 3

5.2. L T o= L= o = o N 100
5.2.1. Yool = | A 3 o | RSP 100
5.2.2. Author Rights, Royalties and COpYrightsceeeiiiieiiiiiieien e 101

6. BIBLIOGRAPHY. ... s s 102
7. GLOSSARY OF TERMS......... e rr e s e e re s s s e s e s s e s s 105
N I8 111 1 108
9. ANNEXES ... it s s s s s s s s e e e e s nnmn s n s s e e nnns 109

9.1 £ o= 0 Yo [109
9.1.1. (070] 0171 o o o3 O o o PR 109
9.1.2. XML FESUIL Il e e e e 111
9.1.3. WED-Page COR........eiiiiiiiieiit et e 116

9.1.3.1. BroadCast. Pl ... e 116

9.2 Protocols related to streaming do not used in the work..........ccccoceceriiiinnnnn 119

9.2.1. V410 [T I T Lo [T o PP PUPURRRPPRIPT 119
9.2.0.1. MPEGH ..ottt e 119
9.2.1.2. Other COUBCS.uueieiiiieee ettt bttt ettt e e rb et e e e e s e st e e e e e e e aaes 121

9.2.2. L0 0 1S PSSP 123
9.2.2.1. RSVP (Resource ReSerVation Protocol)...........ccccuvvereeeiiiiiiiiceniesiieeeeeenn, 123

9.2.2.2. RTCP (Real Transfer Control Protocol)...........ccccceeeeiiiiiiiieeiniiiiieenee e 124

Introduction 7

Introduction

This work is about a common project carried on by different people in the IET
department of the Pisa University (UNIPI), called Linux-Box.

What is Linux-Box?

Linux-Box is a device provided with Digital Terrestrial Television (DTT) also
known as (DVB-T) and satellite television (DVB-S) sources that allows the
transmission of these signals in a domestic area. Further on, it could be
released in private homes and public places like schools, universities, libraries
and environments like companies or offices.

The example that gave us to understand the project at the beginning was the
first time that the Linux-Box was used in the University of Pisa (UNIPI). That
was to see the world soccer championship final match in 2006 by an IP stream
from a laboratory for the teachers of all departments. This was possible thanks
to the provided hardware of previous thesis and the creation of a script for the
occasion.

The Linux-Box project is still under development. Our objective is to collaborate
to the main project with our knowledge, to acquire responsibilities and make
specific tasks to the common project. Linux-Box project should be considered
as a future commercial product in a middle-long term, always based on open-
source code.

The next figure shows a representation of “all the parts” of the whole Linux-Box
project. It is organized in three parts: the sources (Hardware), the processing

(Software and Web Page) and the destinations (streaming).

Hardware Design

WEB PAGE

Design and Others

Packet
encapsulation
IP/UDP/RTP/
MPEG2-TS

Administrator

— Indicates a Relation
— Belongs to a Group

Figure 0.1: General Parts Scheme of the Linux-Box Project.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 8

Why Linux?

The Linux-Box runs a Unix operating system, it was highly recommended to
make anything related with the thesis in Linux instead of Windows to adapt
ourselves easily and understand how it works. This was a great handicap for us
because our Linux knowledge was at a very basic level. This change was
expensive in time for us and also forced because the computers provided by the
university worked on Linux, then the only solution was to adapt as soon as
possible.

The thesis is divided on a first theoretical part of research and comparison
between protocols. The second part explains what Linux-Box is and the main
parts on the common project. To finish, there is a third analytic part in which an
application is programmed and plots of net traffics created by the Linux-Box are
analyzed.

The are two main parts with the following sections:
Part 1: THEORETICAL RESEARCH

1. Ubuntu 6.06 LTS: In this section is explained why Ubuntu is used in the
project. It is also explained what is Linux and its most famous distributions.

2. Multimedia Network Protocols: in this section there are explained diverse
protocols starting from the network layer until the application layer that appears
in the Linux-Box project related with streaming, announcement,
Unicast/Multicast, video encapsulation and codecs.

The diverse topics will be compared and treated as a theoretical research. At

the end will be seen diverse programs used in this work to analyze the network
traffics.

Part2: APPLICATIVE PART

This part explains the global parts of the Linux-Box. Sections 4 and 5 explain
our specific developed parts.

3. Linux-Box: In this section is explained the operation way and the objectives of
the thesis. It is dedicated a sub-section for an important part of the working
mode at software level: “VideoLan-VLC”". Later, it is treated the Linux-Box
characteristics accurately: streaming of VoD and TV signals, known problems
analysis and possible solutions. Finally the programming languages used in the
thesis are enumerated and put in the global situation. It is interesting to see that
it is a truly distributed application where diverse programming languages are
constantly interlaced.

4. Developed Part: Here we have put in practice what we have studied in the
rest of the work. It is divided in four sub-sections:

e Develope an application in C code to convert channels lists (as much as
Terrestrial as Satellite) to XML format.

Introduction 9

e Section dedicated to the TV channels streaming in the main Web Page.

e Deep analysis of the created packets by the Linux-Box and their activity
in the net.

e At the end are tested different scripts with many configurations. Some of
them are useful for future development and others used in the previous
sub-section.

WEB PAGE

»_ Network Analysis

Administrator

— Indicates a Relation
— Belongs to a group

Figure 0.2: This graph shows the parts developed in this project in yellow.

5. Conclusions: This section presents the conclusions and the future lines. The

thesis is young and has many options that can be implemented and studied in
future. Here our interpretations and possibilities are explained.

This work is written in English because was the most common language
between the University of Pisa, our tutor in Pisa and our University in
Barcelona.

At the same time of this work, it was in process another parallel work with the
Linux-Box but in another direction, creating the web interface between the final
user, the server and the VoD part. There have been contacts by e-mail and

work together in the labs very often to know the status of the global work, and
different software adaptations requests.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 10

Part 1: Theoretical research

Ubuntu 6.06 LTS 11

1. UBUNTU 6.06 LTS

The inclusion of this section in the project is decided for several reasons. The
first is that only start the project the tutor's asked us to use any Linux
distribution to familiarize with the Linux-Box and with the computers of the
laboratory that were only in a Linux environments. Arrived to this point, the
whole program code had to be programmed under Linux for strict demand of
the tutor. This supposed a superior spend of time to the expected because a
previous adaptation could be done to the new environment.

In this section it is also included Linux because it is not part of any topic of any
subject of the degree and then it was something new for us, although there
were some subjects that treat some Linux anyone has an specific treatment.

Our election together with the tutor was to install the OS Ubuntu 6.06 LTS in our
portable computer. It was also installed already in most of computers of the
laboratory. The decision was based on its easiness use, its idea of being used
with each user's mother language and for its growing popularity.

In this section is explained what is Linux, which are their more famous
distributions and later the main different environments that can be used. Also
are explained in the Annex basic commands that were good for us to familiarize
with the OS. Always making special attention in Ubuntu, which was used by us.

1.1. Linux

1.1.1. What is Linux?

Linux is an operating system compatible with UNIX. The system core is the
kernel, and thanks to the GNU project many software applications have been
made. That's why many people call Linux as GNU/Linux. The first kernel was
initially created by Linus Torvalds in 1991, with the first release 0.02, but it is still
in developing and now the last stable version is 2.6.

1.1.2. Why Linux?

There are many reasons that make Linux suitable, so here only are mentioned
those who think are more important:

e Linux is distributed under the GNU General Public License. This means
that its source code will always be accessible. This contributed that every
time are more free software applications with better quality.

e People can customize the software the way they want. Also this software
can support many languages and people with disabilities.

e Many strong software companies like IBM, Sun, HP, etc... collaborate
with the project and invest money and time developing the code.

e Support many microchips architecture (Pentium, Amd, etc...) and can
also be integrated directly in a process called “embedding”.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 12

e Linux is multitasking, multi-user, multiprocessor and protects memory
between processes among its multiple functionalities.

This information is based on [1].
1.2. Distributions

The first Linux version basically consisted of its kernel and some GNU tools.
Thanks to the effort of individual programmers, university students, companies
and others, Linux began to be distributed with many optional software packages
around the kernel depending on the own necessity. This is where the
“distribution” concept was born.

Today there are many distributions of all types to choose, so the final user can
download that who thinks better for his use. There is also Linux versions like
Knoppix that is a live CD version to see the capabilities of Linux and has
everything you can need on the computer without any installation. If you want to
know more see [2].

The purpose of next pages is to explain the most famous distributions, their
strong points and philosophy, with special mention to Ubuntu cause is the
distribution used in the project:

1.2.1. Red Hat

Red Hat is one of the most famous distributions actually. Apart from all benefits
that a distribution based on Linux can afford, its success lies in a support all
time for companies and users in many languages. For this support should pay a
price than can rise from 170€ to 3000€ depending on the distribution type.

So this distribution is overalls recommended to enterprises that need assurance
of stability, support for any inconvenient at any time and also good technology
integration like the open source provide. Red Hat provides a standard platform
where certify their technology and tries to obtain the best cost efficiency for
enterprises.

Red Hat has thousand of official distributors around the world and support
companies like Amazon.com, Credit Suisse First Boston, DreamWorks,
Reuters, etc... It also contributes with its engineers to many open source
projects.

To see the differences between editions you can see their web®.

! Red Hat web: http://www.redhat.com

Ubuntu 6.06 LTS 13

1.2.2. Suse

OpenSUSE 10.2 is another possible distribution. The main feature that differs
from others is an easy install process on Linux operating system and a
complete software package by default that lets that lets common users do all
daily tasks in their PC like browse the Web, send e-mail, chat with friends,
organize digital photos, play movies and songs, create documents, etc...It also
includes all kind applications for network services and applications
development. More complete information can be extracted from [4].

This distribution intends to install easily all this software (which include from
well-known applications like Firefox or Openoffice to new technologies like
Beagle for desktop search).

For these reasons OpenSUSE it is not created specifically for business
enterprises, although can be used for this purpose.

1.2.3. Fedora

Fedora is another distribution by Red Hat and guided by the Fedora Project
Board. It has all the main features provided by a Linux distribution, but its main
difference between others is its philosophy.

Fedora has a large community behind that has convert this distribution as the
most important when talking about Linux security initiatives (to see exactly
these kind of initiatives, you can see [5]) that after become in features
implemented in Linux.

1.2.4. Mandrake

The purpose of Mandriva Linux (known as Mandrake Linux) distribution was
created a Linux distribution easy to use for everyone.

With this initiative, Mandriva offers the best of Linux to any user in an easy-to-
use environment. In this way Mandriva can be as easy as a computer which
uses Windows or Mac OS. It has an own mechanism called FOSS (Free/Open
Source Free Software licensing) that makes possible to collect the best ideas
from everybody and make better solutions. It also has interesting features like a
little maintenance system that avoids conflicts between applications. See [6] for
more additional information.

1.2.5. Ubuntu

Before explaining Ubuntu, it is necessary to say that our tutor recommended
and provided us this distribution to use it in the project for the characteristics
that are explained in the following text, for that reason Ubuntu was selected to
use it.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 14

Ubuntu is a complete Linux operating system, freely available with community
and professional support and it is developed by a large community. It is suitable
for desktop and server stations and supports many architectures [7].

Ubuntu has more than 16,000 applications that can be downloaded, but the
default distribution contained on a single CD covers every standard desktop
application.

1.2.5.1. Why Ubuntu 6.06 LTS

LTS means Long Term Support and its purpose is to have a main distribution
where everybody can work and develop it to include security updates for the
next five years without any subscription. It also includes telephone and online
support. That makes this release really interesting, although new versions have
been released (Actually 6.10).

Ubuntu 6.06 LTS [7] also has a mechanism to make commercial software
available, enabling businesses and individuals to download select software from
Independent Software Vendors (ISVs).

Ubuntu is part of the Debian family of distributions. This makes possible to have
instantly many software available, but it is also a good choice for us because
the Linux-Box is based on a Debian OS and it is easier after to work directly
with the Linux-Box and the commands necessary to operate with it.

1.3. Environments

As the multiple distribution options, there are also many environments, but the
most famous and used are Gnome and KDE. It is introduced as new knowledge
an alternative the 3D environments.

1.3.1. Gnome

This is the desktop used in Ubuntu. Gnome is used to implement the C
application explained later because it supports many programming languages
as C, C++, Java, C#, etc...

This project provides two things:

e A desktop environment that makes it an intuitive and attractive desktop.
e A development platform that allows applications to integrate into the rest
of the desktop.

GNOME is part of the GNU project with all that a GNU project involves and
every six months is released a new version. It is supported by many strong
companies as and many industries used it by default. To see some of these go

Ubuntu 6.06 LTS 15

to [8]. Also governments have chosen gnome for their desktops, so its
availability and support is assured.

1.3.2. KDE

KDE appears as the necessity of easier desktop environment for UNIX
workstations, and make it similar to MacOS or Windows.

Of course, KDE is completely free and an open platform available to anyone to
modify free of charge including its source code.

KDE Project has developed an application framework, implementing the latest

advances in framework technology in order to be a real opponent to the most
popular development frameworks as for example Microsoft's MFC/COM/ActiveX

technology. This technology makes possible to developers create quickly new
and high quality applications [9].

1.3.3. Others (3D Environments)

Last years a new environment conception has born based on OpenGL
programs to convert virtual desktops in a 3 dimensional on Linux. It is not the
purpose to explain how it works this mechanism, only mention that it is still a
technology in development and very new yet. It needs more efforts but has
many possibilities to improve it. These kinds of environments have different
visualization modes and zoom properties. The images above show a possible
visualization of these environments.

Figure 1.1: Example view of 3D-Desktop?

2 Extracted from: http://desk3d.sourceforge.net/screenshots.php

Linux-Box: DVB and VoD Streaming Over Local Area Networks 16

2. Multimedia Network & Video Protocols

This section explains protocols and theoretical researches used in all the work.
It starts with a brief section for the third network protocol level (IP) and

continues in the upper levels until arrives to the video encapsulation protocols
and the used software.

Assuming the Physical Layer (1), Link Layer (2) and the Network layer (3), the
expected implementation in the Linux-Box will be: IP over Ethernet on standard
UTP wire. These layers will not be reconsidered, but in the section "2.3 Headers
and efficiency” calculations of efficiency will be made from Ethernet to the
application layer. References to Wi-Fi will not be made in any case, although it
could be a future implementation.

Layers and Functionality

7.Application

6. FPresentation

5.Sezzion

4. Transport

3 MNetwork

2.Data Link
(Hard ware
Interface)

1.Physical
Hardwara
Connection

Figure 2.1: ISO OSI model®

This section does not want to explain explicitly what is IP, TCP or UDP. These
protocols are here only with the purpose of comparing them, to explain "when"
and "how they are used" and question why they are used. There are some flags
usually used in streaming that can help to optimize the streams.

Later is explained the RTP protocol and their dependent protocols RTCP, RTSP
that will be used by the Linux-Box and the VLC to encapsulate the audio and
video information. There is also an important protocol specialized in the global
net environment that implements QoS network functions. This protocol is RSVP

% Extracted from: http://www.tutorialsweb.com/networking/tcp-ip/ip.htm

Multimedia Network & Video Protocols 17

and is explained a bit with its more important features in the annex, because it
is not a protocol used in the work.

Later the “announcement and description protocols “are explained (also used in
streaming), especially in applications that use broadcast, multicast or
videoconference systems where diverse users are implicated.

Section 2.7.1 talks about Unicast, Multicast, and IGMP like protocols related
with the network streaming theory that are used by the Linux-Box. In section 2.8
are explained different mechanisms to encapsulate video and audio frame
codecs. Overalls are mentioned those more important and those used in the
analysis.

The section “2.10. Protocol Analyzer” makes mention of software used in the
Linux-Box global project for their analysis and recollect flow and packets
information. At the end is made a comparative summary between these
protocols.

21. 1P

Internet Protocol (IP) is the main network-level (Layer 3 of the OSI model)
communications protocol. Each IP packet has header part (40Bytes) and a
payload.

This is the IPv4 Header:

- Bits -
S P T A N
A yersion | HL | Type of Service Total Length
_5 Identification Flags | Fragmentation Qffset
& _; Time to Live Protocol Header Checksum
E _.:. Source Addrass
_13 Destination Address
v : Options Padding
data begins herg .

Figure 2.2: IPv4 Header*

The "Don't Frag." FLAG is essential when using Real-Time applications .Their
use avoids to break packets into fragments in diverse routers by those pass
through.

* Extracted from: http://www.unix.org.ua/orelly/networking/puis/ch16_02.htm

Linux-Box: DVB and VoD Streaming Over Local Area Networks 18

Apart of activating this FLAG, it is important to discover that the MTU of all the
nets is for those they pass through. An optimal MTU helps to an effective
network resources use and won't create unnecessary delays by not fragmenting
packets.

Nowadays is used the IPv4 version, but is rising the concept to use IPv6. All this
work is based on IPv4 and IPv6 is mentioned on future lines. The advantages
from IPV6 to IPv4 are basically these’:

e Expanded Addressing Capabilities: IPv6 increases the IP address size
from 32 bits to 128 bits, to support more addressing levels hierarchy,
much greater number of addressable nodes, and simpler auto-addresses
configuration. The scalability of multicast routing is improved by adding a
"scope" field to multicast addresses. And a new address type called
"anycast address"” is defined, used to send a packet to any node of a
nodes’ group.

e Header Format Simplification: Some IPv4 header fields have been
deleted or made optional, to reduce the common-case processing cost of
packet handling and to limit the bandwidth cost of the IPv6 header.

e Improved Support for Extensions and Options: Changes in the way
IP header options are encoded allows more efficient forwarding, less
stringent limits on the length of options, and greater flexibility for
introducing new options in the future.

e Flow Labelling Capability: A new capability is added to enable the
labelling packets to belong to particular traffic "flows" that can be the
sender requests special handling, such as non-default quality of service
or "real-time" service.

e Authentication and Privacy Capabilities: Extensions to support
authentication, data integrity, and (optional) data confidentiality are
specified for IPv6.

There are three main kinds of disadvantages with IP on Real-Time proposes:
Variable network latency (Jitter), the packets arrive at their destination in a
different order from transmission and may be damaged or lost.

These disadvantages cannot be fixed by IP itself but can be corrected by the
higher-layer protocols. Generally TCP provides good transport for general-
purpose data but is not suitable for streaming applications. The reason of why
UDP is used as standard in this type of applications is explained in the next
section.

® Advantages extracted from the RFC 2460: “Internet Protocol, Version 6 (IPv6), Specification”

Multimedia Network & Video Protocols 19

2.2, TCP vs. UDP

The TCP header is explained in the figure below. It is important to pay attention
on the Checksum. The checksum is calculated on a pseudo-header including all
fields. This is because the IP checksum field performs the operations only over
the headers. In this way we can assure the integrity the whole of the packet.

Source Port (16 bits) Destination Port (16 bits)

Sequence Number (32 bits)

Acknowledgment Number (32 bits)

Head g a .

Checksum TCP (16 bits) Urgent Data Pointer (16 bits)

Option (if any) Padding

Data

Figure 2.3: TCP Header

The UDP Header is smaller than the TCP one:

Source Port (16 bits) Destination Port (16 bits)

UDP packet length (Bytes) Checksum UDP (CRC)

Data

Figure 2.4: UDP Header

The checksum UDP is optional. If it is not used its value is ‘0’. For its calculation
it is used a pseudo-header including all fields. This, as in TCP, is because the
IP checksum field performs the operations only over the headers. In this way we
can assure the integrity of the whole packet.

TCP and UDP are two transport-layer (Layer 4) protocols. TCP and UDP are
also different between them. We can differentiate them in the way they are
used, and how they work inside.

In audio and video streaming aspect is sensed the use of a light Transport
Protocol as is UDP. It uses less heavy headers that TCP. This helps to take the

best profit of the available Bandwidth to prioritize the useful information and a
packet orientation (connectionless). Most of multimedia and streaming

Linux-Box: DVB and VoD Streaming Over Local Area Networks 20

applications in the world are based on UDP by these reasons and others that
are explained below, too.

TCP transmits a sequence of bytes and informs to the destination the next byte
expected to receive. If a byte is not acknowledged in a specified time period, it
is retransmitted by the source. This feature allows devices to detect and identify
lost packets and request a retransmission. The repeated transmission adds
latency to the system, and as we can see below, this is an important problem in
general streaming data transmission.

In audio and video, the final user requires a continuous stream in real-time.
Retransmission of packets adds delays and uses more bandwidth in the data
channel than is needed. Furthermore the delayed information expires in these
Real-Time applications. When there is a high transmission error the received
buffer in the media player will be emptied and the stream will be interrupted.
This is why the strategy for receiving streams is to ignore lost packets, and that
is what UDP do. The packets can reduce the quality of the received stream,
otherwise streaming media players are often designed to assume these errors.

On the other hand in an environment that does not pass through Internet® it
could be important to reconsider the use of TCP that offers a connection-
orientation that can optimize the results, and several Flags treated in the same
section mentioned previously that can be useful when transmitting the same
signal to various users. But after all it is possible to see clearly that TCP should
not be used by the following main reasons:

e The window-opening mode that implements TCP makes the
transmissions don't begin with the maximum possible BW. TCP
retransmissions create delay that does not take profit in streaming, which
needs constant flows in real-time. These retransfers also close the
transmission window that has to grow again. When the BER is high as in
Wi-Fi networks, the buffer can be emptied and the stream can be
interrupted.

e The characteristic streaming strategy is to ignore the lost packets. This
can affect to the subjective video quality but not to its linearity in time.

e Delivered TCP guaranty is carried out through persistent retransmission
with a potentially increase wait time between consecutive
retransmissions, giving rise to potentially higher delivery time.

e The “Additive Increase Multiplicative Decrease” rule gives rise to a widely
varying instantaneous throughput profile in the form of a pattern that is
not suitable for streaming media transport.

® Internet acts usually as a bottleneck in these kind of applications for its “best-effort” working
mode.

Multimedia Network & Video Protocols

21

TCP UDP Respect to Streaming
Header 20 Byte 8 Bytes Better UDP with less
overhead
Connection Connection Oriented: | Connectionless: | For Multicast IS
a connection is set |No connection | unsuitable a
up prior to data|needs to be |connection oriented
transfer established communication
Reliability Reliable (ACK) Unreliable Reliability is not as
important as time
delivery. TCP adds
delay for
retransmission
Communication | Two-way, interactivity | One way only. | In UDP, RTCP
between server and | No interactivity | implements the
client. feedback

Errors Error Correction FEC [Error Detection | UDP less processing
on the whole packet |only on Header | time. TCP can correct
Checksum in the destination host
Data flow Controls data flow to | No flow control | UDP sends to the
manage the same data flow as is
download rate encoded the media.
Re-transmit Repeat Request No repeat | Repeat request adds
request delay, and is useless
for real-time
applications
Delivery Rate No predetermined. | Delivery rate [In UDP encoding at
TCP will increase | match the | several rates must be
data rate until packet | encoded necessary to adjust to
loss indicates | stream rate. different delivery
congestion channels and
propagation
conditions.
Re-encoding it for
different network BW
costs previous
processing and time
Client Buffer Receive buffer [No local | Client Buffers create
overflow: if data | caching. delay.
arrives too fast, | Packets are
receiver sends | processed by
messages to the |the media

server to slow down.

player as they
arrive

Table 2.1: Comparison between TCP and UDP

Linux-Box: DVB and VoD Streaming Over Local Area Networks 22

As we can see UDP is better than TCP in streaming applications and that
enjoys also a total implementation in the world. But, does TCP have some
advantage to UDP?

There are a several important advantages using TCP:

e TCP rate control has empirically proven stability and scalability.

e TCP provides the guaranteed delivery, deleting the packet loss
efficiently.

e TCP can be useful to pass over the firewalls. It can surprise their use in
streaming today but it is used like a last resource.

e The flow control can be very appropriated, avoiding us the compression
from our resources to different bitrates.

e The transmission windows system helps to optimize the use of network
resources.

Making a modification to the TCP’s headers can permit better rate-control and
solvent some disadvantages that TCP have in front of UDP to transport
streams, or for example to fix the logarithmic windows closing, necessary for
mobile networks.

Even with this TCP advantages and/or modifications, UDP results obviously
better for its use with Real-Time applications, and by extension in the Linux-
Box, for the next reasons:

- Minimum overhead

- Sends at maximum data rate from the beginning of the transmission.

- No repeat requests->No retransmissions (The lost of a single packet is
not important in a real-time application).

- Low processing time. No buffers

In the next sections we will see the efficiency and the upper protocols.

2.3. Headers and efficiency
An advantage of using Ethernet is that has a very low error rate. This is positive

because UDP does not incorporate error correction. Let's see deeply the
Ethernet Frames:

46 - 1500 bytes

D 1 "l ™

0123458678 9%0123 0123

destination sOurce type data CEC
adres adres

Figure 2.5: Ethernet Header’

" Extracted from: http:/web.inter.nl.net/users/Rohiet.Seosahai/ethernet.htm

Multimedia Network & Video Protocols 23

In this figure we can see that Ethernet implements FCS. The resulting header is
of 18 Bytes (14 Bytes+4 Bytes of CRC).

Knowing that the minimum IP header has 20 Bytes and that UDP has 8 Bytes:

E'teh;ég?t IP Header UDP Header Data
(18 bytes) (20 byte) (8 byte)

Figure 2.6: Packet encapsulation

Consequently with TCP/IP we have a 28/40 = 40% more header Bytes than
with UDP/IP.

The maximum value of “n” is 7. With this value, we obtain the maximum
efficiency, because the packets are optimal. A higher value would exceed the
MTU.

IP upp RTP

20 bytes 8 bytes 12 bytes n x 188 bytes

40 + n x 188 bytes

A\

A

Figure 2.7: Header RTP with MPEG2-TS encapsulated

The data length depends on the Codec but in MPEG2-TS the transmission has
188 Bytes with 4 Bytes of payload: (184+4). The theoretical maximum efficiency
that offers the studied final environment: (Ethernet/IP/UDP/RTP/MPEG2-TS) is

94%.

~— 183 bytes ——— W= —~a— xbytes — =

transport
packet
stream

payload payload payload

sync transport payload fransport transport adaptation continuity
byte | ErTor unit start priority PID | scrambling field counter
indicator indicator control control
8 1 1 1 13 2 2 4

Figure 2.8: Format of the 4 Bytes payload of every MPEG2-TS

Linux-Box: DVB and VoD Streaming Over Local Area Network 24

184/ , . , , (184x7) |
Tecp | 20P* 1 408 | (188+40) | sgasy | 9139|9292 | 9388 | 9452 (188x7+40)=
20 TCP S B070% % % % % e
201P + o oor | 9324 | 9436 | 95'04 | 95'50 0
upp | 20> | 288 | ss1sw | oroew | 9% o o o 95'83%
18 Eth 88'74 | 90'86 | 9218 | 9309
TcP |+200P | 58B | 7479% | sa7ow |88 ! - . 93'74%
+20 TCP % % » &
18 Eth + , , , ,
uoP [201P+ | 46B | 7s63% | 872006 | 910 9923 9331 | 9004 94'57%
8 UDP 0 0 ° °
18 Eth +
20 IP+ 87'07 | 89'54 | 9109 | 92115
U 0, g 0, A 0,
TCP | Jotops | 708 | 7131% | 8251% | 87F % ” o 92'93%
12 RTP
18 Eth + (184x7)/
wop | 2P+ | s5g 18‘;4%?8* a0y, | 8874 | 9086 | 92118 | 9309 (188x7+58)=
8 UDP+ =) % % %
12 RTP 93'74%

Table 2.2: Max Theoretically Efficiency in TCP/UDP RTP

As more accurately the diverse protocols are analyzed and take part in a
communication, is observed that the efficiency goes decreasing.

Multimedia Network & Video Protocols 25

2.4. RTP (Real-time Transport Protocol)

2.4.1. What’s RTP?

RTP is a transport protocol developed specifically for streaming data across IP
networks and is the most important streaming standard. All media streams are
encapsulated in RTP packets. It is usually encapsulated on UDP/IP as showed
in Figure 2.7 and is compatible with other protocols as ATM or IPv6. In section
2.2 is explained why is often encapsulated on UDP and not in TCP. It was
primarily designed for multicast real-time data, but it can be also used in Unicast
(for example a one-way transport such as video-on-demand).

r
RTP/ Multimedia
. . RTCP Transport
= Applications { and Control
LT

UDP/TCP

»)

Figure 2.9: Location of RTP/RTCP in the network®

2.4.2. Characteristics

RTP provides information required for multimedia applications to a correct
transmission like timestamp, sequence numbering, security, content
identification and other mechanisms. These services must be implemented at
Application level and it is not a RTP responsibility. So RTP only helps lower
layers to have control over resources and add reliability, flow/congestion control
and other mechanisms for carry real-time information.

8 Figure modified and extracted from Systems and Applications notes (an EPSC subject).

Linux-Box: DVB and VoD Streaming Over Local Area Networks 26

RTP transmits packets in real-time over the network, this means that lost or
damaged packets are not retransmitted. Client software should solve this
problem. Another problem is if the connection speed is lower than the media
data rate, the transmission plays poorly or it doesn't play.

IP header | UDP header | RTP header | RTP payload

Figure 2.10: RTP data in an IP packet’

2.4.3. Header Format

Formerly the RTP packet has the following format as showed in figure 2.11.:

VER

PIX cC N

PAYLOAD TYPE SEQUENCE NUMBER

TIME STAMP

SYNCHRONIZATION SOURCE IDENTIFIER

Figure 2.11: RTP format header’

Version (V): 2 bits. Version of RTP.

Padding (P): 1 bit. If set, the packet can contain additional padding
bytes at the end. The last byte contains a count of how many should be
ignored.

Extension (X): 1 bit. If set, the header is followed by one extension.
CSRC count (CC): 4 bits. The number of CSRC identifiers.

Marker (M): 1 bit. Allow significant events as frame limits to be marked
in the packet stream.

Payload type (PT): 7 bits. Identifies the format of the RTP data.
Sequence number: 16 bits. Increments by one for each RTP data
packet sent. Used to detect packet loss and restore packet sequence.

9 Extracted from: http://www.cs.wustl.edu/~jain/cis788-97/ftp/ip_multimedia/index.htm
19 Extracted from: “htp://www.ieee802.org/16/tge/contrib/C80216e-04_523r1.pdf”

Multimedia Network & Video Protocols 27

e Timestamp: 32 bits. The instant of the first octet send in the RTP data
packet. Used for synchronization and jitter calculations.

e SSRC: 32 bits. Used to differentiate sources within the same RTP
session.

e CSRC list: 0 to 15 items, 32 bits each. Contributing sources for the
data contained in this packet.

2.4.4. How does it work?

Timestamp is the most important information field for real-time applications. It is
incremented when the first byte in the packet is transmitted and increased each
time a packet is sent. The receiver uses it to reconstruct the original timing to be
able to play out the data correctly rate. Timestamp is also used to synchronize
different streams with different timing properties, such as audio and video data
in MPEG.

Another important field is the sequence number. UDP does not deliver packets
in timely order, so it's necessary the sequence number to place the incoming
data packets in the correct order and for packet loss detection. In addition, for
example, with some video format, when a frame is split into several RTP
packets, all of them can have the same timestamp.

To specify the payload type and the encoding/compression format is necessary
the payload identifier. But an RTP sender can only send one type of payload
each transmission, although the payload type may change during transmission,
for example, to adjust the network congestion.

It is also an important to consider the MTU's network to not exceed it. It is not
recommended because when a RTP packets exceed the MTU, the router split it
in a process called fragmentation, and if one of them is lost, all the remaining
will be lost too. Fragmentation puts additional charge on resources also, so
always if it is possible the field DF on the IP header must be “1”. The MTU
depends on the network type, for example in Ethernet is 1500 bytes.

2.5. RTSP (Real Time Streaming Protocol)

2.5.1. What is RTSP?

RTSP is an application-level protocol to control the delivery audio and
video data with real-time properties. This protocol tries to control multiple data
delivery sessions, such as UDP, multicast UDP and TCP, with mechanisms
based on RTP.

This means that RTSP acts as a "network remote control” for multimedia
servers. The protocol supports the following operations:

Linux-Box: DVB and VoD Streaming Over Local Area Networks 28

2.5.2.

Recovery media from media Server.
Request of a media server to a conference.
Add of media to an existing presentation.

Characteristics

RTP has the following properties:

2.5.3.

Extensibility: Add new methods and parameters is easy.

Easy grammar. Can be recognised by standard HTTP or MIME.
Transport-independent: Can use UDP or TCP.

Multi-server capable: Can control sessions in different servers.

Control of recording devices: Can control recording and playback
devices.

Separation of stream control and conference initiation.

Presentation description neutral: The protocol does not impose a
particular presentation description or metafile format.

Proxy and firewall friendly: The protocol should be supported by
firewalls that understand the setup method.

HTTP-like: RTSP reuses HTTP concepts but with some differences.
Appropriate server control: If a client can start a stream, it must be
able to stop it.

Capability negotiation: Client must determine which methods are not
going to be implemented.

Format

The RTSP message formats has a similar syntax to HTTP messages. The
general syntax for an RTSP method is:

start-line
message-header

message-header
CRLF
[message-body 1

Figure 2.12: RTSP message format

These are the RTSP methods:

Multimedia Network & Video Protocols 29

method | direction | object | requirement |

DESCRIBE C-=8 P.S recommended
ANNOUNCE C->8, §->C P.S optional
GET PARAMETER | C-=8, S->C P.S optional
OPTIONS C->S P.S required
OPTIONS S-=C P.S optional

PAUSE C-=8 P.S recommended
PLAY C-=8 P.S required
RECORD C->S P.S optional
REDIRECT S-=C P.S optional
SETUP C->8§ S required
SET PARAMETER | C-=8, 8-=C P.S optional
TEARDOWN C->S P.S required

Figure 2.13: RTSP methods "'

RTSP offers a VCR-like control to the user: Setup, Play, Stop, Pause, FF and
REW, and also random access to any part of the media clip.

It also helps the server to adjust the media bandwidth to the network congestion
in order to suit the available capacity. Another important function of RTSP is its
ability to choose the optimum delivery channel to the client. For example, if UDP
cannot be used (some corporate firewalls will not pass UDP), the streaming
server has to offer a choice of delivery protocols — multicast UDP or TCP to suit
different clients.

' Extracted from: http://www.cs.helsinki.fi/u/jmanner/Courses/seminar_papers/rtsp.pdf

Linux-Box: DVB and VoD Streaming Over Local Area Networks 30

; ———OPFTIONS
—_
€ DESCRB
B
oK
«
RTSP { |~
\ > SETU
O_K———______ ____——_..
_ oK
N PLAY "
D
oK FUAVREne
I oK
; Porfion 1 4-‘__________ - —
4’—;_}/—/1*_"
| Fortion 2
RIP < Portion 2
! {Uncached)
_*__________
Ve
-~ ____lE_ﬁ.F;DG'NN
— _
RTSP ok “——— TEARDOWN =
«—— oK
L - _1__———_
Client Prosy Sereer

Figure 2.14: Dialogue between Server and client in a RTSP/RTP communication.

2.6. Announcement and Session Description Protocols

We will study two types of announcement or description protocols. Those two
protocols are related, because usually one travels inside the other.

2.6.1. SAP

2.6.1.1. What is SAP?

SAP (Session Announcement Protocol) was created by the necessity to show
advertisements of multicast multimedia conferences and other multicast

Multimedia Network & Video Protocols 31

sessions, and communicate the relevant session setup information to its
participants.

2.6.1.2. Packet Format

SAP data packets have the format described in figure 2.15.

4/5|/6|7/|8 16 24 | 32bit
V |A|/R|T|E|C Auth len Msg ID hash
Originating source (32 or 128 hits)
Optional Authentication Data
Optional timeout
Optional payl oa(‘j type
0
Payload

Figure 2.15: Sap Packet format. 12

Version Number (V): The field MUST be set to 1 (SAPv2).

Address type (A): O for t IPv4 address and 1 for IPv6 address.

Reserved (R): 0 for SAP announcers and ignored by SAP listeners.

Message Type (T): O for a session announcement packet and 1 for a

session deletion packet.

Encryption Bit (E): If it's set to 1, the data is encrypted.

e Compressed Bit (C): If it's set to 1, the data is compressed using a
compression algorithm.

e Authentication Length: The header that contain authentication data.

¢ Authentication data: Contains a digital signature with the length marked
on the authentication length.

e Message Identifier Hash: Provides a unique to identify the precise

version of this announcement.

SAP advertisements are received by all the participants and also other session
directories, so new participants can use the session description to start the tools
required to participate in the session.

The SAP announces periodically an announcement packet by multicast to a
well known multicast address and port. Then a SAP possible receiver listens on
the well known SAP address and port. That announcement contains a session
description and should contain an authentication header.

12 Extracted from the web: “http://www.protocolbase.net/protocols/protocol_SAP.php”

Linux-Box: DVB and VoD Streaming Over Local Area Networks 32

SAP announcements MUST be sent on port 9875 and should be sent with an IP
time-to-live of 255. The bandwidth limit used for SAP announcements is 4 kbps.

2.6.2. SDP

2.6.2.1. What is SDP?

SDP (Session Description Protocol) was created in multimedia sessions to
transmit information about media streams: session announcement, session
invitation, and other forms of multimedia session initiation.

SDP is designed to communicate the conference addresses and information
necessary for participation in a multimedia conference and transmit this
information to recipients.

2.6.2.2. Characteristics

SDP can be used for many network types and applications but does not
incorporate a transport protocol, so it adapts its format to the appropriate
protocol SAP, SIP, RTSP, electronic mail using the MIME Extensions or HTTP.

The text payload in an SDP session description should be no greater than 1
Kbyte in length.

An SDP packet includes:

Session name and purpose

Time(s) the session is active

The media comprising the session

Information to receive those media (addresses, ports, formats and so on)
The type of media (video, audio, etc)

The transport protocol (RTP/UDP/IP, H.320, etc)

The format of the media (H.261 video, MPEG video, etc)

For an IP multicast session, the following are also transmitted:

e Multicast address for media
e Transport Port for media

Where both address and port are the destinations of the multicast stream.

In case of an IP Unicast session, the following are transmitted:

Multimedia Network & Video Protocols 33

¢ Remote address for media
e Transport port for contact address

If resources necessary to participate in a session are limited, some additional
information should be interesting to transmit:

¢ Information about the bandwidth to be used by the conference
e Contact information of the responsible person for the session

2.7. Other Network Protocols Used In Streaming

2.7.1. IP Multicast

Unicast transmission means sending one stream to each receiver. Unicast
does not represent a particularly efficient use of bandwidth but it allows the
users, by using RTSP functionalities, to watch different parts of the media or
watch different movies at the same time. Viewers normally open a Unicast
media by opening an RTSP URL.

Broadcast transmission means sending one copy of the stream over the
whole network. A single stream is sent to all hosts in the network. It is possible
to do it in small LANs if support broadcast but the Internet does not allow it.
Broadcast does not allow viewers to control the streams (there is no VCR
functionalities) so there is no feedback from the user to the server.

Multicast transmission means sending exactly one copy of the stream, not
over the whole network (as in broadcast), only down the branches of the
network where one or more viewers are available or are trying to connect to the
server. In this case the available network bandwidth can be used more
efficiently. Multicast requires fairly sophisticated router software that allows the
server to replicate streams required by the clients. The user of a multicast has
no control over the media presented as in broadcast (the choice is simply to
watch or not to watch). The user’s system communicates with the nearest router
(rather than directly with the server) to get a copy of the stream. To find
information on multicast programmes users must download the Session
Description Protocol (SDP) file, usually available on service provider's web

page.

For VoD and AoD the Linux-Box uses Unicast. For TV on demand it uses
multicast to a specific IP. This is explained in section 4.2.3.

The IP range dedicated to multicast goes from 224.0.0.0 to 239.255.255.255.
There are some special multicast IPv4 addresses:

e Address 224.0.0.1 identifies every host from a subnet. Any host with
multicast capabilities within a subnet must join to this group.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 34

e Address is 224.0.0.2 used for identification towards every multicast
capable router in a network.

« The address range 224.0.0.0 - 224.0.0.255 is allocated for low level
protocols. Datagrams sent to addresses within this range, will never be
routed by multicast capable routers.

e The address range 239.0.0.0 - 239.255.255.255 is allocated for
administrative purposes. The addresses are locally assigned within each
organization, but they could not exist out of the organization. The
organization routers should not route any of these addresses out of the
corporate network.

Scope TTL Adress range Description
The datagram is restricted to the
Node 0 local host. It will not reach any of

the network interfaces.

The datagram will be restricted to

Link 1 224.0.0.0 - the sender host subnet, and will not
224.0.0.255
progress beyond any router.
Department | < 32 239.255.0.0 - Restricted to one department of the
b 239.255.255.255 organization.
Oraanization | < 64 239.192.0.0 - Restricted for a specific
9 239.195.255.255 organization.
< 224.0.1.0 -

Global

255 938,955 255 255 No restriction, global application.

Table 2.3: Multicast IP directions scope”®
2.7.1.1. IGMP protocol
What is IGMP?

The Internet Group Management Protocol (IGMP) is used by IP hosts to report
their multicast group memberships to the nearest multicast routers. There are

three IGMP versions:

e |IGMPv1 only has two message types:
0 Membership Query.
0 Membership Report.

e |IGMPV2 that implements a hew message type to allow the hosts to
say the router that want to leave the multicast session.

e |IGMPv3 give to the multicast routers the capacity to discriminate
between different fonts that send traffic to a determined multicast
group. To make this, routers must integrate a more intelligent API, so
this IGMP version is used in environments where multicast use is
extended.

'3 Extracetd form http://www.linuxfocus.org

Multimedia Network & Video Protocols 35

In our work, as in the department, is used the IGMPv2 for itsr easy
implementation and the fact that is useful closing the multicast sessions when
no users are listening.

IGMP is an integral part of IP so its messages are encapsulated in IP
datagrams and requires to be implemented by all hosts that want to receive IP
multicasts.

8 16 32 hits
Type Max Resp Code Checksum
Resv | S| QRV QQIC Number of Sources
Group address
Source Address

Figure 2.16: SDP packet format™

e Type: There are four types: Membership Query, Membership Report
(version 1 o0 2) and Leave Group.

e Max Response Time: The maximum allowed time before sending a
responding report.

e Checksum: Is the sum of the whole IGMP message (the entire IP payload).

e Group Address: Specifies the group address demanded when sending a

Group-Specific or and IP multicast group address of the group being
reported or left.

The working mode is simple:

1. Incorporate a process of a new member in a multicast group.

2. The “Designed Router” sends Membership Query periodically (between
60 and 90 seconds).

3. Only is needed that a member of every “Multicast Group” responds to the
Membership Query with a Membership Report.

Routers that are members of multicast groups are expected to act as hosts as
well as routers, and may even respond to their own demands. So it is correct to
say that IGMP can also be used between routers.

2.7.2. Protocols comparative

The purpose in this section is to make a summary of the real-time protocols that
are used for the delivery and multimedia data control explained previously and
to compare them to see with what advantages can contribute each one of them
in the environment for which they have been developed.

14 Extracted from: http://www.protocolbase.net/protocols/protocol_IGMP.php

Linux-Box: DVB and VoD Streaming Over Local Area Networks 36

This comparative don’t enter in the internet protocols that can be used as TCP,
UDP and IP since these have been debated at the beginning of this part in the
section "TCP vs. UDP" where we saw that the advantages that contribute UDP
respect TCP that make it more interesting for real-time applications. Is for this
that the real-time protocols are usually encapsulated over UDP.

As UDP it is a simple protocol that does not implement many interesting
mechanisms for Real-Time applications, emerges the needing of other upper
protocols that can solve the lacks of UDP. With this objective were developed
RTP, RTCP and RTSP.

It is also necessary to mention that some of these protocols are complementary
between them and they need themselves for the correctly execution of the
applications. Each one contributes in something that does not contribute the
other one, like we explain below.

RTP is the only protocol that is really strictly necessary, although this statement
can be subjective seeing the functionality of the other ones. RTP is very useful
to divide the streams in packages that then can be reconstructed before. These
streams can be audio or video in the client. Also in the fact that it gives
information of the type of data that is being sent to the application, as well as
the sequence numbers and the timestamp of the packets, this is vital
information for the application to be able to reconstruct and to reorder the
received information. The problem is that RTP does not provide feedback with
the source even information about the flows that arrive or not to the client. Also
it does not implement any mechanism to know the number of members of a
session. For this reasons emerge the necessity of another protocol like RTCP
that realise these functions. It is necessary to say that none of these protocols
assures delivery or quality of service (QoS). They only provide information, so
that the source according to their judgement can react to the different problems
that can arise of the transmission. The purpose of these protocols is to replace
the functions that the inferior layers of the protocols pile aren’t implemented.

To have a continuous feedback between the source and the receiver and that
the receiver could control the information that receives, for example stopping,
pausing, controls of volume etc... Either audio or video, it will be necessary the
transmission of packets over RTSP.

On the other hand, the announcement mechanisms and session description
could be necessary in real-time applications, to announce from an automatic
way to the users of the availability of a session as well as the description of it
and they could be connected to the session if they have the permission or it
interests them. Exist other ways more static as for example to enunciate the
URL's in a Web page or similar. The advantage of these announcement
mechanisms is that they are dynamic in the aspect of the "server" and that they
directly describe the announced mechanism.

Multimedia Network & Video Protocols

37

DOWNLOAD/
SIREAMING (PROGRESSIVE)
Streaming server is Standard web server is
Server . L
required sufficient
Network layer protocol UDP/IP TCPIIP
Used
Application layer RTP/RTSP HTTP

protocol Used

Packet loss

Packet loss acceptable

No packet loss

Time performance

Real time. The delivered
media

duration is the same as
original

Packets may be
retransmitted, leading to
slower delivery times

Delivery quality

Some packets may be
discarded, to meet time
and/or bandwidth
constraints

High-quality delivery
guaranteed, no data is
lost or discarded

User connection

Can match the user’s
bandwidth

File is delivered without
regard to the user’s
Bandwidth

File starts playing

Playback begins when all
of (in progressive: enough

Playback immediately of) the file has been
downloaded
More burden on service | ;00 brden on the end
Effort provllder(rgquwes Server, user (hard drive space
multiple bit-rate versions . '
connection speed)
and formats)
Firewalls May not pllay behind Bypasses most firewalls
some firewalls
Storage No files are downloaded Files are downloaded to
9 to the user’'s PC the user's PC
VCR functionalities ves (for streaming .Of No
pre-recorded material)
Zapping of internet
radio Smooth
Channels Not possible

Table 2.4: Streaming server with RTSP vs. HTTP

This table explains that although http is suitable for transfer web pages, it's not
the best option for streaming because is based on TCP, which force reliability
regard to timeliness, and this is not suited for use in multimedia presentations
with timelines. Also Http doesn’'t have good mechanisms to access the file as

RTSP.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 38

Another streaming alternative very used exist called MMS protocol created for
Microsoft to transfer Unicast data over UDP or TCP. By default Windows media
will select over UDP, but if it is not possible it will try over TCP or a modified
version of HTTP. The problem of this protocol is that only Windows Media has
the rights.

2.8. Video Codecs and Encapsulation Protocols

2.8.1. MPEG2-TS

The MPEG?2 signal is very complex, and depending on what part of the MPEG
standard we are interested in, the requirements will be different. elementary
stream (ES), packetized elementary stream (PES), transport stream (TS),
program stream (PS) and program-specific information (PSI).

Other Data MFE & Wideo WFEG Audio
Elementany Stream Elementary Stream
MPE -2 MPE 2 Packetizad Elementany Streams MFPE -2
FS= [Single Program T5) [a=1]

MPEZ-2 Transport Stream Chdulti Frogram T5)

Figure 2.17: Streams supported by the MPTS"®

To understand how the component parts of the bit stream are multiplexed, first
is necessary to first look at each component part. The most basic component is
known as an Elementary Stream in MPEG. Any program contains a
combination of elementary streams (one for video, one or more for audio,
control data, subtitles, etc).

Elementary Stream (ES): Each ES output contains a single type of signal. For
video and audio, the data is organised into access units that represents a
fundamental unit of encoding. For example, in video, an access unit will usually
be an encoded video frame.

Packetized Elementary Stream (PES): Each ES is input to a processor which
accumulates the data into a stream of PES packets. A PES packet may be a
fixed (or variable) sized block, till 65536 bytes per block and includes a 6 byte
protocol header and usually contains an integral number of ES access units.

!5 All images of this section are extracted from: http://erg.abdn.ac.uk/research/future-net/digitak
video/mpeg2-trans.html

Multimedia Network & Video Protocols 39

The PES header starts with a 3 byte start code, followed by a one byte stream
ID and a 2 byte length field.

Transport Stream (TS): Each PES packet is broken into more packets making
a general purpose for one or more streams, and can have different references.
This is recommended in environments with potential packet loss or corruption
by noise, or where we need to send more than one program at a time. DVB
uses the MPEG-2 TS over many variety networks.

Program Stream (PS): Consists of a group of PES packets that are based on
the same reference. This is ideal in environments with few errors and it is easy
to process for the software. For this reason PS is usually used in digital video
storage devices.

Program: Transport stream has a concept of programs, which are groups of
one or more PIDs that are related to each other. For instance, a transport
stream used in digital television might contain three programs, to represent
three television channels. Suppose each channel consists of one video stream,
one or two audio streams, and any necessary metadata. A receiver wishing to
tune to a particular "channel" has to decode the payload of the PIDs associated
with its program. It can discard the contents of all other PIDs.

Program Specific Information (PSI): Signalling Tables are special streams
that help users identify a program. The tables, called PSI, consist of a
description of the elementary streams which need to be combined to build
programs. Each PSI table is carried in a sequence of PSI Sections and is
protected by a CRC (checksum).

PAT stands for Program Association Table. The PAT lists the PIDs for
the programs in the stream. In other words the PAT lists PIDs for all
PMTs in the stream. Packets containing PAT information always have
PID 0xO0.

PMT: Program Map Tables, contain information about programs. For
each program, there is a PMT, with the PMT for each program appearing
on its own PID. The PMTs describe which PIDs contain data relevant to
the program. PMTs also provide metadata about the streams in their
constituent PIDs. For example, if a program contains an MPEG-2 video
stream, the PMT will list this PID, describe it as a video stream, and
provide the type of video that it contains (in this case, MPEG-2). The
PMT may also contain additional descriptors providing data about its
constituent streams.

PCR: To assist the decoder in presenting programs on time, at the right
speed, and with synchronization, programs usually periodically provide a
Program Clock Reference, or PCR, on one of the PIDs in the program.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 40

This section is about the TS part because project is based on it. Every transport
stream packet has 188 bytes. Each packet contains 184 bytes of data and a 4
bytes header. One of the items in this 4 bytes header is the 13 bit Packet
Identifier (PID) and the others are for sync, as showed in this figure:

MPEG 2
transportetearn 11 [[[[|

[heade pasdoad

byte | emr (unitstad| poooty mmblng| fied counter fie d
nd icatofind icaton contol contmo|

g 1 1 1 13 z Z 4

EXT S [anapuﬂl‘payhad arspo] ADT tansgpod Jadaplaton] confinuiy fadaphtion)
i

Figure 2.18: TS Header Structure

The PID is a unique address identifier. Every video and audio stream as well as
each PSI table needs to have a unique PID. The next figure 2-18 shows two
elementary streams are sent in the same MPEG-2 transport multiplex. Each
packet has its particularly PID value in the header. The audio packets have PID
64, and the video packets PID 51. These values are arbitrary but must be
different. Any packet has priority so they have not any correlation. Packets with
different PID can be inserted into the TS at any time and if there are not
available packets, null packets are inserted (with a PID value of Ox1FFF). The
PES are not synchronised, so before this process is necessary another to
synchronised the streams.

Yideo pack et
Audio packet

Figure 2.19: Program Transport Stream (Audio and Video PES).

Other fields in the TS header include:

The header starts with a Synchronisation Byte (8 bits).
The first flag indicates a transport error.
The second flag indicates the start of a payload.
The third flag indicates transport priority bit.
The two scrambling control bits to encrypt the data of some TS packets.
Two adaptation field control bits which may take four values:
0 01 - No adaptation field, payload only.
0 10- Adaptation field only, no payload.

Multimedia Network & Video Protocols 41

0 11 - Adaptation field followed by payload.
0 00- RESERVED for future use.
e A half byte Continuity Counter (4 bits) which repeatedly increments zero

through 15 for each PID; used to determine if packets are lost or
repeated

TS is designed to be robust with short frames. So they need a strong correction
mechanism (expects a BER better than 10%). TS is a transport protocol but it
not ensure us that the data will be transported without problems. This
responsibility is for layers under in the OSI. TS needs the under layers to
identify the transport packets, and to indicate in when a packet has been
transmitted with an error.

The resultant TS output of a multiplexer may be either a single program TS
(SPTS) or, more generally, a multiprogram TS (MPTS). A program consists of
one or more ESs with the same time reference.

An SPTS contains all the information requires to reproduce the encoded TV
channel or multimedia stream.

Sometimes one or more SPTS streams can combine to form a MPTS. It also
contains all the necessary to control the transmission, so PID values may be
changed cause the need for verifying accurate provisioning. This means also
that PSI is required.

An example of TS could be on DVB-S. The DVB-S standard requires the 188
bytes transport packets to be protected by 16 bytes of Reed Solomon (RS)
coding.

Conyolutional Cod

R3S Cod
188B ﬁ 16B

Heade Payloas

4H 184 E
MPEG Transport Packet

Figure 2.20: MPEG Transport Service Encoding Specified by DVB-S.

The coding level can be selected (from 1/2 to 7/8 depending on the intended
application and available bandwidth) and the digital bit stream is then
modulated using Quadrature Phase Shift Keying (QPSK). A typical satellite
channel has a 36 MHz bandwidth, which may support transmission of 35-40
Mbps.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 42

To see the program that Users want, must determine the PID value to filter the
correct packets.

¥ideo packet Programme Association Table (PAT)

Audio packet Programme Map Tab le (PMT)
/ Other packets

- balrle

Packet header indudes Programme guides,

aunhique Packat ID (FD) PAT lists PIDs for Subtites,

far each stream programmn e map kables Multimedia data,
MNebwark hfo =10 Imbarret p&cketg‘l
Pr'-:lg 1=15 ek
Prog 2 =301

PRT lists P D2 associabed
:{29 3=311 with 2 particular pro geninme
Yidea =31
Audio [Englizh] = 64
Audio [French] =- BG
Subtife =107 atc.

Figure 2.21: DVB Signalling Tables and Transport Layer PIDs

Depending on the program the streams can be synchronised or not. Optionally,

to help synchronisation, time stamps can be sent. There are two types of time
stamps:

¢ Reference time stamp: Indicates the current time.

e Decoding Time Stamp (DTS): Indicate the exact moment where a video
or audio frame has to be decoded or presented to the user.

Finally, in the figure below is shown a possible structure of a TS system:

Other Transport
Sreams (2. Dalta)
ik
ALdic
Widko [o=ceq
ALdio RAL
MPEG-2 MPEG-2
Compressos Systems
MPEG-2 Processor

Spshems
Processor

30-40 hbps

14 Mbop=s
Programme

Shrearm

Figure 2.22: Possible structure of a TS system

Multimedia Network & Video Protocols 43

2.8.2. Codecs and Payload Types

Here are explained the codecs used on the Linux-Box that are launched by
VideoLan. This codecs are identified on the field PT (Payload Type) of RTP and
can be for audio (AoD) or video (VoD and Broadcast TV). To see a table of
other possible codecs and a brief explanation of the most used see the annex
section 9.2.1.2.

2.8.2.1. Audio

MPEG (MPA)

Identified as Payload Type 14, MPA denotes MPEG-1 or MPEG-2 audio
encapsulated as elementary streams. The encoding may be at any of three
levels of complexity, called Layer I, Il and Ill. The selected layer is indicated in
the payload. The RTP timestamp clock rate is always 90,000, independent of
the sampling rate. MPEG-1 audio supports sampling rates of 32, 44.1, and 48
kHz. MPEG-2 supports sampling rates of 16, 22.05 and 24 kHz. The number
of samples per frame is fixed, but the frame size will vary with the sampling rate
and bit rate.

This is the common codec used for AoD on the Linux-Box.

2.8.2.2. Video

MPEG (MPV)

MPV is identified as Payload Type 32 and designates the use of MPEG-1 and
MPEG-2 video encoding elementary Streams.

e The MPEG1 specification is defined in three parts: System, Video and
Audio. It is designed primarily for CD-ROM-based applications, and is
optimized for approximately 1.5 Mbits/sec combined data rates. Some
characteristics:

0 Acquisition: 4:2:0-Y:Cr:Cb

0 Typical resolutions: 352 x 288, 352 x 240

o DCT, macro blocks 16 x 16

o Intra-frame and inter-frame coding

0 Quality comparable to VHS
The MPEG-2 specification is similar to MPEG-1 but it's designed for digital
video applications and also high definition applications, so it's optimized
approximately for 4 Mbits/sec and 20 Mbits/sec respectively. Using MPEG-2
Video coding tools it is possible to encode efficiently two video sequences
transmitted from two different cameras that film the same scene with a small
angle between them. Some characteristics:

e For digital video and TV:

0 Acquisition: 4:2:0.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 44

Typical Resolutions: 720 x 576 (0 720 x 480) and 30 fps
Support to code video interlaced
Fields codificated separately or in pairs
Define scalability levels
Quality comparable to NTSC/PAL for TV
e For High definition applications (HDTV):
o Acquisition: 4:2:2
0 Typical Resolution: 1920x1080 and 60 fps
MPEG-1 was usually used for VoD (with videoclips for example) and MPEG-2
for Broadcast TV in the laboratory to make the analysis.

O O O0OO0Oo

MPEG2-TS (MP2T)

MP2T designates the use of MPEG-2 transport streams, for either audio or
video. To know more see section 2.9.1 of this thesis.

2.9. DVB

2.9.1. History

In 1991, broadcasters and consumer equipment manufacturers discussed how
to form a concerted European platform to develop digital terrestrial TV, and at
that time was created a group to watch the development of digital television in
Europe. It was called the European Launching Group (ELG) and included the
major European media interest groups of all sectors. In September 1993, the
Launching Group renamed itself as the Digital Video Broadcasting Project
(DVB). At the same time a separate group, the Working Group on Digital
Television, prepared a study of the chances and possibilities for digital
terrestrial television in Europe. This introduces important new concepts, for
example HDTV.

The DVB Project has the following purposes:

e Develop a complete suite of digital satellite, cable, and terrestrial
broadcasting technologies all in one standard form.

e The systems should have ‘containers’ where carry any combination of
image, audio, or multimedia. They should be ready for SDTV, EDTV,
HDTV, surround sound, or any kind of new media.

e The final Standard should go to the ETSI standards for the physical
layers, error correction, and transport for each delivery medium.

e To reduce costs all should be common between different delivery
platforms, so the DVB Project should only use existing standards if they
are available.

The transport for all systems is the MPEG2 transport stream.

Multimedia Network & Video Protocols 45

2.9.2.

2.10.

Types

DVB-S: Developed in 1993 for digital satellite broadcasting was
developed in 1993. It uses a system using QPSK. The specification
described different tools for channel coding and error protection.

DVB-C: Developed in 1994 for digital cable networks. It uses a system
using a 64 QAM, and it is possible to transmit a satellite channel
multiplex on a cable channel.

DVB-T: Developed for the digital terrestrial television system. It intends
to assemble different noises and bandwidth environments, and multi-
path. The receiver is required to adapt its decoding according to
signalling. The system uses OFDM. There are two modes: 2K carriers
plus QAM, 8K carriers plus QAM. The 8K mode can allow more multi-
path protection, but the 2K mode can offer Doppler advantages where
the receiver is moving.

DVB-S2: Developed for a better satellite broadcasting system. It has
about 30% more data capacity for the same receiving compared to DVB-
S. It uses 8-PSK and Turbo coding to increase the efficiency. DVB-S2
will be used for all future new European digital satellite multiplexes, and
satellite receivers will be equipped to decode both DVB-S and DVB-S2.

DVB-H: Developed for a more flexible and robust digital terrestrial. Its
purpose is to be receivable on handheld receivers systems. This includes
features that reduce battery consumption (time slicing) and a 4K OFDM
mode, together with other features. DVB-H use more efficient video
compression systems such as MPEG4. In the last times, mobile
operators are implementing this function their mobile phones to watch
TV. Don'’t confuse it with the UMTS TV streaming implemented by other
mobile operators.

Protocol Analyzers

The purpose of this section is only mention and make a brief explanation of the
two programs used to do the network protocol analysis in this project.

2.10.1. WireShark (Ethereal)

Wireshark is one of the world’s most popular network analyzer. This means that
read packets from the network, creates captures and analyzes them to show
the packets information. It has many features and runs on most platforms as
Windows or Linux. The main advantage is that Wireshark is developed under
the GNU General Public License, so it's free available and its source code can
be modified. Its success comes because it is the successor of Ethereal, a

Linux-Box: DVB and VoD Streaming Over Local Area Networks 46

standard software for many companies and public institutions. This means that
the main developer team has moved to the WireShark project.

WireShark helps us to see the encapsulation of every packet in the net by
setting the net adapter in mode monitor “promiscuous mode”. This means that
WireShark captures every packet that pass through the net. For its utilization it
is possible to set up filters to reduce the amount of information that isn't
interesting to our network scenery.

2.10.2. Commview

This is another network protocol analyzer not as complete as Wireshark but it
has an option very interesting to our analysis. This software enables us to see
the network bandwidth use every moment. It has the option to determine the
bandwidth use for some specific IP also. This is useful for us to know if the
streams used overload the net or are acceptable. It is also useful to help us to
calculate if the stream is seamed to the theorical expected.

Multimedia Network & Video Protocols 47

Part 2: Applicative part

Linux-Box: DVB and VoD Streaming Over Local Area Networks 48

3. LINUX-BOX

3.1. Introduction

Nowadays, Media Centres have become really known, small devices make their
appearance in very homes and with functionalities as CD or DVD player,
Console, Internet, e-mail and other functions that only personal computers had
before. These devices usually are based on a “Windows XP Media Centre
Edition” OS, or easier in an “XP Home Edition”. This efforts the open-source
community as they see a potential sector, because we can find this software on
Linux/Debian OS prepared on Internet, but they are not enough competitive at a
commercial level like Windows can do.

Then Linux-Box is not exactly a Media Centre. It does not have the same
functionalities but to make us an idea, has a similar hardware configuration.
Basically it is a device provided with television targets (DTT and Satellite) with
inputs that allow broadcasting this signals in a local network. In future will be
reliable as much to private houses as educational institutions (schools,
universities, etc...) and also to environments like companies or offices. The
advantage respect other competitors is that runs over existing configurations.
Concretely needs IP nets and the most commons and economic in local areas
are Ethernet and Wi-Fi.

To work, the Linux-Box needs a digital terrestrial antenna, a satellite antenna
and a Network to distribute the desired signal. To do an open-source OS and
specific software is provided and can be controlled by the administrator and
used easily by any user. It is based on VideoLan (known as VLC) to the
streaming engine and the costumers will dispose a Web environment totally
clear. The form it works inside will be explained at point “3.2. Operation Way”
and will be used briefly: HTML, PHP, Telnet, XML and JavaScript.

As said in the introduction, the Linux-Box project is in development yet. Our
objective is, apart from a work documentation and an explanation about its
working mode, realise different parts for the common project.

o We will work in the channels list acquisition, their reading, processing and
adequate the specific format of the main application (that is the web page).
This could allow to the administrator to select about some available
channels and at the same time make them available or not to the clients.
The advantage is that these channels lists were made dynamically, that’s
because usually there are regional modifications, different frequencies and
PID’s. The objective is that when the administrator installs the Linux-Box,
executes this module. And later he can execute it to verify and configure
new channels automatically.

e The second part that we will work is about TV signals Broadcasting from the
Linux-Box to the client’s web browser. The part that develops the other team
is VoD, AoD and the web page code. All these is currently working right
nowadays at the final of our DT, but at the beginning the Linux-Box was only
an idea.

Linux-Box 49

e Another interesting part in which we work is not only the scalability at the
network layer of the Linux-Box resources but also a study of the frames as
well as the activity and traffic created. This is an indispensable part for an
application that usually works in Ethemet networks (not dedicated
exclusively for this end) that also are used for other common applications as
the Internet access or other characteristic communications for homes,
offices or universities for example.

The purpose is that the Linux-Box project wants to become a commercial
product in a half-long term, always based on open-source code.

The software is based on a main HTML environment programmed in PHP. It
uses Scripts and another web protocols to make work VLC like a "contents
server" through its Telnet interface that will be directly operated in a transparent
way by the web page.

As talked in the introduction, as explanation, the state in that was the Linux-Box
project at the beginning of our DT was the following:

Linux-Box was used to watch the Italy matches in the 2005 Soccer World Cup
through IP, for teachers and researchers’ department. This was possible thanks
to that was already prepared hardware of previous thesis and the creation of a
special script for this occasion. They called it "vlc-azzurri", to see this go to the
section4.4.1.

We have to understand that it only had been used for this test, and that
basically only had been carried out its hardware assembly, a basic drivers
installation and the Operating System.

The Scripts in VLC acts like an automatic command line and uses a "relatively
easy" owner language.

The "operation way" was previously defined by the other work group with our
tutor collaboration, so is explained how it works, but the decisions that justified
the design are not explained.

One candidate that seemed to be useful was DVBStream, see [23]. It also has
command line to make possible to configure through the Web page, but their
limitation only treating DVB flows didn'tinclude all the expected for this project.

Searching other options seems that the VLC election is the best to use it in TV
broadcasting, although their functionalities are not the same in VoD and AoD,
where could have been found more appropriated programs. The reason to say it
is because exists also specially software made for VoD. For example
“Live5557” creates an automatically audio/video repository and streams in a
LAN. Anyway if it is necessary to use the same program for the two purposes
(TV Broadcasting and VoD), VLC is nowadays, one of the best candidates.

8 70 see more information visit: http://www.live555.com/

Linux-Box: DVB and VoD Streaming Over Local Area Networks 50

3.2. Operation Way

To explain the "working mode" it is important to be concerned as told before
that another people decided the VLC use (in other previous or parallel projects)

from other existing options basically for its great modularity and its Telnet
interface.

User Front end Admin Front end

|
|
! Add el
elerments
ON AIR Play | Stop '
I Delete elements
; |
Video | Add files
Musica
I Disabled server
T |
I et ...
|

/
[»
<

[

Back end

weans|-

Apache - php

VLC g

telnet intf. ———p G

Figure 3.1: Web Page functions

The main purpose is to carry out Stream TV and VoD to the final user by web
browser and in an easy transparent way. The web browser, through
JavaScript’s, is implemented all necessary controls and the video window.

For this, it must be installed the VLC plug-in, that is available for various web-

browsers. These reproduction options are sent to the Telnet interface of VLC.
Then the Linux-Box sends the requested stream to the user.

Linux-Box 51

In the next figure we can se the relation between the administrator page, and
the main webpage. The administrator adds the channels and directly it is added
to the clients’ TV-broadcast page through PHP by editing the appropriated XML
file.

Networks-Research-Group

TLC Metworks Resgarc

Streaming

BROADCAST TV v We bpage
II'E\LII']U 'I
Play selected item |

[no videao]

'3 TLCNETGROUP Home Page - University of Pisa - Microsoft Internet Explorer

Archivo Edicin VYer Favoritos Herramientas \Ayuda

OAtrés M I Ij IELI .;“ /-.' Bﬂsqu%\ ‘:‘_‘:"Favuntus §‘| T < @ :9 EI ﬁ g ?‘

Direccidn IEJ http:/ escher.iet.unipi.it/adminfadbroad, php

letworks-Research -Grouy

TLC Metworks Resgarch Grop

Teminado

: HOME ::: ADMIN :
Flaylist
PLAYLISTS
Broadeast attive : frequenza : 532000000
Canali
=» Raillne
=3 Raibue
FILES =3 RaiTre
rimuovi
Edit
BROADCAST
Altri Canali Disponibili
Prima di sintonizzare |a scheda su una nuova frequenza, & necessario
PODCAST eliminare il canale gid sintonizzate.

ADVANCED TOOLS

Admin. Frequencies selector

Figure 3.2: Frequencies selection

The VLC Telnet commands are explained in the document: "VLC-Streaming-
How To ™. A summary can be seen in the section 3.3.VLC.

" Available in the VLC documentation home page: www.videolan.org/documentation.

. |

In the figure 3.3 the process of requesting a source is showed (TV Stream or

VoD) from the web page and the actions carried out automatically: Calling VLC
and receiving the stream by the JavaScript in the web browser.

Client

Web Browser

Request

Y

<

Web-Server

kesponse
VoD, AoD and TV

streams stored on
XML lists in server.

Interface Telnet

DVB-T
TV Signal Unicast/Muticast
VoD Stream | Streaming
AoD

Figure 3.3: Conceptual figure of the Linux-Box working mode.

All the stored media and TV signals pass through VLC. It encapsulates the
streams in RTP.

vod page
start page music
Welcome Admin —
= = File list
A video ,{
od |
1(%
TV broadcast SUBMIT -
Vg,
\ =
2
broad page N
Y -
Create or modify
Add channel: - (o{e]| .| active elements
configure... on the list
Telnet over VLC and
transmit parameters

Figure 3.4: Main Web Page organization

Linux-Box 53

For the final-users interface there are offered different streams by the Linux-Box
and also exists a reserved page for the Administrator that allows adding or
removing files and channels of the playlist that appears in the final clients web

page.

The administrator's requests modify the playlist file stored in XML in the Linux-
Box. From the same page it is also possible to kill the VLC process and start it
again. VLC offers a simple playlist option. /In any case it is used the "VLC
playlist option" in the Web Page.

TV streaming part:

Theoretically like we have said, Linux-Box at the moment only can emit a type
of TV signal: DTT or satellite (DVB-T) at the same time, because there is PCI
space problems. At this moment, the following rules will be applied:

e The administrator decides what frequencies, DVB-T or DVB-S are
streamed.

e If this is not made, will be the first user the one that decides automatically
between terrestrial or satellite.

e In case it is DVB-T, they will be able to select the different channels with
the same local oscillator (frequency) selected previously. A new stream
Multicast is created for each PID.

e A timer will be implemented so when there are not Multicast users, it
stops the stream. It is implemented automatically through RTCP. Then
the multicast stream leaves streaming. In the case of a Multicast stream
will be:

UDP.//@228.228.228.228:Port

VoD/AoD part:

For each Unicast demand a flow is created als each user requests different
information in different moments.

At the same time the administrator selects if show or hide the streams stored in
the Linux-Box, trough the web interface, which modifies automatically the
playlist VoD in XML seen in the final client webpage.

Linux-Box: DVB and VoD Streaming Over Local Area Networks

As showed in the next figure RTCP is marked as optional. It is recommended in
a RTP stream to use RTCP for the control and feedback implementations. In
our work, RTCP is not implemented because VLC does not support it.

web-
browser

VoD, AoD and
TV streams

stored on XML
lists in server.

client

<session>

Figure 3.5: Example of a VoD streaming session in Linux-Box. 18

, <group>
)/ <track src="rtsp://131.114.53.225:5554/movie.mpg”>
)/ </group>
S/ </session>
(" uNux-Box)
o Ty
HTTP GET
o= wek
| -anll] SEFver
session description . y
SETUF f)
i
PLAY
=
- medict
Server
RTSP FAUSE
L
=il
RTSP TEARDOWNMN
e
=il
. >
- /

RTSP is only used in VoD.
We have to remember that RTSP is the protocol which implements Play, Pause,
Stop... and other functionalities.

'8 Modified figure, extracted from Services and Applications notes (a term on the EPSC).

Linux-Box

55

A PHP script demand one file of
the list that has the stream

enabled and represent it in hitp
form to the client.

lista
{(xml, txt, o altro)

Elements List

Jvod activate over
vic, respect their
direction and a
brief description

ON AIR

- element 1
- element 2
-element 3
- element 4
-element 5

play

play

play

play

play

Figure 3.6: Webpage Playlist.

On the other hand each client's requests create a Telnet demand to VLC that
creates the requested stream. If is already created it is simply limited to follow
the link to the desired stream by the URL direction.

In case of a Unicast stream will be:

RTSP ://(ip Linux-Box):Port/ File

How we start VLC by only introducing a URL?

VLC listens the port 5554, then when a request is made to this port, VLC stars

automatically.

Of course, to do this VLC must be started before. In the operation way section

is said that VLC is started before by the Web-Administrator.

For world-agreement the ports in RTP protocol uses pair ports for the stream
and odd for the control information.

Another important issue about ports number is that each PID is sent in a
different port. And will be this the difference to select what PID wants every

client.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 56

3.3. VLC

VLC is included as a Linux-Box section and not as a software section because it
is very important in the project and the different Linux-Box mechanisms are
based on it.

VideoLAN Streaming Solution

Streamers Clients

WLC for
MacOsS X LM

VLC for
GMU/Linux
"--"4.'

SAP/SDP g
Announces

-
= TRAMSCODE

—— TRANSRATE [== =
DVD ; — 1 . 5!%9
GNU/Linux, Windaws, MacOS X, Unix, .. “

Acquisition card N i
il W — P : Network
-0ding - = Unicast / Multicast / VOD VLC for L‘h
MPEG hardware “_ UF : : IPv4 / IPv6 Windows]
encoding card T GNU/Linux, Windows
. S SAP/SDP
Satellite \P/' —_ Announces T ‘ Set Top Box
= - 1 1
. i | 1
\ '-."I 3 D | Wireless |
- o B Sefer | Connection
et ! | i YLC for
— (Web server, Darwin Streaming Server, == o Familiar Linux
MPEGAIP, ...) &

Figure 3.7: VLC graphic presentation19

3.3.1. Telnet Interface

VideoLan uses VLM (VideoLanManager) as a small media manager to control
multiple streams by telnet or http interface. In this case it is used the telnet
interface that will be executed with php scripts automatically to launch some
streaming options that offers the Linux-Box (AoD, VoD).

The purpose of this section is to explain how is executed and the main options
used for the Linux-Box.

Once installed VideoLan on the server, user must be in a terminal on the Linux-
Box and execute the next command line;

vic --ttl 12 -vvv --color -1 telnet --telnet-password videolan --rtsp-
host 0.0.0.0: 5554

19 Copyright (c) 1996-2003 VideoLAN. This logo or a modified version may be used or modified
by anyone to refer to the VideoLAN project or any product developed by the VideoLAN team,
but does not indicate endorsement by the Project.

Linux-Box 57

Where:

e 12is the value of the TTL (Time To Live).

e Telnetlaunches the telnet interface of the VLC.

e Videolan is the password to connect to the telnet interface.
e 0.0.0.0is the host address.

e 5554 is the port where stream.

Once connect to the vic telnet interface, It must be created the VoD object:

new Test vod enabled
setup Test input my_video.mpg

“Test” is the object name and “my_video” is the video name to transmit and
must be in the same directory that is launched the telnet interface.

To access the stream, user should use this command line on VLC:

% vlc rtsp://server: 5554/ Test

Where server is the address of the streaming server (IP or DNS), in our case
131.114.53.225

The telnet interface has the commands control to play, pause, stop and seek.
There are also many other options but they are not used in the Linux-Box.

3.3.2. Streaming with VLC

VLC offers many codecs compatibility and streaming options
(http://www.videolan.org/streaming-features.html). To see how to stream all the
other possibilities see [22]. Here is explained the other streaming option in the
Linux-Box that is not implemented by telnet, the way to input the DVBT
transmission by scripts with VLC. The best way to explain the main options is to
do it with an example. The script must be launched in terminal mode too:

vic -vvv --color --ttl 12 --ts-es-id-pid --progranms=8508, 8505 dvb: \
--dvb-frequency=11739000 --dvb-srate=27500000 --dvb-voltage=13 \
--sout - st andar d- access=udp --sout-standard-nux=ts --sout \

" #dupl i cat e{ dst =st d{ dst =addr ess1}, sel ect =" pr ogr am=8508", dst =st d{ dst =
addr ess2}, sel ect =" program=8505"}"’

Where:

e s-es-id-pid : this option is necessary when is used more than one program
because split the multiplex stream into several outputs.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 58

e programs . Specifies the programs to select in that frequency. The values
are the same that the PIDs. VLC will select all known elementary streams of
these programs.

e dvb-frequency: specifies the frequency to tune in kHz. This options is
extracted from channelsDVBT.conf as can be seen in section 4.1.2.

e Dst= This option allow to put the location (ip) where the stream must be
sent. Also it is possible to put other options as the access type (access = rtp
or udp), the encapsulation method with the command mux or the Sap name
(sap, name= “Name”).

There are many other options that can be modified. Here are explained
those that are modified later and showed the final script used in section
“4.4.1 VLC Scripts”.

3.4. Hardware

Here is mentioned the main hardware parts of the Linux-Box. The information
was extracted from our tutor’'s knowledge. First of all here is showed how looks
like the server:

Figure 3.8: Linux-Box appearance

The Linux-Box has the next main components:

e The mainboard is a Via EPIA MII series, specifically the model
12000LVDS, with formati Mini-TX. The processor runs a maximum of 1'2
Ghz. And the RAM memory now intalled is 2 Gb. To know more see?:

Figure 3.9: Linux-Box Mainboard

20 Extracted from (also image): http://www.via.com.tw/en/products/mainboards/

Linux-Box 59

e A DVP-S board Pinnacle PCTV SAT CI. All characteristics in®*:

Figure 3.10: Linux-Box DVB-S card

e A DVB-T board Pinnacle PCTV 300i. See more in%:

Figure 3.11: Linux-Box DVB-T card

3.5. Network Streaming

There are two basic services of the Linux-Box, the services on demand (VoD,
AoD) and the TV streaming.

The first thing will become under strict demand of the final user. It is for that
reason that will have to choose a Unicast communication. This will be the most
demanding part in terms of bandwidth. A different flow is created for each client,
although they are demanding the same information.

For example, “YOUTUBE?®” uses Unicast streaming, too. But with a Flash
Player Plug-in and a TCP connection.

Ethernet+IP+TCP=58 Bytes.
In a ideal scenario with a optiumum packet size with the maximum 1500 utile
Bytes per Ethernet frame, we have:

1500 / 1558= 96% Throughput.

(100Mbps x 96%)/ 4Mpbs or (less*) =25 maximum users, if the net is fully
available.

L Extracted from: http://www.pinnaclesys.com (also images).
22 http://www.youtube.com
8 parameter of maximum efficiency counting headers explained in the section 2.3 Headers and
%fficiency. . . R
In case we decide to transcode each stream with an inferior bitrate.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 60

Knowing that audio will be in MP3, OGG or similar formats, the average should
be from 128 to 192 Kbps in CBR, and 320 Kbps in VBR. It is a tiny traffic
compared with video.

On the other hand the TV channels streaming part is made with multicast,
because is disposed determined information in a moment for all users. For this
objective the maximum multicast flows will be 4.

The first one should be for DTT and is divided in three. If we tune a local
oscillator in a certain frequency, it is possible to obtain 3 PID for different
channels. For example the RAI frequency has 3 channels depending on its PID:
rail, rai2 and rai3. The fourth flow will be for DVB-S. Exists a problem with the
Linux-Box about that it can not reproduce a stream DVB-T or DVB-S at the
same time. Three multicast flows do not overload the net as it supposes (3 or
4Mbps) * 3 flows = (9 to) in total. It could be the same adding the DVB-
S flows. In case of resolving the problem in a future version for the
simultaneous operation of terrestrial and satellite, it could be possible to have
from 18 to 24 Mbps in total. These flows also wouldn’'t suppose a very high
load, but would be possible to offer 6 TV channels simultaneously.

Supposing that always is transmitted the digital television as much terrestrial,
the question should be how is the maximum number of users in the net that use
VoD or AoD.

These results are only made over what is tested in this project that is DVB-T.
Starting from the section “2.3 Headers and efficiency” where it is explained that
the maximum use will be approximately of 96%, this means that it could be
possible to have about:

(100Mbps x 0'96)- = 84 Mbps for Audio and Video on Demand.

84 Mbps of the net / 4Mbps for each stream means 21 theoretical users or more
if the flow is transcoded to a smaller bitrate.

3.5.1. VoD (Video on Demand)

The objective is offer Video contents from the Linux-Box. These streamed
contents can be stored in the hard disk or in removable mediums
(CD/DVD/Others).

The use of VoD was applied to save for example: professors' lessons recorded
in video or videoclips and movies. The possibilities are several and depend on
the final user. Always respecting, under each ones responsibility, the copyright
laws and the royalties (author rights).

Each client demand is demanded in Unicast mode over (UDP/RTP).

Linux-Box 61

By default are encapsulated in MPEG2-TS and they will usually be compressed
with diverse codecs?® that serve to keep the best subjective video quality, and
optimize their physical size in memory.

An easy option to implement is reduce the bitrate of each Video through the
transcoding option in VLC. In this mode if the demand is higher than the
calculated in the measurements of this project and couldn’t use better nets with
higher BW like "Gigabit Ethernet", with this solution it could increase the number
of users that can use VoD. Obviously there will be a compromise between
bitrate and image quality.

In this case LIVES55 implements automatically a VoD system. The problem Is
that does not implements nothing about TV signals streaming.

3.5.2. AoD (Audio on Demand)

For AoD it is the same thing that for VoD. They are encapsulated in UDP/RTP.
Usually they will be compressed in MPEG1 Layer 3 format, although can also
be transmitted in Vorbis OGG.

3.5.3. TV Streaming (DVB-S & DVB-T)

This is the section our application part is based on. As it has already been
explained, the purpose is transmitting TV signals in an IP net.

About the code methods, the primary option studied for scripts maintains the
signal format sent in DVB-T and directly encapsulates in MPEG2-TS.

If it is necessary, VLC offers the possibility to transcode the streams coming
from the TV capture targets and codes it in other formats or bitrates. But as far
as studied in DVB-T and others traffic generated over the net do not seemed
necessary. It is not discarded to use it for DVB-S studies because they haven't
been made in this work and it is for future lines. The advantage is that these
scripts are based on a first input part and another output part. Only modifying
the first part for the frequencies and parameters DVB-S the scripts can be
profited and realised out in this project.

% Codecs are explained in the section “2.8.2.Codecs”.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 62

3.6. Known Problems

3.6.1.DVB-S + DVB-T

There is a problem with the existent hardware in this first version of the Linux-
Box. The fact is that is a mini-box computer type, and only has an available PCI.
When the Linux-Box was created, they implemented inside an exchange
commutator that commutes between both cards. With this mechanism you can
only use one at the same time. This is easily to resolve building a little bigger
Linux-Box with 2 or 3 available PCI slots at least and installing each target in
one PCI slot. In the other one could be integrated a Wi-Fi card that would cover
a great number of extra users.

3.6.2. Web-Browsers, plug-ins and others

At the moment it has been able to check that the VLC plug-in for navigators is
not compatible with most of them, only works well with Mozilla Firefox.

This limits the range of software possibilities at the moment on the user side
and it is supposed that someone in the VLC community will implement in future
a better compatibility so that it can access and be compatible with the most
number of navigators and OS. Anyway Firefox is a web-browser open-source,
powerful, traduced in diverse languages and free, for these reasons should not
be a problem for users.

To get the VLC plug-in for Firefox is only necessary to install VLC in your
system and select the plug-in option while it is installing it in the menu. This
option is not selected by default. Another option is to download the “Mozilla-vic
plug-in” from any Linux software repository.

3.6.3. TV Channels Limitations

Another actual problem in the Linux-Box is that only have a tuning DVB-T card
with one VCO?, so that limits a lot their broadcasting usage, because it is only
possible to send information at the same time in a specific frequency. This
means that if diverse users want to access at the same time by Web to some
TV channels they found that in the channels list will be available those that the
administrator believes opportune or by defect the one that the first user chooses
when he connects to the server. But it is possible to realise one thing, we can
visualize those channels that are in the same frequency and have different
PID’s, transmitting as it has been explained previously each channel by a
different port. In final versions they could be possible to install more than one
DVB-T card.

%6 «\/oltage Control Oscillator” or local oscillator.

Linux-Box 63

3.6.4. NAT in the Routers (Operation inside the network)

NAT (Network Address Translation) is a method by which IP addresses are
mapped from one group to another, transparent to end users. Network Address
Port Translation or NAPT is a method which many network addresses and their
TCP/UDP (Transmission Control Protocol/User Datagram Protocol) ports are
translated into a single network address and its TCP/UDP ports. These two
operations provide a mechanism to connect private addresses to an external
net with globally unique registered addresses.

It is not recommended to run a Streaming Server behind a NAT Router, but if
there is not an alternative, it must be configured the NAT for the used IP and
Ports.

3.7. Firewalls and Streaming Servers

A firewall (FW) is a security gateway that enforces certain access control
policies between two network administrative domains: often a private domain
(intranet) and a public domain (public internet). In this sub section are treated
the problems with firewalls and streaming servers, and possible things to do for
resolve the problems that may cause the Firewall.

A streaming server uses the IETF RTSP/RTP protocols. RTSP runs on top of
TCP, while RTP runs on UDP. Many firewalls are configured to restrict TCP
packets by port number, and are very restrictive on UDP. There are three
options for streaming through Firewalls with a streaming server. These options
are not exclusive and one or more are used to provide the most flexible setup.
The three configurations below are for clients behind a Firewall.

1. Stream via Port 80: This option enables the streaming server to
encapsulate all RTSP and RTP traffic inside TCP port 80 packets. Because
this is the default port used for HTTP-based web traffic, it will get through
most firewalls. But this type of encapsulating the streaming traffic will reduce
performance on the network, and require faster client connections to
maintain streams. It also increases load on the server.

2. Open the appropriate ports on the Firewall: This allows the streaming
server to be accessed via RTSP/RTP on the default ports and provides
better use of network resources, lower speeds for client connections and
less load on the server. The Ports that need to be open for unrestricted
streaming include:

e TCP Port 80: Used for signalling and streaming RTSP/HTTP (if enabled
on server)

e TCP Port 554: Used for RTSP

e UDP Ports 6970 - 9999: used for UDP streaming (a smaller range of
UDP ports can usually be used (typically 6970-6999)).

e TCP Port 7070: Optionally used for RTSP (this port is used by Real
Server, and QuickTime/Darwin can also be configured to use this port)

Linux-Box: DVB and VoD Streaming Over Local Area Networks 64

3. Set up a Streaming Proxy Server: The Proxy server is placed in the
network - an area on the network that is in between an external firewall to
the Internet, and an internal firewall between the DMZ and the internal
network. Using firewall rules, packets with the ports defined above are
allowed from the Proxy server to clients through the internal firewall, and
also between the proxy server and the Internet via the external firewall.
However, clients are not allowed to make direct connections to external
resource over those ports. This approach insures that all packets bound for
the internal network come through the proxy server, providing an additional
layer of network security.

Running Streaming Server behind Firewalls: Public streaming servers can
be placed behind firewalls. However, the ports mentioned before in
configuration 2 should be opened to permit clients have open access to the
server over HTTP and RTSP/RTP. Alternatively, clients can run behind a
restrictive firewall if specify port 80 in references to their stream. For example, if
the server stream.example.com was placed behind a restrictive firewall, and we

wanted to access a movie named "video.mov" we could use the URL:
rtsp://stream.example.com:80/video.mov

The following table summarizes ports used by a streaming server. The arrows
indicate the packet flow between client and server.

Usage

Ports

Protocols

Notes

Responding to messages
from clients (such as Play
and Pause)

TCP [client initiates — QTSS)
554,7070, 8000, 8001, 80}

RTSP, RTF, RTCP, MP3

Main port is 554. 80 is supported in the QT
client as an alternative TCP port. These ports
also send data to clients.

* UDP RTCP status (broadcaster «
OT55): 6973-65535, odd
numbers

» TCP (broadcaster initiates —
QTS5): 554, 7070, 8000, 8001, 80

Sending media and = UDP data (TS5 — client): 8970~ | RTP Status is required to maintain a connection;
receiving client status 6999, even numbers if blocked, the server disconnects the client.
* UDP status (QTSS « client): RTCP
6971-6995, odd numbers RTSP, RTPRTCP Same ports used to respond to messages.
= TCP data & status (QTS5 <
client): 554, 7070, 00O, 8001, 80
Receiving broadcasts » UDP data (broadcaster — QT55): | RTP Ports depend on the broadcaster
6972-65535, even numbers P configuration.

RTSP, RTF, RTCP

Status is required to maintain a
connection; if blocked, the server
disconnects the broadcaster.
Broadcasters can broadcast over their
TCP message connection with the server
instead of using UDP ports.

Streaming through server

TCP (client initiates — QT55): 554,
7070, 8000, 8OO, 80

RTSP, RTF, RTCP, MP3

Same ports used to respond to messages
and receive TCP broadcasts.

MP3 broadcasts (typical
default)

TCP (client — QT55): 8000

HTTP (lcecast)

Managing QTS5 remotely
with Server Admin

TCF (admin client initiates —
server): 311

Managing QT55 remotely
with Web Admin

TCP {web browser client initiates —
server): 1220

HTTP

Table 3.1: Usage of ports in broadcasting, utile for Firewalls”’

" Extracted from: “http://www.soundscreen.com/streaming/firewall.html”

Linux-Box 65

3.8. Software

In this section is mentioned the programming languages that take part in the
Linux-Box project only as enumeration. It is not the purpose to enter in details in
what is or the way each one works. Only it is explained like they are used and
applied in the global Linux-Box project.

3.8.1.0S

The OS installed running in the Linux-Box is an older Debian version that only
has a console environment. This benefits the CPU and memory load. Nobody
must use Linux-Box directly. Its access is through SSH or directly through the
Telnet interface of VLC.

3.8.2. HTTP

HTTP is used to apply the web page format. Known that the page is
programmed in PHP language, some HTML tags can be used. To apply styles
is used Dreamweaver. This part is not worked on this project, is part of the other
workgroup.

3.8.3. PHP

How is said in the previous section, the main webpage is programmed in PHP.
It implements different options to make automatically and modify files that in
HTML is practically impossible. For example modifying dynamically playlists
stored in XML is relatively easy with PHP. The inclusion of an Apache server
daemon in the Linux-Box does the rest. Note that the IP direction of the Linux-
Box is accessible through internet because is a public IP, then it have to
implements a bit of security.

3.8.4. XML

This code is used to store the different information files. From the channels list
offered to the actual available playlists of VoD and TV streaming, are all stores
in XML text files. It is important to create always XML well-formed documents,
because if only a XML tag is malformed, the rest of the document is null. For
this reason is important to treat carefully the XML files.

3.8.5. JAVASCcript

At the end of the work it is still not decided the final implementation of the video
window in the web-browser. First of all it is implemented and working via
JavaScript with the play-pause-rew-ff... options. This worked only in Firefox 1.5.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 66

Solving this problem may carry a change of the way it is implement the video
window. On the other hand its relation with the plug-ins does not help. It must
be studied deeply by the next working groups in the future.

Including the JS code in the PHP web pages reduce errors opening the web. As
known JS downloads the code and is executed by the local machine.

Applicative Part 67

4. Developed Part

In this section is explained the analytic and application work that we have
realised in the Linux-Box global project. It is organized in four sub-sections:

4.1 Develop an application in C code called “convert” that makes a DVB
channel list in XML format.

4.2 talks about the realization of the TV streaming section on the main web-
page in the Linux-Box.

4.3 is an exhaustive analysis of the Network and the generated frames. Are
studied the frames and the occupation of the network to study the modularity
and BW requirements. Also are treated the TS from the TV tuner and the TS
generated in our network.

4.4 explain purposes of Scripts for VLC based on the results of 4.3. This
section could belong to future’s section and conclusions cause are not a part
we have made an exhaustive work, so it is a way for future projects to
continue. Here are explained the way for analyze the TS’s2 and the
numerous tests with scripts. Also are analyzed the most important scripts
used in the work. The rest of scripts code can be found in the Annexe.

Remembering the Figure 0.2 we can see in yellow, the parts realized in this
section. The graphic is divided in a Source part (Hardware Design), a
processing part (Web Page) and a last exit part (Network Analysis).

WEB PAGE

»_ Network Analysis

VLC telnet
interface

Administrator

Packet |
encapsulation
IP/UDP/RTP/
MPEG2-TS

Sections
4.1 Developed Software Application: “Convert”

— Indicates a Relation
— Belongs to a group

Figure 4.1: This graph shows by colours the parts developed in this section

Linux-Box: DVB and VoD Streaming Over Local Area Networks 68

4.1. Developed Software Application: “Convert”

4.1.1. Introduction

This first half of this work is based on the realization of a program called
“Convert”. This program is entirely programmed in “C” code in a Linux
environment.

For their realization we have had to act as true engineers. First of all we are
assigned of their realization. At high level the program have three differenced
parts:

e Entrance of information.
e Processed of this information.
e EXxit of information.

The first part is automatic and it comes from the file "channels.conf" and its
different versions. It is explained before the origin of the files "*. conf".

The second part is the most complicated. It consists in, once the source
information is prepared, transform, filter, control the errors and prepare it for the
exit of information.

Finally, the third part consists on the exit of information in two ways, one in the
screen to observe the results (this way was eliminated at the end of the
program because it wasn't useful for normal execution), only was useful as a
revision of the results. The exit of important information is in a XML file form and
should be created with correct semantics to introduce the source information
there.

It is necessary to convert the final file to XML format to make possible later to
treat the channels for their later visualization by web. Also for the administrator
to be able to visualize the available channels on the fly in his web interface.

The main problems when planning the realization of this program are two. The
first one is the fact that it was not known very well which was the entrance and
the exit of information because it was a program that depended on a parallel
thesis, which we did not know information because was not yet had been
realised. This way is mentioned in the section “4.1.3 Processing” when at the
beginning only an old “channels.conf” file was the reference. At the half process
realization of the program this changed. In that moment the idea was to process
diverse file types of "channels*.conf" according to if they were of DVB-T or
DVB-S with the different information’s that these contains and its different
formats. This forces us to modify all the error controls of the "Process of
Information” part.

Applicative Part 69

On the other hand, the exit of information was changing as the parallel thesis
was improving the global project. This means that at the beginning, the
entrance of information to the program was very simple. But they ask us for the
modification of certain parameters regularly until January. This slowed the
program final release a lot because when it seemed to be completed, we should
make small modifications that sometimes like we will see, were not as small as
expected.

There are five Convert versions. They do not respond to anything, only as an
orientation and to follow the written versions parameters in commercial
programs:

e Convert 1.0: The first version. it denotes the beginning of the project.
Most part of the programs is based on it.

e Convert 1.9: This version appeared when the final program was near.
Only needed to see that everything worked well together with the other
thesis for the global project.

e Convert 2.0: Version appeared in the middle of December and was the
last 2006 version. Only one modification was done.

e Convert 2.1 Stable: Appeared in the middle of January with another
modification (field “available”) made after some proves with the other
group on the Linux-Box.

e Convert 2.2 Beta: This is the last version and its purpose is to simplify
the code to improve the speed and a better memory management.

A copy was sent to the other task group for each version and sometimes also
some intermediate ones. We have shared six or seven versions, with their
corresponding modifications and the unpriceless feedback value between us
and the other project.

4.1.2. Reading

Previous to the "convert" execution we should obtain the different channels.conf
files. To make this, a command included on the TV Card drivers should be
executed and a script with the local DVB-T frequencies configuration for this
technology. For the “channelsDVBT.conf’ acquisition we must write on the
Linux terminal the following command line:

$ scan T-Pisa —a 0 > channel sDVBT. conf

Where “T-Pisa” is the following script. Everyone have to do modifications
according to its region and the frequencies that want to explore. This script is
needed because the command ‘scan’ is not a frequencies detector; its function

Linux-Box: DVB and VoD Streaming Over Local Area Networks 70

is limited to look for channels inside the frequencies that are specified in this
script:

MJUX Pisa

T freq bw fec_hi fec_lo nod transm ssion-node guard-interval
hi er ar chy

MUX- A RAI

T 698000000 8VHz 2/3 1/2 QAM64 8k 1/32 NONE
MJUX- B RAI

T 658000000 8MHz 2/3 1/2 QAMB4 8k 1/32 NONE
MUX MEDI ASET 1

T 618000000 8VHz 2/3 1/2 QAMB4 8k 1/32 NONE
MJX MEDI ASET 2

T 754000000 8VHz 2/3 1/2 QAMB4 8k 1/32 NONE
MJUX La7/ MV

T 818000000 8VHz 2/3 1/2 QAM64 8k 1/32 NONE
MUX DFREE

T 586000000 8VHz 2/3 1/2 QAM64 8k 1/32 NONE

The way to obtain channelsDVBS.conf is not explained because DVBS finally is
not used in the work, only theorically. The tutor gave us a copy of this file, to
work on its different format.

Before describe the main characteristics, we show an example of each code
line of the file that corresponds with one channel found:

e For DVB-S:

‘SKYGATE22:12558:v:0:27500:0:0:9251

e For DVB-T:

Rai Uno: 698000000: | NVERSI ON_AUTO. BANDW DTH_8_NMHZ:
FEC 2_3: FEC_1_2: QAM 64: TRANSM SSI ON_MODE_8K: GUARD_ | NTERVAL_1_32: H E
RARCHY_NONE: 512: 650: 3401

Each file has a lot of channels. Although is obvious that both channels.conf are
different, there are some similar fields that are explained below. Each field is
separated by “” and were chosen with the other task group to simplify the xml
with the most important information of each channel. But as we see, the
resulting DVB-S and DVB-T files are different. For that reason it must be
implemented in two different sides on the reading files part too.

Fields are as follows for both files:

e First two fields are from the channel name and its corresponding
frequency. Frequency is expressed in Hz.
e Last three fields correspond to the Vpid, Aped and PID for each channel
o0 Vpid is the video value Pid.
0 Apid is the audio value Pid.
o PID is to select different channels transmitted on the same

frequency.

Applicative Part 71

If Vpid has a null value but a different Apid means that this channels correspond
to a Radio channel. On the other hand if both have a null value means that the
channel name is detected but not the signal, so the channels are not available.
Those characteristics were discovered when final versions where made as is
explained in the next section.

4.1.3. Processing?®

In this section we explain the main structure of the convert code. There are two
parts, the main function where we enter the source file to modify and the
function file that makes the process.

¢ Main function:

This part programs the main syntax necessary to begin the process.

void main (int argc,char *argv([])
{
int error;
char file[30], typel[5], signall5];

printf("\n\n\t+-———-———- +\n\t|\tWelcome Convert 2.2\t |\n\t+-——-—————-—- +\n\n") ;
if (argc!=4)
{
printf("Missing Arguments\nUsing: convert [source file]
[.destination type] [Terrestre or Satelitale]\nExample: convert file.dump
.xml T\n") ;

}

Here the program read the file channels.conf and compare the syntax with the
expected. It made also an error control in case of the argument is not “T” or “S”,
corresponding to DVB-S and DVB-T respectively.

else

{
strcpy (file,argv([1]);
strcpy (type,argv(2]);
strcpy (signal,argv/[3]);

if ((strcmp(signal,"T")!=0)&& (strcmp (signal,"S") !=0))

{
printf ("Last Parameter wrong,must be 'S' o 'T'\nTry
Again...\n\n");

exit;

If all is correct the program send message “Tutto Bene Ciao” on the screen and
if not an “Error” message.

else

if(files (file,type,signal)==0)

{
printf("\n\n\t+-——-————-—- +\n\t| \tConvert 2.2\t\t
|\n\t| \tTutto Bene Ciao\t |\n\t+---—-——-—--- +\n\n") ;

8 The complete source-code is shown in the annex section 9.1.1

Linux-Box: DVB and VoD Streaming Over Local Area Networks 72

else

printf("\n\n\t+--———————- +\n\t| \t Convert 2.2\t\t
I\n\t|\t ERROR\t\t | \n\t+-—-—————- “\n\n") ;

e Files Function:

The first part corresponds to declare variables, and copies the name of the
source file “.conf” to another new to make possible the modifications and leave
without modifications the original file. On this part, we create the name of the
output file:

int files(char f[], char t[], char S[])
{

int max=190;
int b,c,n,i;

comilla=(char)39;
char f copia[30];//f copia sera el arxivo de destino
FILE *f1;
if ((f1 = fopen(f,"r")) == NULL) //el dump
{
printf("Can't open Source File: %s\n",f);
return(1);

}

//strcpy (t,destino);

//destino=".xml";

strcpy (f copia,f);//copia f en f copia para no sobreescribirlo
//falta incluir el punto con algun sprintf

//sprintf (f copia,'.';

strcat (f copia,t);//anyade t a f copia

//printf ("destino= %s\n",destino) ;

printf ("Source = %s\n",f);

printf("Destination = $s\n\n",f copia);

//printf ("t = %s\n\n",t);

The second part starts with the convert process. The program will read the file
while does not arrive to an end of file (EOF). We can see inside the while
function two comparisons, one in case of DVB-S and the other for DVB-T. The
function compares “strcmp” count every “” to distinguish the channel fields.
Fields most important that must be save are name, frequency, PID and
available. The function available is calculated as explained before comparing
Vpid and Apid fields. We only put the first compare option for DVB-T cause it is
more important in our work, although the other one is also implemented and can
be seen on the annex.

while (feof (f1)==0)
{

fgets (s,max,f1l);

if (s[0]=="\0")

{

}

else

{
//buscar \0
tamanyoreal=0;
for (i=0;s[i]!="\n';i++)
{

tamanyoreal++;//tamanyo de cada linia "s"

Applicative Part 73

}
//iniciar vectores a 0
for(z=0;2z<40;z++)
{
nom [z]=0;
}
for (z=0;z<30;z++)
{
freq [z]=0;
pid [z]=0;
}
a=0,b=0,c=0,n=0;
available=1;//por defecto sera 1. Si no esta disponible
sera 0
if (strcmp(S,"T")==0)//T de terrestre TDT or DVB-T
{

}
if (strcmp(S,"S")==0) //S de satelitale o DVB-S

{
}

Then the program makes the modifications with the saved fields and creates the
XML file with the xml function explained in section 4.1.4. After that the
function closes.

1if (cont>0)

xml (nom,freq,available,pid,f copia,l);

1if (cont==0)

{
xml (nom,freq,available,pid,f copia,0);
cont=1;

}

numchan++;

}
if (feof(f1l)!=0)

{
xml (nom,freq,available,pid,f copia,Z2);
}
}

printf (" \nNumber of Channels Processed: $d\n'",numchan) ;
//printf ("%c",comilla);

//cerrar ficheros 1 salir OK
fclose(f1);
return 0;

With the convert 2.1 version, is designed the option in the tags <available> that
writes if the signal is available or not. This was discovered in January and had
to be implemented quickly because some channels written in the exit XML file
format have the value VPID and APID similar to O.

4.1.4. Saving (XML Format)

This is the structure of xml function that implements the XML destination file.
Apart from the channels’ field variables, the most relevant is the variable
control. Depending of this value means the beginning, middle or end of the field
and comes from the count variable in the file function.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 74

int xml (char nom[40],char freq[30],int available,char pid[30],char filename[30],int
control)

{
FILE *f£2;
char pid2[30];
int 1i;
fclose (f2);
}

To apply the XML format to the final document it has been realised a meticulous
format observation on the XML documents and is observed that they can be
summarized in 3 phases:

e The main opening, in our case <streamlist>

if (control==0)

{

fprintf (f2,"<streamlist>\n");
control=1;

}

e The inside development of each program:

<stream>
/ | different parameters of each channel
</ stream>

if (control==1) //imprimir normal

{

fprintf (f2,"\t<stream>\n");

fprintf (f2,"\t\t<name>$%s</name>\n",nom);

fprintf (f2,"\t\t<freg>%s</freg>\n",freq);

fprintf (f2,"\t\t<available>%d</available>\n",available) ;
fprintf (£f2,"\t\t<pid>%s</pid>\n",pid) ;

fprintf (f2,"\t\t<hidden>disabled</hidden>\n") ;

fprintf (f2,"\t</stream>\n");

}

e Close of the document with </ streamlist>

if (control ==2)
{

fprintf (f2,'"</streamlist>\n") ;
}

Playing with these 3 phases the following systems are implemented. At the
beginning of the document, a variable is opened to write a <streamlist> only one
time, when the function XML is initiated.

The phase two adds the tag <stream> at the beginning and at the end of each
channel. For the step three we play with EOF of the source file. When it is
detected, the function XML writes </ streamlist>, closes the files and concludes.

Two new useful tags are also added to each <stream> for the web page:
Available and Hidden:

Applicative Part 75

e Available tells to the administrator if the channels can be shown and
transmitted in that moment through the Linux-Box.

e Hidden is a field that by default is always “disabled” and changes its
value when the administrator selects one available channel and begins
its transmission.

It is necessary to mention that we have found tools for Linux that are able to
detect errors in the XML format and even solve them, but we find that it is not
necessary. It is not also practical to execute several programs to get a single
objective, obtain the XML file with the available channels.

This example shows how must be shown finally each channel in the XML file**:

<streamlist>

<stream>
<name>RaiUno</name>
<freqg>698000000</freqg>
<available>1</available>
<pid>3401</pid>
<status>disabled</status>

</stream>

<stream>
<name>RADIODUE</name>
<freg>658000000</freqg>
<available>1</available>
<pid>3312</pid>
<status>disabled</status>

</stream>

</streamlist>

4.1.5. Thread Test

Apart from the reading error tests, files writing and other useful formalisms while
programming in C, the user also can know where the problems or errors are

made when being executed. With this feature we implement the following
modifications:

e Change strange characters that could be problematic or not recognized
by the XML or PHP languages used in the web page:
o0 Change all “&” with “i".
o Change all spaces “ “with “_".
e Make some changes in the XML file organisation and syntax to a better
compatibility with the PHP language used by the other work group for a
better implementation of the web page.

2 Complete XML file is shown in the 9.1.2 Annex section

Linux-Box: DVB and VoD Streaming Over Local Area Networks 76

4.1.6. Minimal memory spending

The program has been developed for a minimal memory spending. For this
reason it does not save all channels’ field information before create the XML
file. It processes sequentially each channel and its corresponding xml format in
the destination file.

Convert version 2.2 also tries to optimize the number of variables and functions
and delete many redundancy or unnecessary code found after an exhaustive
review. Although there are some similar code that can't be mixed, as the
compare functions, that have only few differences but it is necessary its
separation depending ifitis S or T for DVB-S and DVB-T.

The purpose of these modifications is also increase the process speed in
general and a better comprehension for other programmers that could modify it.

4.2. Streaming Web-Page

We integrate this part at the middle stages of the work. It becomes because the
other work group didn't advanced and we must support them over their already
made work.The main work has been to test and make modifications on the code
already made, taking advantage of our tests made on the net with VLC and its
graphic environment. At the beginning, the video only could be watched in
specific streaming programs, such as VLC in graphic environment.

Form source: Dynamic XML

) TLCNETGROUP Home Pa 3e - University of Pisa - Mozilla Firefox e x|

Archivo Editar Ver Histoffal Marcadores Hemamientas Ayuda

A

<& - - @ / (40 | & /13111453 225 /oroadndex oh NG Google

’ Comenzar a usar Firefullg,' Utimas noticias

TEC Retwarks

search Grolup

BROADCAST TV

raiuno =

Play selected item

Status

[no video)

Play | Pause I Stop | Increase volume |

JavaScript

Seek-10s i Seek+10s I Decrease volume

Mute
FullScreen |

| Teminado S ———

Figure 4.2: TV Broadcasting web-page

Applicative Part 77

At the end, together we have got the broadcasting web page working fine.
The webpage is based on the next parts:
e The format of the main page for the menus.

e A JavaScript that shows that plays the video image and audio, and
implements Play, Pause, Stop...and other options.30 This java script is
extracted from the VideoLan forum. It's under open-source license.

e The Form in red shows a XML file information. The file name is:
“broadlist.xml” and is edited form the Administrator page, with the
available PID’s in the selected Frequency.

For playing this medium, the xml must contain a command line like this:
<option value="udp://@228.228.228.228:3333">Raitre</option>

Where “udp://@228.228.228.228:3333” is the multicast IP and port selected in
the scrip and “Raitre” is the name shown in the screen.

For running the web page we must activate first the desired VLC Script. Actually
we could make this directly by SSH or via PHP. In the final release, this only will
be able by the Administrator. The scripts utilized and their differences are
treated in the section 4.4.

4.3. Network Analysis and Modularity

To make the modularity tests we should analyze when we lost quality while
streaming and how many are the maximum users that the system allows.

To analyze the quality looseness we can make it subjectively through the
human eye and qualitatively watching when the FPS begins to reduce.

For the maximum users’ number, we prove on the available material in the
laboratory, if it is possible to arrive to the maximum users’ number supported in
the system and under the opportune considerations, explained below.

On the other hand we analyze first if the frames created by Linux-Box has a
correct format first of their transmission over the net, and also analyze if their
use over the net is what we expect according to our measurements or they are
too much, and analyze in general the system behaviour.

% For use this JavaScript we must install the “VLC-plug-in”. As is said in section 3.6.2.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 78

4.3.1. Environment

The environment in which the commercial project of the Linux-Box will be
developed is a net Ethernet 100Mbps or in the best in the cases and if the
circumstances claim it a net Gigabit Ethernet.

In our case the laboratory tests are made with Cards Ethernet 10/100Mbps
configured at 100Mbps. The number of PC’s simultaneously available for the
modularity tests is 12.

4.3.2. Tests carried out

To realise the tests we should keep in mind a key factor, the flow type. As we
know the type of the flows can be Unicast, multicast and broadcast. Use
broadcast is inutile, because we are using a shared net. One time said this, the
Linux-Box uses Unicast for VoD & AoD, and Multicast for the TV streaming. In
this point we know that Multicast only arrives to the net cards that demand the
multicast address. The maximum numbers of simultaneous multicast Streams
will be of 3 or 4 in DTT according to the available PID in the same frequency.

For satellite other simultaneous points. As a result we could have some picks
from 6 to 8 simultaneous, but they will usually be 3 Streams. It will be
approximately about 12Mbps that means around a 16% of the Ethernet
bandwidth (including the headers efficiency). It does not suppose a restriction if
all the network devices are from 100Mbps in terms of BW.

For VoD we have the restriction directly from the number of users that use it. It
will be there where the modularity tests will give us maximum values.

Regarding AoD we could say the same that with VoD, but in a smaller scale,
because the audio streams are not comparable in terms of BW, cause them are
around a 1/100 part, in orders of magnitude.

Since we are those in charge of developing the part of Broadcasting TV, we will
pay more attention in the analysis of Multicast frames and their activity in the
net from DVB-T. Likewise in the part of VoD, as we have already said, the
maximum number of users will depend on the bit rate of each flow and the
bandwidth in the net. We will study two Unicast stream simultaneous and we
will see their frame formats and the activity of the network.

Unicast 0.0.0.0 - 223.255.255.255
Multicast 224.0.0.0 to 239.255.255.255

The tests to realise to observe the frames and their encapsulation will be made
with WireShark. To see the occupation of the flows on the net we have several
candidates. The main ones are CommView and Network Analyzer. Alter using

Applicative Part 79

both; we have chosen CommView for its clearer environment and for living
more information about the net.
The following tests are made as much with Ethereal as CommView:

e Create a stream with VLC, not in console mode, and analyze the
frames with WireShark.

e Test of streaming of 3 PID's corresponding to the same frequency
DVB-T, with 1 client for each PID.

e Test of streaming of 3 PID's corresponding to the same frequency
DVB-T, with 3 clients for the same PID.

e Test of 2 clients for the same video file, in mode VoD and in mode
Unicast.

e To finish a test of 3 Streams Multicast corresponding to the same
frequency DVB-T and at the same time two clients more of VoD.

The method for streaming every PID’s is mapping an entire PID directly in a
PORT of the multicast direction (as is explained next in the scripts section).

4.3.3. Hypothesis of results

Supposing that the whole net is temporarily available for us inside the laboratory
subnet, we will have 100Mbps theoretical that in practice will be in
(ETH/IP/UDP/RTP) around 100Mbps x 93% =93Mbps of full duplex bidirectional
transmission.

On the other hand the DVB-T streaming signal consists of three signals from
about 4 Mbps corresponding to the same frequency PID’s.

Theoretical values approximated could be these®":
e 0.51t0 4 Mbit/s for a MPEG-4 stream,
e 3 to 4 Mbit/s for an MPEG-2 stream read from a satellite card, a digital
television card or a MPEG-2 encoding card,
e 610 9 Mbit/s for a DVD.

In this line the expected results were UDP/RTP multicast packets, with 3 PID's,
this means 3 streams encapsulated in the same Transport Stream.

This suppose about 12Mbps of constant flow when there are clients connected
to the net. We also expect the appearance of IGMP packets for session login in
and login out cause they are (connecting to/leaving) a multicast group.

In VoD there are Unicast streams (ETH/IP/UDP/RTP) of 93Mbps/4 = 23Mbps
aprox. This is the maximum clients approximately. If we suppose that VoD does

% |nformation extracted from the VideoLAN webpage.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 80

not implements any type of multicast mechanism to make the broadcasting
because creates a different stream for each user, it seems obviously to wait for
certain collisions in our environment. Therefore we will reduce to about 10 the
maximum users’ number.

4.3.4. Captures

Test 1. As we have said, first of all we will create a stream with the VLC
assistant in a graphic environment, in one pc different from the Linux-Box
to see what format has, before using any script.

The configuration is as follows:
e INPUT: Encapsulate a “avi” video
e OUTPUT: UDP/RTP/Multicast to the direction 228.228.228.228:1234

e Announcement SAP: Roma

In the client it should be configured: UDP://@228.228.228.228:1234
The "@" is for the fact that it is a group multicast.

The IP Multicast belongs to a “no restriction” direction. It's used for global
application. According to the IANA assignments®® the IP address
228.228.228.228 belongs to the range (225.000.000.000-231.255.255.255):
reserved for IANA and do not used by others. Anyway, for the tests, we must
take overall of using the lowest TTL as possible, to do not inundate all the
university network with our multicast streams.

The SAP announcement streams de content of the video stream and its
configuration in the sap multicast address with the name “Roma”. In this form,
any video player listening to the sap direction, can add our stream in the playlist
and play it automatically (without extra configuration).

This feature will be implemented in final releases of Linux-Box, but will not be
used by the main webpage. Only will serve for clients that do not use the web
browser.

%2 http://www.iana.org/assignments/multicast-addresses

Applicative Part 81

In this first test, we probed VLC in graphic environment, to create an
automatically stream and with the objective of compare it with the other
captures, created in Linux text mode.

rtp multicas vic-windows start client. stop client. stop =erver pcap - Wireshark ==l
Fle Edit Wew Go Capture Analyze Statistics Help

oo e p@xw0lRev>32[EE aaan ¥ m x| @

Eher'| ¥ | Expression.. | Clear | Apply

| Na. - | Time | Source | Destination Protocol | Info | =
7 - 131. .953.127 228.228. . 228 RTP Pay load type=MPEG-II transport streams, 5 - -J

131. .53.127 228.228. . 228 RTP Pay load type=MPEG-II transport streams,
131. B 228.228. . 228 RTP Pay load type=MPEG-II transport

131. E 7 228.228. . 228 RTP Payload type=MPEG-II transport str

131. 228. 2 . 228 RTP Pay load type=MPEG-TII

131. 228. . . 228 RTP Pay load Type=MPEG-II

3. 9 131. - 228. - - RTP Pay load Type=MPEG-II
3 5.494013 131. - 22 2 RTP Pay load type=MPEG-II transport
5.495288 T .53, - - - RTP Pay load type=MPEG-II transport str

I» L«

Frame 78 (1370 bytes on wire, 1370 bytes captured)
Ethernet II, sSrc: qQuantaCo_1b:97:1f (00:c0:9f:1b:97:1f), Dst: 01:00:5e:64:ed:e4 (01:00:5e:64:ed:e4)
Internet Protocol, Src: 131.114.53.127 (131.114.53.127), Dst: 228.228.228.228 (228.228.228.228)
User Datagram Protocol, Src Port: 1365 (1365), Dst Port: 1234 (1234)
Source port: 1365 (1365)
pestination port: 1234 (1234)
Length: 1336
Checksum: 0x1b&c [correct]
£ Real-Time Transport Protocol
3 [Stream setup by sDP (frame 770)]
setup frame: 770
[setup Method: sSDP]

0 HE®EH

10.. ... = Version: RFC 1889 version (2)
.0. = Padding: False
..0 = Extension: False
0000 = Contributing source identifiers count: O
0... = Marker: False

Payload type: MPEG-II transport streams (33) =
Sequence number: 2639
Timestamp: 1272571284
synchronization source identifier: 5291
I50/IEC 13818-1 PID=0x45 CC=12
I50/IEC 13818-1 PID=0x45 CC=13
I50/IEC 13818-1 PID=0x45 CC=14
I50/IEC 13818-1 PID=0x45 CC=15
150,/TEC 13818-1 PID=0x45 CC=0
I50/IEC 13818-1 PID=0x45 CC=1
IS0/IEC 13818-1 PID=0x45 CC=2

HEHBBEEEHE

(Kl

Figure 4.3: Test 1.VLC configured with graphic interface, UDP/RTP/Multicast **

IP server: 131.114.53.127
IP client; 131.114.53.110
IP multicast 228.228.228.228:1234

We observe clearly the Multicast flow that goes from the server to the Multicast
address. It is encapsulated in RTP, with the payload type (33): MPEG2-TS.

ISO/IEC 13818-1: Describes audio and video synchronization and
multiplexing

Lately we specify some flow types. Really there is only a flow that is a Transport
Stream. For that reason we will use a command/tool that WireShark®*:
incorporates the next utility.

% Note that red captures in WireShark refers to low TTL frames.
% WireShark, successor of the old Ethereal incorporates specific tools for RTP.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 82

Show all RTP streams:

Wireshark: RTP Streams 1ol
Detected 1 RTP streams. Choose one for forward and reverse direction for analysis
SrelPaddr- | Sropot |DestIPaddr | Destport |SSAC | Payload | Packets [Lost | MaxDetafrs) | MaxJtterims) [Wean diter me) | Po2
131.114.53 127 1365 8228 378778 1234 5251 MPEG-Il transport streams 2166 D(0.0%) 1178 461 438]
< 121

Select aforward stream with left mouse button
Select a reverse stream with SHIFT + left mouse button

Unselect | Find Reverse Save As Mark Packets Prepare Filter | Copy | Analyze Close

Figure 4.4: WireShark (Show all RTP streams)

In the “Figure 4" is make an analysis of the RTP packet and show us captured

streams. In this case, we only have one MPEG2-TS.

e The lost packets are 0%. This is correct, because we are using a wired
Ethernet network, without too much traffic.

e Max Delta represents the maximum interval between two consecutive
packets. Its value is 11’78 ms. In a ideal environment would gives the exact
packetization interval.

e Max Jitter and Mean Jitter are similar 4’61 ms and 4'38 ms respectively. This
indicates that the Jitter remains regular, and low.

rtp multicas vic-windows start client. stop client. stop server_pcap - Wireshark — |E' 5[
Fle Edt View Go Capture Analyze Statistics Help

BWedee oBxes Bevor e aaan@ansx @
M| ;I _Bq:rasion...l gearl ﬂppﬁyl

No. - Time: Source Destination Protocol | Info
E r 22 RIF rFayl10a0 Type=MFEG-11 Tr
RTP Payload Type=MPEG-II Tr
RTP Payload type=MPEG-II Tr ™ sLreams

RTP Payload type=MPEG-II tr rt stre
IGMP__ V2 Membership Report

RTP Payload Type=MPEG-II TF 't stre
RTP Pay load Type=MPEG-II Lr rt stre,
RTP Pay load Type=MPEG-II transport stre

E Ethernet II, src: 3com 1d:67:5d (00:0a:5e:1d:67:5d), Dst: 01:00:5e:64:e4:e4 (01:00:5e:64:e4:e4)
E Internet Protocol, Src: 131.114.53.110 (131.114.53.110), Dst: 228.228.228.228 (228.228.228.228)
£ Internet Group Management Protocol

IGMP Version: 2

Type: Membership Report (0x16)

Max Response Time: 0.0 sec (0x00)

Header checksum: 0x2036 [correct]

Multicast Address: 228.228.228.228 (228.228.228.228)

Figure 4.5: IGMP

In this capture we can see the IGMPVv2 packet with "Membership Report", from
the client, to join access to the Multicast session.

With this packet, the intermediate routers open the multicast tree from the
source to the client. As is explained in the section 0. This packet is sent
periodically with the finality of do not exceed the timer of the intermediate
routers for closing the multicast path.

One time this path is opened, our network adapter receives all the information
from the multicast address 228.228.228.228.

Applicative Part 83

1tp multicas vlc-windows start client. stop dient, stop server_pcap - Wireshark = |E| il

Fle Edt Mew Go Capture Analyze Statistics Help

%Hﬁ@%[&x“a(@@@fe?&[%[@,@,@.g[ﬁmmg[
Brer | _~ | poresson..| g | e |

No. - Time: Source Destination Protocol | Info
.228.228.228 IGMP v2 Membershi Report

.228.228.228 RTP Payload type=MPEG-II transport streams, 5
. 228.228.228 RTP Payload type=MPEG-II tran _J
.228.228.228 RTP Payload type=MPEG-II tr
L2.127.254 SAP/SD_Announcement (vi), wit
.228.228.228 RTP Payload Type=MPEG-II Tr
DVMRP V3 Probe
RTP Payload Lype=MPEG-II Lrans
RTP Payload type=MPEG-II trans

I ET

o oo — —- e CTT T ST T T I = T e aacaea—
E Internet Protocol, Src: 131.114.53.127 (131.114.53.127), Dst: 224.2.127.254 (224.2.127.254)
[User Datagram Protocol, Src Port: 1344 (1344), Dst Port: 9875 (9875)
B session Announcement Protocol
@ Flags: 0x20
Authentication Length: 0
Message Identifier Hash: 0Ox69de6
originating Source: 45.115.116.97
payload type: application/sdp
= Session Description Protocol
Session Description Protocol version (v): O
@ owner/creator, session Id (o): - 14139025894 2948 IN IP4 131.114.53.127
Session Name (s): ROMA
M Connection Information {(c): IN IP4 228.228.228.228/1
@ Time Description, active time (t): 0 0
session Attribute (a): recvonly
@ session attribute (a): type:broadcast
= Media Description, name and address (m): video 1234 RTP/AVP 33
Media Type: video
Media Port: 1234
Media Proto: RTP/AVP

Media Format: MPEG-II transportT streams &
0090 32 30 od A
0020 5 E E
00b0 61
00cO0 79 70 65 3a 62 72 6f 61 64 63 61 73 74 Oa 6d 3d J
00d0 76 69 64 65 6F 20 31 32 33 34 20 52 54 50 2f 41 video 12 34 RTR/A
nnan __£& cn 30 22 223 nd na vin 232 ;I
[Gession Attribute (sdp session_attr), 17 bytes. [P2407D. 2907 M0 i

Figure 4.6: SAP/SDP

Here we can see the SAP/SDP Announcement packet from the server to the
Multicast SAP direction: 224.2.127.254. As is explained in the theoreticall
section SAP/SDP this two protocols, always goes together. With more
accuracy, we see that the main packet is encapsulated on a SAP packet. Inside
of this, comes the SDP. The SAP payload type is “application/SDP”.

We can appreciate in the SDP:

e The session name: Roma

e The used tool: VLC 0.8.6a

e Information about the session creator ID, its IP direction, and the
Multicast session IP direction.

In the media description:

e The type of media: MPEG2-TS video over RTP/AV
e Port 1234 of the multicast address (configured by us in the multicast
session setup).

Linux-Box: DVB and VoD Streaming Over Local Area Networks 84

1tp multicas vic-windows start client. stop client. stop server.pcap - Wireshark =18l =l
Fle Edit Vew Go Cspture Analyze Stafistics Help

B e e/o@®xea RecodE aaan @ ms @
o] o]

No.. | Time Source Destination Protocol | Info E

678540 o .53. 228.228.228.228 RTP Payload type=MPEG-II trans
688198 o - 53 -46.109.38 TCP 1060 > 1863 [ACK] Seq=0 Ac
. 688406 31. - TEL - 228,228,228 RTP Payload Type=MPEG-II Transport S
. RTP Payload Type=MPEG-II transport s
at RTP Payload type=MPEG-II transport =
1 RTP Payload type=MPEG-II transport s
il RTP Payload Type=MPEG-II transport
it RTP Payload Type=MPEG-II Transport
at RTP Payload Type=MPEG-II transport s
at RTP Pay load type=MPEG-II transport s
.1 RTP Pay load type=MPEG-II transport s
.110 .0.0. IGMP V2 Leave Group
it RTP Payload Type=MPEG-II Transport s
RTP Payload type=MPEG-II transport s
1 IGMP V2 Membership Query
1 RTP Payload type=MPEG-II transport s
il RTP Payload Type=MPEG-II transport
1 . 228 RTP Payload Type=MPEG-II transport
1 . 228 RTP Payload Type=MPEG-II transport
1 . 228 RTP Payload type=MPEG-II transport

u)

wf | un| unf |)

31.114.

E Frame 1685 (64 bytes on wire, 64 bytes captured)

E Ethernet II, Src: 3com_1d:67:5d (00:0a:5e:1d:67:5d), Dst: 01:00:5e:00:00:02 (01:00:5e:00:00:02)
H

=]

Internet Protocol, Src: 131.114.53.110 (131.114.53.110), Dst: 224.0.0.2 (224.0.0.2)
Internet Group Management Protocol

IGMP Version: 2

Type: Leave Group (0x17)

Max Response Time: 0.0 sec (0x00)

Header checksum: 0x1f36 [correct]

Multicast Address: 228.228.228.228 (228.228.228.228)

Figure 4.7: IGMP Leave Group

This is the IGMPv2 packet: "Leave Group" sent by the client to leave out the
Multicast session. This type of packets are the key of the IGMP version 2, that
implements this, for do not maintaining unnecessary multicast trees opened
thought the network. In this capture everything has been as we have expected,
we haven’t found problems.

Test 2. Streaming Test of 3 PID's corresponding to the same frequency
DVB-T, with 1 client for each PID.
This test was made from the Linux-Box with the script called “vic-rai-sap”.

linuxbox multicast udp_pcap - Wireshark = |E| il

Fle Edt View Go Capture Analyze Statistics Help
S@ededo@xeaBevodsEEaaananm @
M| ;I _Bcpression...l Qearl ﬂppﬁyl

No. - Time: Source Destination Protocol | Info
151 ! 141, z 3 unknown RTP version
152 57 31. Unknown (0x4700453
153 6 131. Unknown RTP_version
154 131. unknown (0x47004471
155 131, unknown RTP_version
156] 3} 131. unknown (0x47004512
157 - 131. Unknown RTP version 1
158 B 7 131. unknown 4
131. Source r Destination port:
131. Destination port
Destination port
Destination port
Destination port
Destination port
Destination port
Destination port
22 g r r Destination port
228 g r r Destination port
228 . 228 r rt: 320 Destination port:

L l»

31.

31.

131.

131.

131.

131.

B el
. 021559 IR
. 021680 131.114.

wnf un| wnl wnf wnl wn| wnf wn| un wnf unl wnfial wnl unf wnf unl unl
raf] 3| maf mal ral maf | maf vl

wnf | wn| waf wnl wn n| un| unf unl

2

m Frame 157 (1358 bytes on wire, 1358 bytes captured)
® Ethernet ITI, Src: viaTechn_e0:dd:90 (00:40:63:e0:dd:90), Dst: 01:00:5e:64:ed4:e4 (01:00:5e:64:e4:e4)
m Internet Protocol, Src: 131.114.53.225 (131.114.53.225), Dst: 228.228.228.228 (228.228.228.228)
B User Datagram Protocol, Src Port: 32912 (32912), Dst Port: 1111 (1111)
Source port: 32912 (32912)
pestination port: 1111 (1111)
Length: 1324
Checksum: Ox7bde [correct]
B Real-Time Transport Protocol
0l.. = Version: First Draft version (1)

Figure 4.8: This screenshot shows the erroneous packet interpretation of WireShark,
when using UDP, without RTP.

Applicative Part 85

Using the WireShark command “Decode as RTP” we see that it does not really
detect the RTP packets because it says “RTP First Draft Version”. This is
because the packets do not travel on RTP, they travel over IP/UDP. In this case
it is not necessary to use the command “Decode as”.

We see that the packets to the port destination 2222 are erroneous. Probably
because the decoding is erroneous while decoding as RTP. Anyway if we make
it in a normal way, the application tries to recognize the content of the packets
like other protocols that we aren't really using.

After see this, we reconsider the script because it is sending over UDP. This is
not appropriate as we know that with RTP can obtain better results at
theoretical level.

After diverse changes and fight with the VLC command line language, we are
able to transmit directly over RTP with the script called “vic-rai-rtp”. At the end
the solution we observe that with a small modification in the encapsulate form,
but the syntax confuses a lot. Also the server SAP/SDP is incorporated.

linux box rip_pcap - Wireshark 1= x|

File Edit View Go Caplure Analyze Statistics Help
BWee e o8 xee Bevode0E Qa0 80H%
Eh_ef" j Exprassion...l gearl ﬁpu‘yl

F
No. - me Source Destination Protocol | Info 2
E 228.228. 228, 228 ENIP Source port: 3Z2/80 Destination port: ZZ2272|Maltormed Packet| WS
224.2.127.254 SAP/SD ANNoUNCement with session description
228,22 UDP SOUrce port: Destination port: 1111
ENTTEC Unknown (0x80 E]

RTP Payload type=MPEG-II transport streams, 55RC=1551140315, 5
UDP Source port: 32//8 Destination port:

RTP Payload Type=MPEG-II Transport Streams, Ss

ENTTEC Unknown (0x8021bc54

UDP Source port: 78 Destination port: 11

RTP Payload type=MPEG transport streams, SSRC=1551140315, Seq=
ENTTEC Unknown (0x8021

uDP Source port: Destination port: 1111

RTP Payload type=MPEG-II transport streams, 55RC=1551140315, 5
ENTTEC Unknown (0x8021bc56

UDP SOUrce port: Destination port: 1111

[
a
1]
1
2
E]
4
5

o|o|o| o|g| ol o of=] <]
=

1
1
1
1
1
1
16
17

{1
[f=]h--1
[=l=]

RTP Payload type=MPE transport streams, SSRC=1551140315, =
ENTTEC Unknown (0x802Z

06 .5 UDP SOurce port: estination port: 1111

. 016805 31. 5 RTP Payload Type=MPEG-II Lransport streams, 55RC=1551140315, Seg= [{

20 0.
21 O.
22 0.
23 0.
24 0.
25 0.
26 0

M Frame 13 (1370 bytes on wire, 1370 bytes captured)

B Ethernet II, src: viaTechn_e0:dd:90 (00:40:63:e0:dd:90), Dst: 01:00:5e:64:ed4:e4 (01:00:5e:64:e4:e4)
E Internet Protocol, Src: 131.114.53.225 (131.114.53.225), Dst: 228.228.228.228 (228.228.228.228)
@ User Datagram Protocol, Src Port: 32778 (32778), Dst Port: 1111 (1111)

i Real-Time Transport Protocol

@ IS0/IEC 13818-1 PID=0x46 CC=15

E ISO/IEC 13818-1 PID=0x46 CC=0

m ISO/IEC 13818-1 PID=0x46 CC=1

@ I50/IEC 13818-1 PID=0x46 CC=2

B ISO/IEC 13818-1 PID=0x46 CC=3

E ISO/IEC 13818-1 PID=0x46 CC=4

@ IS0/IEC 13818-1 PID=0x46 CC=5

Figure 4.9: Capture from Linux-Box streaming 3 PID’s in RTP/MPEG2-TS directly mapped
on the ports 1111, 2222 and 3333 respectively.

Now we observe the frames well encapsulated in RTP. Inside every RTP packet
the MPEG2-TS can be found with each flow. Every flow (TV channel) can be
selected by selecting the right port 1111, 2222 or 3333. This in the final version
will be changed because by agreement the information travels over even ports
and the control over odd ports (RTCP).

Linux-Box: DVB and VoD Streaming Over Local Area Network

If we use the tool "Show all Streams" in WireShark we obtain what we have
explained:

Wireshark: RTP Streams =10j:

Detected 3 RTP streams. Choose one for forward and reverse direction for analysis

Forward: 131.114.53.225:32778 -> 228.228.228.228:1111, SSRC=612767325
Reverse: 131.114.53.225:32778 -> 228.228.228.228:1111, SSRC=612767325

Unselect | Find Reverse | Save fAs | Mark Packets | Prepane Filter | Copy | Analyze I Close

Figure 4.10: The different streams on the 3 Ports in the multicast address.

Every Port contains a TV channel. These TV channels contain the Video PID,
the Audio PID and the Teletext PID or others (if exists).

Changing the analyzer, we study with Open view the total network occupation.
We can see it in the graph below that belongs to the net occupation in a
logarithmic scale. The first one belongs to packets per second and the second
one to the net occupation.

A R AT
R HIRTH

N o Utilizacidn de Red Actual

Aplicar reglas actuales

Tiempo de captura desde el dlimo reinicio [hh:mm:ss]: 00:06:20

Figure 4.11: Capture with CommView

Applicative Part 87

The average results come from an average packet side from about 1300 to
1400 bytes. This tells us that if we see the measurements made in section 2
about protocols, we can have an optimal performance because they are closer
to the MTU side.

Knowing this, we also observe that the average net occupation is 16.443.304
bps = 16'44 Mbps. it is a little more than we expected because we are
transmitting 3 PID's at the same time: 16'44Mbps / 3 = 5'48 Mbps every PID.
We expect a bitrate from 3 to 4Mbps for DVB-T channels encapsulated over
MPEG2-TS, so that question us where is the difference between the bitrates.

This can be explained making the measurements with the results in section
“2.3.Headers and efficiency” where one keeps in mind the headers efficiency
(Ethernet/UDP/RTP/MPEG2-TS): (184x7)/(188x7+58)=93"74~94%

The result of this calculation is:
548 x 0'94= 5’1512 Mbps. This value is adequate for the result expected.

Test 3. Streaming Test of 3 PID's corresponding to the same frequency
DVB-T, with 3 clients and the same PID.

Obviously there aren't changes, because they are Multicast flows. Soon after
these tests we observe that VLC interrupts the Multicast flow when does not
have any client that demands the file. This is an advantage because we do not
inundate the net with unnecessary information all the day, only when somebody
uses it. This function comes really implemented from the IGMP protocol. RTCP
also does it, but VLC does not implement RTCP now. Anyway VLC implements
the fact of finishing the session if there are not users, too.

4.3.5. Better Theoretical Protocols (FEC and BER considerations)

In audio and video streaming applications, we usually use certain protocols that
help to take advantage of the maximum bandwidth available to prioritize the
useful information.

Basing on this our net level will be IP, for its comfort, standardization and easy
implementation.

Below IP, we will habitually have Ethernet that implements FEC mechanisms for
errors control and correction, but Ethernet is based on a very low BER (Bit Error
Rate). We could also have clients using Wi-Fi that has a relatively high BER
compared with Ethernet. In this case the quality depending on the SNR signal
would be lower. In this case, the level 3 and 4 will start to have problems with
the reliability of the sent information.

In the next sections we will study the OSI pile upper layers: Protocols analysis
above of IP, on the transport layer. In the audio and video streaming aspect is

Linux-Box: DVB and VoD Streaming Over Local Area Networks 88

sensed directly the use of a lighter protocol as is UDP. This protocol as we
explain in section "2.2 TCP vs. UDP" basically uses headers less heavy than
TCP and a packet orientation. Most of the multimedia applications and
streaming applications in the market are based on UDP by these reasons.

4.3.6. Encapsulation Analysis of MPEG2-TS

In this section we analyze why in an Ethernet packet usually we have 1370
bytes of data and not 1500 to encapsulate TS packets. The reason is to make
the best efficiency and encapsulate the most possible TS packets without
fragmenting. We can see also in captures 4-2 and 4-8 of section 4.3.4, that
Wireshark recognize each Ethernet packet with payload type MPEG2-TS as a
packet with 1370 bytes.

The calculations are simple and we arrive to the fact that why each Ethernet
packet contains 7 TS packets. To do the calculations we also use the
information in section 2.3 about headers and efficiency:

1370 bytes (Ethernet packet) — 14 bytes (Ethernet Header) — 20 bytes (IP
Header) — 8 bytes (UDP header) — 12 bytes (RTP Header) = 1316 bytes.
1316 bytes / 188 bytes (Payload TS (184 bytes) + 4bytes TS header) = 7.

That is the reason why each Ethernet packet contents 7 TS packets identified
by a “cc” number as we see in the captures mention before. We can say also
that in this case there are not FCS methods included, that is why the Ethernet
Header has only 14 bytes and not 18 bytes. If we would use 1500 bytes as the
Ethernet MTU the number of TS packets would be 7'69 and we should
fragment. As we have explained in section 2.4.4, fragmentation is not a good
option with streaming.

4.4, Tests with different Scripts and Transport Streams

In this section are treated the different scripts used for the previous sections
and other utilized to make different tests. So are studied the TS from the DTT
Tuner card and the TS broadcasted in IP received by the clients with the
utilization of different scripts.

4.4.1. VLC-Script’s

We must say that these tests are not inutile, they serves to make work the TV
Streaming part with different parameters. So they are not in Annexes because
are active part of our work. The way to access the Linux-Box, as is said in
others parts, is through SSH from another computer.

Applicative Part 89

starting VLC root wrapper... using UID 0 {(root
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

otentially dangercus, and might not even work properly.
home4 pico vlc-azz2

homed ./vlc-azz2

VLC media player 0.8.5 Janus

starting VLC root wrapper... using UID 0 {(root

It is potentially dangerous, and might not even work properly.
escher:/homef 1ls

DVBSnew chans.conf rai-dump.ts vlc-azz2 vlc-rai-sap
DVBSnew2 dmesg.dvbT rai-sap-local vlc—azzurri vlc—-si-DVBT-=sap
T-Pisa festa.mp4 rai.ts vlc-mediaset—-new vlc-si-=sap
canali.conf =} raidue-local vlc-rai vlc-tour
canali2.conf prova s 12 vlm.conf
channels.conf prova-vod.vlm s ar.gz vod-broad.vlm
channels2.conf provaZ2 5 vod-conf.vlm

Raaad

channelsDVBS.conf 1 prova2.conf

dvb-apps-1.1.0 rai-dump-2.ts v

bhome. jpg convert2.0 index.php streamlist.xml wvlc.js
broadindex.php editplaylist.php modindex.php style.css vlc im

1t broadlist.xml editxml .php modlist.xml style2.css deZLdEx.php
broadmaker.php feed.xml musica video vodindexbroad.html
channels.conf.xml getconf.php serverconf.xml wlc.css vodlist.xml

/wwwf cd admin
escl var/www/adming 1s
adbroad.php advod.php~ feed.xml modmaker.php~ podremover.php tlc.css vodmaker. php~
adbroad.php~ broadindex.php feed.xml~ modremover.php podremover.php~ upload.php vodremover. php
adminindex.php broadmaker.php fileremover.php modremover.php~ server.php upload. php~ vodremover. php~
admod .php broadmaker.ph fileremover.php~ pod.php server.php~ uploadconf. xml
admod . php~ broadremover.ph getconf.php podeditor.php serverconf.xml viewparam.php
adpod.php broadremover.ph index.php podeditor.php~ serverfunc.php vlc.css
adpod.php~ editplaylist.php index.php~ podmaker.php settings.php vlc.log
advod.php editxml .php modmaker.php podmaker.php~ style.css vodmaker. php

escher:/var/www/adming I

Figure 4.12: Screen capture of accessing Linux-Box (Escher35) from an ssh session.

The VLC scripts are based on two parts, the first part is the input, and the
second part the output. Is used the same language as in the VLC telnet
interface with a little tag modification.

VLC-azzurri

vic --intf ncurses --color --ttl 5 dvb: --sout-all --dvb-adapter=0

--dvb-srat e=8000 --dvb-budget-node --dvb-frequency=818000000 - -dvb-
bandwi dt h=8 --dvb-hi erarchy=0 --dvb-guard=32 --dvb-transm ssion=8 -
- sout

" #dupl i cat e{ dst =st d{ access=udp, mux=t s, ur| =228. 228. 228. 228: 1111, sap, n
ane="canal e5"}, sel ect =" progranm=2"}"'

This is the already made script used for watch the soccer matches.

VLC-RAI-SAP

This Script catches all the TS of the frequency and selects 3 Lt
broadcast it in mode Multicast to the direction 228.228.228.228 and assigns
every PID to a “:Port’. Also implements a SAP server with the name of the
channel.

Important: The output is realized in IPFUDP/MPEG2-TS. Only is sent a TS for
every PID. The utilization of this script generates several malformed packets,
because of the non utilization of RTP.

% «Escher” is the root username of the computer that stores Linux-Box.

Program p+1 Programp+2

Program p

Linux-Box: DVB and VoD Streaming Over Local Area Network

vic --intf ncurses --color --ttl 3 dvb: --sout-all --dvb-
adapter=0 --dvb-srate=8000 --dvb-budget-node --dvb-
frequency=698000000 --dvb-bandw dt h=8 --dvb-hi erarchy=0 --
dvb- guar d=32 --dvb-transm ssion=8 --sout
" #dupl i cat e{ dst =st d{ access=udp, nux=t s, ur| =228. 228. 228. 228: 111
1, sap, nane="Rai Uno"}, sel ect =" progranr ", dst =st d{access=udp
, MuUX=t s, url =228. 228. 228. 228: 2222, sap, hane="Rai Due"}, sel ect="p
rogran¥ ", dst =st d{access=udp, mux=t s, url| =228. 228. 228. 228: 33
33, sap, name="Rai Tre"}, sel ect =" progr an¥ "}

VLC-RAI-RTP3

Input

Output

This script is the final, utilized on the Streaming webpage. It implements key
changes to the performance and standardization of the output flows generated.

The motivation was basically encapsulate over RTP. For this, the VLC language
implements various ways to do it. But find one working fine had been hard. The

change is marked in green.

Looking the code, we see that the script creates a TS for every channel. Then

we have three TS in the same Multicast address, but in different ports.

--dvb-srat e=8000 --dvb-budget-node --dvb-frequency=698000000 - -
dvb- bandw dt h=8 --dvb-hi erarchy=0 --dvb-guard=32 --dvb-
transm ssi on=8 --sout

| ect =" progranm=3403"}"’

vic --intf ncurses --color --ttl 6 dvb: --sout-all --dvb-adapter=0

" #dupl i cat e{ dst =st d{ access=rtp, mux=t s, dst =228. 228. 228. 228: 1111, sap,
name="Rai Uno"}, sel ect =" progr am=3401", dst =st d{ access=rtp, nux=t s, dst =
228.228. 228. 228: 2222, sap, name="Rai Due"}, sel ect =" progr an=3402", dst =s
td{ access=rtp, nux=t s, dst =228. 228. 228. 228: 3333, sap, name="Rai Tre"}, se

The encapsulation resulting is like the figure below.

/ DVB-T Freq: X \

\Kw

S

Figure 4.13: MPEG2-TS re-encapsulation in IP/RTP by VLC

/ MPEG2-TS \ RTP
[PID n Elementary Stream 1 Video]\\
" Single Program ()
PID n+1 Elementary Stream 1 Audio] H :
[J MPEG2-TS ® 'I Port: 1111
N
[PID n+2 Elementary Stream 2 Video]\\ ﬁ
Single Program N
[PID n+3 Elementary Stream 2 Audio]—— MPEG2-TS H § Port: 2222
&
[PID n+4 Elementary Stream 3 Video]\\ ~N
[PID n+5 Elementary Stream 3 Audio] SlrlcﬂgFl)eEgrzo-grrgm I)—»‘ Port: 3333
[PID n+6 Others: Teletext, Dual, AC3...]//
[PSI: Programs and PIDs relation list]
Others: PCR, Teletext/VBI

Applicative Part 91

VLC-azz3

This script is used in the next pages. It serves to stream an entire TS from the
DVB-T signal to the IP network over UDP in multicast mode, for analyzing the
entire received signal with TSReader.

vic --intf ncurses --color --ttl 6 dvb: --sout-all --dvb-adapter=0
--dvb-srat e=8000 --dvb-budget-node --dvb-frequency=754000000 --dvb-
bandwi dt h=8 --dvb-hi erarchy=0 --dvb-guard=32 --dvb-transm ssion=8 -
- sout

"#dupl i cat e{dst =st d{ access=udp, nux=ts, url =131.114. 53. 128: 1111, sap, ha
me="canal e5"}}"’

4.4.2. MPEG2-TS analysis

With TSReader we have obtained a lot of information about the MPEG2-TS
utilized. This sub-section do not uses the Linux-Box software. Here we are only
analyzing the streams received by de DVB-T tuner.

First of all, we created a VLC script (VLC-azz3) to re-send an entire MPEG2-TS
received from the DVB-T card to our IP direction in Unicast mode, in this form,
we can study the whole source signal. We muts select a port to stream and later
listen the TS. Now are shown three captures of the inside of the TS received by
the DVB-T tuner. Every capture corresponds to a different frequency:

15l
File Expott View Record Playback Plugins Settings Help
= eef| PAT PID O0x0000 Elementary Stream PID 85 (0x0055) MPEG-2 Video | [ideo Decode
B ;_’_.@ PMT PID 00042 - Program 1 MPEG “ideo: Bitrate 15.000 Mbps Resolution 544 » 576
B g ES PID Ox0044 MPEG Yideo: Framerate 25 fps Aspect Ratio 4:3 Chrama Format 4:2:0
=48 ES PID 00045
-4 ES PID 040048

& ES PID 0x0047
-4 £ PID 00048
-4 ES PID 040048
(-4 ES PID 0x004a
=48 ES PID 00040
-4 £ PID 040040
(=4] £5 PID 0x004d
4 | ES PID Dx004e

& ES PID 0004

-4 ES PID 0:0050 |
& ES PID 040051 el F'IDsl_ Disabled I~ Sort Decending © Sort by Rate © Sort by PID
) ES PID 040052 o Dx0SAC18.33% = <401 Mbps)* =
-4 | ES PID 040053 © O 0xD059(16.00% - 3.9 Meps)®
-1 £5 PID 00054 . OxDDS2(1B.48% ~ 3.60 Mbps)®
= 1 ES PID 0x0055 L w0083 (15.31% ~ 334 Mbps) T
-4] E5 PID 00056 © DxODSTCI263% - 276 hbps)”
) ES PID 040057 | OxDO54 (3.85% ~ 2.15 ibps) ™

Dx004f () 93% ~ 207 B0 Kbps) ™
-~ ES PID 040058 Ox0043 (0.93% ~ 207 65 Kbps) ™
- E5 PID 040053 0042 (0.93% ~ 207 66 Kbps) ™

&) PCR PID 040059 DX0080 (0.93% n 207 65 Kbps) ™
(0051 (0.83% » 20765 Kbps) ™

DxD047 (0.93% = 207 60 Kbps)*
0053 (.93 % ~ 207 60 Kbps)
X004 (0 82% ~ 13331 Kbps)
D004 (0 62% ~ 138 46 Kbps)

kD056 (062 ~ 138.46 Kbps) |
after the bitrate indicates the PID has continuity errors
[MPEG-2 Statistice | [~ DB Statistics
PAT PMTs CAT NIT
Sectionsprocessed | 143 | 2 | D ["o [o
CRCEmors | 1 [0 [1O [0 [0

[1032 150 [73 e o
Metwork Type: Unknown Multiplex Bitrate 22906837 bps ,T
-

Fun Time: 000:00:33 Recarded

Continuity/ TEI enars 14/0 ’7’7 soT

) 2 ;
| | |]

Figure 4.14: TSreader capture in the Freq: 654 MHz of a complete TS, corresponding to
RAI channels.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 92

This capture shows the average bitrate of every PID inside the Transport
Stream. We can see four types of PID’s:

Video
Audio
Teletext
PCR

Video, Audio and Teletext are Elementary Streams. Te way they are related is
in the PSI, specially in the PMT.

The hierarchy starts with PAT (Program Association Table) always with
PID=0x00. This contains a PMT (Program Map Tables) for every program. The
PMT relates the different ES to crate a TV channel.

In this case the Program 1 (PMT 0x0042) contains all TV channels in an only
Program. Another option is to find a specific Program and PMT for each TV
channel.

ba TSReader — 2.6.41 =& x|
File Expott View Record Playback Plugins Settings Help
=] @ PAT PID 00000 PAT Version Number: 16 =

&) PMT PID 040042 - Program 1 Tranzport Stream 10 24163 [(0x5e63)
PHT FID BE [0x0042) - Program 1

|
Active PIDs
I™ Disabled ™ Sort Decending & Sort by Rate ¢ Sort by PID

© OxDD5T (15.30% - 2.93 hbps) ™
C DxDDSG(14.52% -~ 276 Mbps) ™
© DxDD4e (12.82% - 2.98 Nbps)
© DxDOS1(12.76% ~ 2 hbps) "
© DxO0S5 (1257 ~ 2.41 hbps)

© O OxDOS4(12.09% = 231 hbps)
© DxD0db (11.75% - 2.25 hbps) ”
0044 (0.94% ~ 18383 Kbps)

D040 (0.8 ~ 183 30 Kbps)

D043 (0.75% ~ 147 .06 Kbps)

OxDD53 (0.71% » 138.30 Kbps)™

0xD04a (0.71% ~ 138.30 Kbps)

06004 (0.71% ~ 138.30 Kbps) ™

06004 (0.717% ~ 138.20 Kbps) ™

D052 (0.70% ~ 133 22 Kbps)

00 (0 70% ~ 138 13 kbps) ﬂ
 Source Information * after the bitiate indicates the PID has continuity errors
Source: Unicast UDP mMPEG-2 Statistics | - DVB Statistics l . "
PAT PMTs CAT NIT Chiedi il pacchetto
Sections processed | 75 | 2 [0 [0 @ U MisUa per e

CRCEmars [1 | o | o [o [o
_ Continuity/TEl enors [8/0 soT
_ DatalastSecond [19,346 MbBit o
Metwatk Type: Unknown Muliple: Bitrate | 20080509 bps o ‘
Fun Time: 000:00:17 Recorded

| | | e

Figure 4.15: TSreader capture in the Freq: 818 MHz of a complete TS, corresponding to
various channels.

For this two captures, every video Elementary Stream has a similar Rate to the
others. From 2 to 3 or even 4 Mbps every ES.

Applicative Part 93

After analyze this two and other frequencies, we have find different video
resolutions and Bitrates. The values found are:

Resol utions: 720 x 576i , 704 x 576i, 544x576i, 480x576i and 352 x
576i
Header Bitrate Codification (not real bitrate): 15.000 Mps, 10.000
Mops, 2.800Mops
Formats: Franerate 25 fps

Aspect Ratio 4:3

Chroma Format 4:2:0

Respect to the audio the found values change less:

Stream Type: MPEG 1 Audio
MPEGL Audi o: Bitrate 192 Kbps Sanple Rate 48 KHz, Bitrate 128 Kbps

Sanpl e Rate 48 KHz
MPEGL Audi o: Layer |l Mode Stereo

In this capture we have found a peculiar Video ES distribution. It indicates that a
channel have very more bit rate and quality than the others. The motives are
unknown for us. We can thing in, for example, that the other channels are from
news or something like this. In this case the channel with more quality is
“Canale 5 from Mediaset *“.

D3 TSReader — 2.6.41 =18 x|
Fle Expott View Record Playback Plugins Settings Help
E] @ PAT FID 00000 Program Humber: 1 =| [Videa Decode
(-] PMT PID 040042 - Program 1 FCR on PID 79 (0:0041)
£ £5 PID 040044 HAUCEED
-4] ES PID 0x0045 Stream Type: Ox05 Teletext/AWVBI
=4 ES PID 0:0046 Elementary Stream PID 68 (0:0044)
& conpodoy S Type: 0203 MPEG-1 Audi
-4 £S5 PID 040048 4R, -1 Audio
@ ES FID 00049 Elementary Stream PID B9 (0x0045]
-4 ES PID 0x004a Stream Type: 0403 MPEG-1 Audia
@ ES PID Ox004b Elementary Stream PID 70 (0x0046]
-4 £S5 PID 0x004c))
i) 5 PID 04004d Stream Type: 0203 MPEG-T Audio

@ £S5 FID D004 Elementary Stream PID 71 (020047]
004e

@ ES PID Ox<004f Stream Tppe: 0203 MPEG-1 Audio
@) PCR PID 04004¢ |

Aetive PIDs = hed T San Decending ™ Sert by Rate © Sort by FID
D e (35.42% - 5.00 pe) 2
L DwD04b (19.85% ~ 271 hbps) ®
© DxD04f (12.36% - 177 Wbps)®
C O Owd04d (12.35% = 177 hbps) "
© Dxi0de (12.35% = 1.77 bps) ™
| DxO044 (2.00% - 20368 Kbps)
© DX0D48 (1.41% ~ 20734 Kbps) ™
| DN0048 (1.41% ~ 20732 Kbps) ©
| OxD045 (0.94% = 135,34 Kbps) ™
| Ox00<a (0.94% - 138,21 Kbps) ™
| OWD048 (0.94% ~ 138,20 Kbps) ™
| OWD04T (0.094% ~ 135,20 Kbps) ™
ConlD42 (0.05% = 7.03 Kbps) ™
0x0000 (0.05% = 7.03 Kbps) ™

=
—Source Infomatiomi = after the bitrate indicates the PID has continuity errors
Source: Unicast UDP MPEGZ Statistics | [[/ Shatistics
PAT PMTs CAT NIT EIT
Sectionsprocessed | 1278 | 2 | O ["o [o
CRCEmas [1 [0 [O [0 [0

I oo 0 0 i
Metaork Type: Unknown Multiplex Bitrate | 15063114 bps
Fun Time: 000:05:15 Recorded

Continuity/TE| enars 53/0 ’7’7 soT

Figure 4.16: TSReader capture of an entire TS. Freq: 754 MHz

Linux-Box: DVB and VoD Streaming Over Local Area Networks 94

Here is showed the information obtained of this TS.
Video:

PID | Resolution | Header Bitrate | Compression
(not real bitrate)

0x004b | 544 x 576i | 15.000 Mbps MPEG-2
0x004c | 704 x 576i 15.000 Mbps MPEG-2
0x004d | 544 x 576i | 10.000 Mbps MPEG-2
0x004e | 352 x 576i 10.000 Mbps MPEG-2
0x004f | 544 x 576i 10.000 Mbps MPEG-2
Audio:
PID Bitrate Sample rate | Compression
0x004a | 192 Kbps 48 KHz MPEG1 Audio: Layer || Mode Stereo
0x0049 | 128 Kbps 48 KHz MPEG1 Audio: Layer Il Mode Stereo
0x0047 | 128 Kbps 48 KHz MPEG1 Audio: Layer Il Mode Stereo
Others:
PID Type

0x0044 | Teletext/VBI

0x0045 | Teletext/VBI

This is an example of reported information about PID’s by TSReader:

Stream Type: 0x02 MPEG 2 Video PID 78 (0x004e)

MPEG Vi deo: Bitrate 10. 000 Mops Resol ution 544 x 576i

MPEG Vi deo: Franerate 25 fps Aspect Ratio 4:3 Chrona Format
4:2:0

0x004e (12.37% ~ 1.77 Mps) *7/0

Stream Type: 0x02 MPEG 2 Video PID 79 (0x004f)

MPEG Vi deo: Bitrate 10. 000 Mops Resol ution 352 x 576i

MPEG Vi deo: Franerate 25 fps Aspect Ratio 4:3 Chroma For mat
4:2:0

0x004f (12.35% ~ 1.77 Mops) *4/0

On the other hand, we see that video ES's with the same encoded Bitrate and
equal transmission rate has different resolutions. This can be due to several
reasons, the more logics interpretations are:

e A possible better or more optimal coding of the ES with more resolution.

e That the spare pixels are not used, for example for aspect ratio topics,
and are in black.

We can see that the studied TS, and others in Italia are not build with the most
common standard format, creating a PMT for every TV channel. We also see
differences in the quality between different channels and its respective bitrate.
The fact of find more Audio ES than Video ES if because one channel streams
in Dual.

Applicative Part 95

Finally, we can say that DVB-T is a used technology but the dedication of the
TV Channels to its well encapsulation is far to be correct. We thing it will be
better when the analogical TV leave streaming. Service like complete PCR,
HDTV, surround sound, interactive service (with MHP specific receivers) and
others can bring to the client a best experience taking advantage of the whole
DVB-T technology at a low cost for the TV companies, because the DVB-T
technology is already implemented now and working.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 96

5. Conclusions

The Linux-Box project is a work in process and even lacks developments and
improvements to be completely operative for the final user. Anyway we believe
that we have contributed in a satisfactory way in its development in three
fundamental parts:

e Definition of what it is, its function and what should be implemented, as well
as its operation policies.
Work and collaboration in several modules for their fine working.
Analysis of the created network flows.

Our applicative part has been based on the Linux-Box and the study of the
streams created by VLC. It belongs to the sections “3.Linux-Box” and
“4.Developed Part”:

1. Starting with the developed software, we have created a useful application
following the steps required for a good development. The result is a module of
the global project. The distributed character of its design allows us to cover a
big project, letting many people get involved in the process.

Although our Linux knowledge was reduced: (compiling using “gcc” and
configuring interfaces), we think that at the moment we can get by in Unix/Linux
and acquired a good base (based on self- learning) that naturally will go on.

2. The web section dedicated to the TV Broadcasting was taken at the middle of
the work. We studied the protocols and some other aspects, and since the
general project did not advance, we decided to work in its development too, in
the sense of making it works. At the end it has been working satisfactorily using
JavaScript in the same PHP code.

3. Regarding the network tests, at the beginning they were just some tests
about activity, and encapsulation. Later in practice every time it earned
importance. At the end we have analyzed the frames with WireShark, the net
activity with CommView, and the streams with TSReader. To make this section
we have used the scripts of the following section, and then they were
overlapped.

= The conclusion we obtain from these tests is that Linux-Box
generates the expected traffics if VLC is configured correctly.

= We also see that the flows created can cohabit with the normal traffic
of a Local Area Network.

= A problem we considered was the implementation of Firewalls that
forced us to use methods explained in the section "3.6.5 Firewalls" to
pass through them.

4. The script tests are used in the previous and other sections to configure the
Linux-Box. This section links the previous section with the future lines, and
means that the scripts proved overlap between the carried out tests and open
the door for future implementations.

In the Linux-Box aspect we have seen that it is a good idea, with an
appropriated implementation and a real possible commercial success. True
alternatives exist for a Multimedia-Centre with a low cost and a possible more
popular use. There also exists a great community of users behind, starting with

the open-source software used, and the great market where Linux-Box can be
introduced.

Its access by Web for the final user is a good idea, which allows him to have a
quick, governable and transparent access.

In the hardware aspect, we have seen that the Linux-Box with its actual
components installed does not have problems to execute different processes at
a memory or CPU level® streaming the information explained in section 3.5:
Streaming 3 TV programs and a medium of 2 or 3 VoD clients. Otherwise, we
see that it is a first version that is already obsolete. It can be used to work in the
laboratory, but in future hardware implementations the increment of capacity
should be extended according with the market. This is more reasonable in a
server that will offer apart from several services, the video streaming capacity.

On the other hand, future versions should solve the local oscillators’ problem in
DVB-T. We observe two possible solutions, discussed many times with the
tutor. The first one is to include several DVB-T cards to offer a complete
frequencies service with simultaneous TV. This would have a cost in space and
infrastructure but it will not affect in the economical aspect.

The second solution would be to find out using only one card and diverse
oscillators. This could be difficult, expensive or impossible. But it is an entire
university department, so we think that is possible for a future development.

In the treated protocols aspect we see that as RTP as IGMP are consecrated
protocols that make their function solving the deficiencies as far as possible, of
other inferior protocols. On the other hand, regarding the video transmission
MPEG formats it has a quality guarantee recognised. As way of transport,
MPEG2-TS is ideal for several multiplexed flows (Elementary Streams). MPEG-
4 seeks to be the successor implementing dozens of improvements and an
orientation to new interactive environments, besides the support for portable
devices. It is also explained in the Annex.

Regarding to VoD, we have seen that there is written a lot about it, but nothing
is standardized for further implementation. Many applications talks about VoD
but at the end everything ends in private technologies as Real-Networks, Quick-
Time, Windows Media... any global protocol is defined. For the media controls
(Play, pause...) it seems that RTSP is the most standardized but not

% As is explained in the section 3.4.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 98

indispensable although exists Flash implementations that make the same
function.

The intentions of this work in its beginning were ambitious. We wanted to have
all the Linux-Box at all, to implement authentication with a Radius Server, in
order to make a complete modularity study regarding the maximum users and
everything with both technologies DVB-S and DVB-T. These have been the
parts that have not been correctly implemented. The security, could not be
implemented simply because Linux-Box did not worked fine until the end of the
project. For this reason the aspirations of the project had to be reconsidered at
the middle of the project.

On the other hand the aspect of treating as much terrestrial television as
satellite, although there is not a big difference in its configuration; we have had
not enough time for configuring and providing its operation. For this reason, all
tests have been made with DVB-T; DVB-S goes to the Future Lines section.

In the personal part, we can conclude that we have deepened in technologies
and protocols that we only had heard speak of. We have also learned how DVB
works and how the signals are transported by MPEG2-TS. On the other hand,
we have acquired a background in the OS Linux/Debian and have made to
value many knowledge acquired during the career.

In our case all this is made because of the development of a project on a half-
long term that is Linux-Box. In general the elaboration of the work has been a
positive and satisfactory experience for us.

5.1. Innovation, improving and Future Lines

5.1.1. DVB-S Study

The next part that should be studied to continue the project is DVB-S, since we
have not studied its development. The basic changes are the frequencies
configuration and signal parameters. It should also take as reference the fact
that convert2.1 already implements compatibility with DVB-S.

5.1.2. Streaming over IPv6

An interesting section for further research would be the Linux/Debian
implementation and the corresponding changes to the whole project in order to
make it work in the same way as with IPv4. Also, a generated flow analysis
should be done for the different changes that implements IPv6.

5.1.3. Gigabit Ethernet

The use of Gigabit Ethernet could be interesting for environments with a lot of
traffic. If in future it is wanted to implement the Linux-Box in Internet would be
enough a potent connection of these characteristics to assume the traffic
demanded.

5.1.4. POD-casting (discovering protocol)

Pod-casting is a discovery protocol to discover sources for I-POD. It is a
technology growing that takes advantage of its actual commercial pull.

5.1.5. Transcode the VoD streams

If we use the VLC transcode command we can increase up to where we want
the maximum number of VoD users, only taking care of the final image quality.
With this it would be unnecessary to change to a new hardware configuration
with more capacity, in environments with a lot of VoD demand. Unfortunately, at
this time, transcoding in Real-Time with VLC is slow and has a poor quality.
Maybe in future versions of VLC this feature is improved. Another solution is to
use a specific program for the VoD (for example live555).

5.1.6. Streaming over the net

As it has already been commented before, if we play with Transcoding to adapt
the flows to the global net, it could be possible to make a VoD and TV server
over Internet.

5.1.7. Security

The security implementation is basic for the commercial applications. It should
be necessary an Apache server, and a web page application with login and
password. This part was initially outlined for this project developing a Radius
server, which exists in the university department, but at the end it won't be
implemented.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 100

5.1.8. Economical Aspects

At the beginning the Linux-Box has been designed to be used in local nets, it
has been mentioned previously that it could be a good solution as a Media
Centre at home, so this possibility should not be rejected. In this case it is
convenient a market study on their possible launching, in order to know the
impact and the possible economic profit. It would be also necessary to keep in
mind the inclusion of new hardware according to the new technologies like
HDTV or Blu-Ray.

5.1.9. Environmental Aspects

Although it has not been made a widely study on the environment effects
derived of using this device's use in this project, it is possible to make the
following interesting considerations:

The Linux-Box use can collaborate to use less TVs and take profit of existing
monitors to avoid the massive buy of TVs (every time more cheap) but with a
difficult recycling process.

For their emission characteristics in packet networks, it can collaborate to re-
use and take benefit of the existing ones.

It is important to understand that for the considerations taken in this work with
the Open-Source software used and the use of IP communications services,
does not affect directly to the natural environment.

5.2. Ethical Aspects

5.2.1. Social Ambit

The software used in the Linux-Box, applications an Operating Systems are
open-source, this implies a less economic spend in licenses and assure that
behind the software there is a community that will continue developing the
product and improving it. This favours the increasing of free software an as
alternative to big company firms of software like Microsoft, as well as the
intention of breaking the monopoly that has had till now. It is a hard task indeed
but projects as Linux-Box help to change this fact. The rupture of the monopoly
in software applications will also allow improvements and advances in new
programs and technologies, doing it faster and with more quality.

Conclusions 101

5.2.2. Author Rights, Royalties and Copyrights

All the information emitted by VLC, either AoD, VoD or TV Broadcasting will by
the administrator responsibility because everything emitted by VLC is according
to the responsibility of each one. The administrator will keep in mind the legal
mechanisms about reproduction protection royalties, copyrights, etc...to know if
he has rights to do the emissions.

In a first moment the Linux-Box has been made with educational finalities, but if
in a moment one would like to commercialize the product, should be made
studies about re-streaming media and the TV channels transmission. In this
case would be also interesting trying to include some type of parental control to
protect young users from a possible mature content.

About the program “convert” created in this thesis, we consider it open-source,
SO anyone can copy, distribute or to modify it for its own. It will also be
published in diverse forums related with DVB, VLC and Linux.

Linux-Box: DVB and VoD Streaming Over Local Area Networks 102

6. Bibliography

For the section Ubuntu 6.06 LTS

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]
[10]

[11]

About Linux: http://www.linux.org/info

Linux Distributions: http://www.linux.org/dist/

Red Hat: http://www.redhat.com/about/whyredhat/

Suse: http://www.novell.com/products/opensuse

Fedora: http://fedora.redhat.com/About/

Mandrake:
http://www.mandriva.com/en/community/resources/about mandriva linux

Ubuntu: http://www.ubuntu.com/

Ubuntu 6.06 LTS: http://www.ubuntu.com/download/releasenotes/606

Gnome: http://www.gnome.org/about/

KDE: http://www.kde.org/whatiskde/

3D-Desktop: http://Desk3d.sourceforge.net

For the section Multimedia Network Protocols

[12]

[13]

[14]

[15]

IP, TCP vs. UDP and headers efficiency:
http://www.ieee.org/web/publications/home/index.html

RFCs related: http://www.ietf.org
a. RTP: RFC 3550 “RTP: A Transport Protocol for Real-Time
Applications”
RTSP: RFC 2326 “Real Time Streaming Protocol (RTSP)”
SAP: RFC 2974 “Session Announcement Protocol”
SDP: RFC 2327 “SDP: Session Description Protocol”
IGMP: RFC 2236 “Internet Group Management Protocol, Version
o

®cooo

Chunlei Liu, “Multimedia Over IP: RSVP, RTP, RTCP, RTSP”:
http://www.cis.ohio-state.edu/~jain/cis788-97/ip__multimedia/index.htm

How to Enable Real-Time Streaming Protocol (RTSP) Traverse Network
Adress Translators (NAT) and Interact with Firewalls, Zeng Westerlund
(10-2005).

http://tools.ietf.org/pdf/draft-ietf-mmusic-rtsp-nat-04.pdf

Bibliography 103

[16] Leggio Simone, “Streaming Media over the Internet with the Real Time
treaming Protocol”
http://www.cs.helsinki.fi/u/[manner/Courses/seminar_papers/rtsp.pdf

[17] Testing Digital Video, MPEG2 Testing:
http://www.iec.org/online/tutorials/test dv/topic01.html
Dr Gorry Fairhurst, MPEG-2 Transmission:
http://erg.abdn.ac.uk/research/future-net/digital-video/mpeg2-trans.html

[18] DVB: http://www.dvb.org/about_dvb/history/index.html

[19] Streaming Servers and firewalls:
http://www.soundscreen.com/streaming/firewall.html

[20] Software
a. WireShark: http://www.wireshark.org/about.html

For the LINUX-BOX section

[21] VLC: http://www.videolan.org

[22] How to stream VLC: [http://download.videolan.org/doc/streaming-
howto/en/streaming-howto-en.pdf]

[23] DVBStream: Can be found in any Linux/Debian repository.

[24] Live555: http://www.live555.com/

For the Section Applicative Part

[25] TS reader: http://www.coolstf.com/tsreader/

[26] VideoLan Forums: http://forum.videolan.org/
For the Section Annexes:
[27] RSVP: RFC 2326 “ Resource Reservation Protocol”

[28] MPEG-4:http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-
4.html

[29] RTCP: RFC 3550 “RTP: A Transport Protocol for Real-Time
Applications”

[30] Payload Types: RFC 3551 “RTP Profile for Audio and Video
Conferences with Minimal Control”

[31] MPEGI1/MPEG2: “RTP Payload Format for MPEG1/MPEG2 Video”

[32] H261: RFC 2032 “RTP Payload Format for H.261 Video Streams”

Linux-Box: DVB and VoD Streaming Over Local Area Networks 104

Others

[26] Panagiotis Papadimitriou, Sofia Tsekeridou, Vassilis Tsaoussidis,
“Multimedia Streaming over the Internet”

[27] Danyan Chen, Anjali Agarwal, Michel kandoch, Dr Ahmed K.Elhakem,
“Multicast for real-time streaming over Ethernet”

Glossary of terms 105

7. Glossary of terms
A

Application Layer. The seventh layer in the OSI, defines how applications
access to network services.

AoD: Audio on Demand.

AVI: Audio/Video Interleaved

B

Bandwith: The amount of data that can be transmitted in a fixed time. Usually
expressed in bps.

Bit: The smallest unit of measure of data in a computer. A bit has a binary
value, O or 1.

Bitrate: The speed at which data travels from one place to another on a
network

Bps: Bits per second

Buffer: Space allocated on a system’s RAM where data is stored temporarily
until it is transferred to another part of the system.

Byte: A common measure data that consist of 8 bits.

C

Capture Card: A device that is used to digitize analogue audio or video and
write to a file or write digital audio or video to a file.

Client: A software application that receives data from a server.

CRC: (Cyclic Redundancy Check)

D

DF: Do not Fragment

DTT: Digital Terrestrial Television

DVB-S: Digital Video Broadcasting Satellite
DVB-T: Digital Video Broadcasting Terrestrial
E

Ethernet : A LAN used to connect devices within a single building or campus at
speeds up to 1 Gbps.

F

FPS: Frames per Second

G

GSM: Global System for Mobile Communications

H

Linux-Box: DVB and VoD Streaming Over Local Area Networks 106

HTTP: Hypertext Transfer Protocol
HTML: Hypertext Markup Language

IETF: Internet Engineering Task Force
IGMP: Internet Group Management Protocol
IP: Internet Protocol

ISO: International Organization for

K

Kernel: Is the core piece of an operating system.
L

LAN: Local Area Network

MIME: Multipurpose Internet Mail Extension

MMS: Microsoft Media Server

MPEG: Moving Picture Experts Group

MPEG2-TS:MPEG-Transport Stream

MTU: Maximum Transmission Unit

Multimedia: The integrated presentation of text, graphics, audio, video and
animation.

N

NAT: Network Address Translation
Network: Two or more computers connected to each other so they can share
resources

)

On Demand: Information that is available when you want it
OS: Operating System.
OSI: Open Systems Interface

P

Packet: A chunk of data organized in a block for transmission over an IP
network.

Port: A connection to a computer to enable other devices to interface with the
computer.

Protocol: A set of rules that enable computers to connect to one another

Glossary of terms 107

Q

QoS: Quality of Service

R

RAM: Random Access Memory
RSVP: ReSource reserVation Protocol
RTP: Real-time Transport Protocol
RTCP: Real-Time Control Protocol
RTSP: Real-Time Streaming Protocol

S

SAP: Session Announcement Protocol

Script: Plain text file used as configuration parameters by a specific program.
Server: A software application that sends requested data over a network.

SDP: Session Description Protocol

SSRC: Synchronization SouRCe

STB: Set-Top Box

Streaming media: Is the simultaneous transfer of digital media (video, voice
and data) so that it is received as a continuous real-time stream.

T
TCP: Transmission Control Protocol
Transcoding: The conversion of one digital file format to another digital file

format

U

UDP User Datagram Protocol
URL Uniform Resource Locator

Vv

VLC: Video LAN Client
VoD: Video on Demand.

X

XML: Extensible Markup Language

Linux-Box: DVB and VoD Streaming Over Local Area Networks 108

8. Timing

September

12-Arribal to Pisa
20- First contact with the Italian tutors in the IET (UNIPI)

October

1- Title of the Thesis
1- Install Linux and use it. Study Linux-Box working mode
2- Implement “Convert”

November
15- Possible Applications of the Thesis: Security and Modularity.
December

1- New section: Traffic Analysis. Research about traffic streaming and search
ways to analyse it on the Linux-Box.

15- Released “Convert2.0”
27- Star writing the thesis. It loses to do security, modularity and analyze what
kind of traffic is better to use.

January

22- Star test with Linux-box. The main part of the other working group does not
work. We decide to do the broadcasting webpage
23- Modifications on convert

February

14- Presentation in Pisa
15- Finishes Erasmus in Pisa

March-April
Thesis reconsiderations with the Spanish tutor and format adjustments to the

EPSC specific documents format.

May
Expected presentation time.

109

9.1 Surce Codes

9.1.1. Convert.c Code

#incl ude <stdlib. h>
#include <string. h>
#i ncl ude <stdio.h>

#def i ne MAX 20
void main (int argc,char *argv[])

int error;

char file[30], type[5], signal[5];

printf("\nin\t+---cmcooaa
+\n

if (argc!=4)
{

printf ("M ssing Argunments\nUsing:

Sat el i tal e]\ nExanpl e:

el se

strcpy (file,argv[1])
strcpy (type,argv[2])

9. Annexes

+\n\

convert

strcpy (signal,argv[3]);

t|\tWel cone Convert 2.2\t

i(f ((strcnp(signal,"T")!=0)&&(strcnp(signal,"S")!=0))

printf ("Last Paraneter wong, nust be 'S

exit;

el se

o 'T'\'nTry Again.

if(files (file,type,signal)==0)
{

}

int files(char f[], char t[], char 9§[])
int

int

char
char
char
char

max=190;
b,c,n,i;
s[max] ;
fil ename[30];
noni 40] ;
freq[30];
char pid[30];
int available;
int tamanyoreal =0;
int cont=0, nunchan=0;
char conilla;

com | | a=(char) 39;
char f_copia[30];//*destino;
FILE *f1;

i{f ((f1 = fopen(f,"r"))

printf("Can't open Source File:

return(1);

}
/lstrcpy (t,dest

ino);
//destino=".xm";

f_copia sera el

NULL) //el

printf("\n\n\t+
2.2\t\t | \n\t]
------- +\n\n");

printf("\n\n\t+
2.2\t\t | \n\t]
A n\n");

ar xi vo

dunp
%s\n", f

\t Tutto Bene Ciao\t

\t

de destino

)

strcpy (f_copia,f);//copia f en f copia para no sobreescribirlo

/lsprintf (f_copia,'.";
strcat (f_copia,t);//anyade t
/lprintf("destino= %\n", destino);
printf("Source %s\n", f);
printf("Destination
Ilprintf("t

=9%\n\n", t);
whi l e (feof (f1)==0)

{

fgets (s, max,f1l);

t amanyor eal =0;

a f_copia

%s\n\ n",f_copia);

VRVt e o oo e e e mm oo

[source_file] [.destination_type] [Terrestre or
convert file.dunp .xnl T\ n");

.\n\n");

A nt|\tConvert

Linux-Box: DVB and VoD Streaming Over Local Area Network

for (i=0;s[i]!="\n";i++)

}

tamanyor eal ++; //tamaA+o de cada linia "s"

/liniciar vectores a 0
for(i=0;i<40;i++)

{

}

b=0, c=0, n=0;

nom [i]=0;

freq [i]=0;

pid [i]=0;

avai | abl e=1;//por defecto sera 1. Si no esta disponible sera 0

[(nonfa]==".")||(nonfa]=='

especi al es en xm

if (strenp(S,"T")==0)//T de terrestre TDT or DVB-T

11

tamanyoreal - - ;
for (i=0; i<tamanyoreal; i++)
t if (s[i]==":")
{
n++;
}
i(f ((n==0))
nom[i]=s [i];
if
]((_r_]pnii)%::comlla)l|(non1i]::'.')||(non1i
nonfi]="_";//nodificacion
i{f (nonfi]=="¢&)
nonfi]="i";//nodificacion
} .
I{f ((n==1)&&(s[i]!=":"))
freq [b]l=s [i];
b++;
}
if((n==10)&&(s[i]!=":"))//VPI D=0
{
if(s[i]=="0")
avai | abl e=0;
}
I*if((n==11)&&(s[i]!=":"))// APID=0 Caso radio
{ if(s[i]==0)
avai | abl e=0;
b
ilf g(n:=12)&&(s[i]!:':'))/l &8&n==12 en DVBS el pid es
e
{
pid [c]=s [i];
C++;
}
}

}
if (strenp(S,"S")==0) //S de satelitale o DVB-S

for (i=0; i<tamanyoreal; i++) //-1
{
if (s[i]==":")
{
n++;

if (n==0)//caracteres del 0 al 30

{
nom[a]=s [i];
if ((nonfa]==conilla)
‘))//elimna comillas puntos i espacios

nonfa] =" _';//nodificacion
if (nonfa]=="&)//los & son caracteres
{
nonfal] ="i";
}
a++;

}

if ((n==1)&&(s[i]!=":"))

{ freq [b]=s [i];
b++;

}

if ((n==5)&&(s[i]!=":"))//VPI D=0

{

if(s[i]=="0")
avai | abl e=0;

if ((n==7)&&(s[i]!=":"))1/
&8&n==12 en DVB el pid es el 7

{
pid [c]=s [i];
cH++;
}
}
if (cont>0)
xm (nomfreq, avail abl e, pid, f_copia,l);
}
if (cont==0)
xm (nom freq, avail abl e, pid, f_copia, 0);
cont =1;
}
nunchan++;

if (feof(f1)1=0)

xml (nom freq, avail abl e, pi d, f_copi a, 2);

printf ("\nNunber of Channels Processed: %\ n", nunthan);
[lprintf ("%",comlla);

/lcerrar ficheros i salir OK

fclose(fl);
return 0;
}
int xm (char nonf40],char freq[30],int available,char pid[30],char filename[30],int control)
{
FILE *f2;
char pid2[30];
int i;
//Control =0,1,2. O=Prinera Escritura 1=Segunda hasta penultinma 2 =Utim escritura

if ((f2 = fopen(filenane,"a")) == NULL) //el xm
{

printf("Can't Create Destination File\n");
return(1);

if (control ==0)

{
fprintf (f2,"<streanmlist>\n");
control =1;

}
if (control ==1) //inprimr normal

#printf (f2,"\t<strean®\ n");

fprintf (f2,"\t\t<nane>%s</name>\n", nonj;

fprintf (f2,"\t\t<freg>%</fregq>\n",freq);

fprintf (f2,"\t\t<availabl e>%l</avail abl e>\n", avail abl e);
fprintf (f2,"\t\t<pid>¥%s</pid>\n",pid);

fprintf (f2,"\t\t<hidden>di sabl ed</ hi dden>\n");

fprintf (f2,"\t</streanr\n");

}

if (control ==2) //inprinri nonmbre i tal i al final lo de stramist.
fprintf (f2,"</streamist>\n");

}

fclose (f2);

9.1.2. XML result file

<streamlist>

- <stream>

<name>RaiUno</name>

<freq>698000000 < /freq>

<available>1</available>

<pid>3401</pid>

<status >disabled </status >
</stream>

<stream>

<name>RaiDue</name>

<freq>698000000 < /freq>

<available>1</available>

<pid>3402</pid>

<status >disabled </status >
</stream>

<stream>

<name>RaiTre</name>

<freq>698000000 < /freq>

Linux-Box: DVB and VoD Streaming Over Local Area Networks 112

<available>1</available>
<pid>3403</pid>
<status>disabled </status >
</stream>
<stream>
<name>RaiUtile </name>
<freq>698000000 < /freq>
<available>1</available>
<pid>3410</pid>
<status >disabled</status >
</stream>
<stream>
<name>FD_LEGGERA</name>
<freq>698000000 </freq>
<available>0</available>
<pid>3314</pid>
<status >disabled</status >
</stream>
<stream>
<name>RaiSportSat</name>
<freq>658000000 < /freq>
<available>1</available>
<pid>3305</pid>
<status >disabled</status >
</stream>
- <stream>
<name>RaiNotizie24</name>
<freq>658000000 < /freq>
<available>1</available>
<pid>3301</pid>
<status >disabled </status >
</stream>
- <stream>
<name>Rai_Edul</name>
<freq>658000000 < /freq>
<available>1</available>
<pid>3307</pid>
<status>disabled</status >
</stream>
- <stream>
<name>Rai_Doc-Futura </name>
<freq>658000000 < /freq>
<available>1</available>
<pid>3310</pid>
<status>disabled</status >
</stream>
<stream>
<name>RADIOUNO </name>
<freq>658000000 < /freq>
<available>0</available>
<pid>3311</pid>
<status >disabled </status >
</stream>
<stream>
<name>RADIODUE </name>
<freq>658000000 < /freq>
<available>0</available>
<pid>3312</pid>
<status>disabled</status >
</stream>
<stream>
<name>RADIOTRE </name>
<freq>658000000 < /freq>
<available>0</available>
<pid>3313</pid>
<status >disabled </status >
</stream>
<stream>
<name>CCTV9 </name>
<freq>658000000 < /freq>
<available>1</available>
<pid>3304</pid>
<status >disabled </status >
</stream>
<stream>
<name>SAT2000</name>
<freq>658000000 </freq>
<available>1</available>
<pid>3309</pid>
<status >disabled </status >
</stream>
<stream>
<name>Servizio_OTA</name>
<freq>618000000 < /freq>
<available>0</available>
<pid>1</pid>
<status >disabled </status >
</stream>
- <stream>
<name>24ore_tv</name>

<freq>618000000 </freq>
<available>1</available>
<pid>2</pid>
<status >disabled</status >
</stream>
<stream>
<name>Class_News</name>
<freq>618000000 </freq>
<available>1</available>
<pid>3 </pid>
<status>disabled</status >
</stream>
<stream>
<name>Coming_Soon</name>
<freq>618000000 </freq>
<available>1</available>
<pid>4</pid>
<status >disabled </status >
</stream>
<stream>
<name>BBC_World </name>
<freq>618000000 </freq>
<available>1</available>
<pid>5 </pid>
<status >disabled </status >
</stream>
<stream>
<name>Boing</name>
<freq>618000000 < /freq>
<available>1</available>
<pid>6 </pid>
<status >disabled </status >
</stream>
<stream>
<name>Mediaset_Premium_1</name>
<freq>618000000 < /freq>
<available>1</available>
<pid>101</pid>
<status>disabled</status >
</stream>
<stream>
<name>Mediaset_Premium_2</name>
<freq>618000000 < /freq>
<available>1</available>
<pid>102</pid>
<status >disabled </status >
</stream>
<stream>
<name>Mediaset_Premium_3</name>
<freq>618000000 </freq>
<available>1</available>
<pid>103</pid>
<status >disabled </status >
</stream>
<stream>
<name>Mediaset_Premium_4</name>
<freq>618000000 < /freq>
<available>1</available>
<pid>104</pid>
<status>disabled</status >
</stream>
<stream>
<name>Mediaset_Premium_5</name>
<freq>618000000 < /freq>
<available>1</available>
<pid>105</pid>
<status>disabled</status >
</stream>
<stream>
<name>HUMAX_DOWNLOAD_SVC</name>
<freq>618000000 </freq>
<available>0</available>
<pid>8015</pid>
<status>disabled</status >
</stream>
<stream>
<name>Canale_5</name>
<freq>754000000 < /freq>
<available>1</available>
<pid>21</pid>
<status>disabled</status >
</stream>
<stream>
<name>24ore_tv</name>
<freq>754000000 < /freq>
<available>1</available>
<pid>22</pid>
<status>disabled</status >
</stream>
- <stream>

Linux-Box: DVB and VoD Streaming Over Local Area Network 114

<name>Class_News</name>
<freq>754000000 < /freq>
<available>1</available>
<pid>23</pid>
<status>disabled</status>
</stream>
<stream>
<name>Coming_Soon</name>
<freq>754000000 < /freq>
<available>1</available>
<pid>24</pid>
<status>disabled</status >
</stream>
<stream>
<name>BBC_World </name>
<freq>754000000 < /freq>
<available>1</available>
<pid>25</pid>
<status>disabled</status >
</stream>
<stream>
<name>Mediashopping </name>
<freq>754000000 < /freq>
<available>1</available>
<pid>26</pid>
<status>disabled</status >
</stream>
- <stream>
<name>s7</name>
<freq>754000000 < /freq>
<available>0</available>
<pid>27</pid>
<status>disabled</status >
</stream>
- <stream>
<name>s8</name>
<freq>754000000 < /freq>
<available>0</available>
<pid>28</pid>
<status>disabled</status >
</stream>
- <stream>
<name>s9_EI</name>
<freq>754000000 < /freq>
<available>0</available>
<pid>29</pid>
<status>disabled </status >
</stream>
<stream>
<name>s10_EI</name>
<freq>754000000 < /freq>
<available>0</available>
<pid>30</pid>
<status>disabled </status >
</stream>
<stream>
<name>PPlus</name>
<freq>754000000 </freq>
<available>0</available>
<pid>998</pid>
<status>disabled </status >
</stream>
<stream>
<name>PSV</name>
<freq>754000000 < /freq>
<available>0</available>
<pid>999</pid>
<status>disabled </status >
</stream>
<stream>
<name>LA7_Cartapiu__attivazione</name>
<freq>818000000 </freq>
<available>0</available>
<pid>11</pid>
<status >disabled</status >
</stream>
<stream>
<name>CANALE_TEST </name>
<freq>818000000 < /freq>
<available>0</available>
<pid>3 </pid>
<status >disabled</status >
</stream>
<stream>
<name>LA7_Cartapiu__B</name>
<freq>818000000 < /freq>
<available>0</available>
<pid>7 </pid>
<status >disabled</status >
</stream>

115

- <stream>
<name>LA7_Cartapiu__C</name>
<freq>818000000 < /freq>
<available>0</available>
<pid>8 </pid>
<status>disabled </status >
</stream>
<stream>
<name>LA7_Cartapiu__D</name>
<freq>818000000 < /freq>
<available>0</available>
<pid>9 </pid>
<status>disabled </status >
</stream>
<stream>
<name>LA7_Cartapiu__E</name>
<freq>818000000 < /freq>
<available>0</available>
<pid>10</pid>
<status>disabled </status >
</stream>
<stream>
<name>LA7_Cartapiu__A</name>
<freq>818000000 < /freq>
<available>0</available>
<pid>6 </pid>
<status>disabled </status >
</stream>
- <stream>
<name>LA7_Cartapiu__F</name>
<freq>818000000 < /freq>
<available>0</available>
<pid>15</pid>
<status >disabled</status >
</stream>
- <stream>
<name>LA7</name>
<freq>818000000 < /freq>
<available>1</available>
<pid>1 </pid>
<status >disabled</status >
</stream>
- <stream>
<name>MTV_ITALIA</name>
<freq>818000000 < /freq>
<available>1</available>
<pid>2</pid>
<status >disabled</status >
</stream>
- <stream>
<name>TELEMARKET</name>
<freq>818000000 < /freq>
<available>1</available>
<pid>12</pid>
<status >disabled </status >
</stream>
<stream>
<name>LA7_SPORT</name>
<freq>818000000 < /freq>
<available>1</available>
<pid>4 </pid>
<status >disabled </status >
</stream>
<stream>
<name>RETECAPRI</name>
<freq>818000000 < /freq>
<available>0</available>
<pid>14</pid>
<status >disabled </status >
</stream>
<stream>

<name>HUMAX_DOWNLOAD_SVC</name>

<freq>818000000 < /freq>

<available>0</available>

<pid>8015</pid>

<status >disabled </status >
</stream>

<stream>

<name>XXXX</name>

<freq>818000000 < /freq>

<available>0</available>

<pid>16</pid>

<status>disabled </status >
</stream>

<stream>

<name>Rete_4</name>

<freq>586000000 < /freq>

<available>1</available>

<pid>11</pid>

<status >disabled </status >

Linux-Box: DVB and VoD Streaming Over Local Area Network 11

</stream>
- <stream>
<name>Italia_1</name>
<freq>586000000 < /freq>
<available>1</available>
<pid>12</pid>
<status >disabled</status >
</stream>
<stream>
<name>Si_SoloCalcio</name>
<freq>586000000 < /freq>
<available>1</available>
<pid>13</pid>
<status >disabled</status >
</stream>
<stream>
<name>Sportitalia</name>
<freq>586000000 < /freq>
<available>1</available>
<pid>14</pid>
<status >disabled</status >
</stream>
<stream>
<name>Si_Live24</name>
<freq>586000000 < /freq>
<available>1</available>
<pid>15</pid>
<status >disabled </status >
</stream>
<stream>
<name>LCI</name>
<freq>586000000 < /freq>
<available>1</available>
<pid>16</pid>
<status>disabled</status >
</stream>
<stream>
<name>S17</name>
<freq>586000000 < /freq>
<available>0</available>
<pid>17 </pid>
<status>disabled</status >
</stream>
<stream>
<name>S18</name>
<freq>586000000 < /freq>
<available>0</available>
<pid>18</pid>
<status >disabled </status >
</stream>
- <stream>
<name>DV </name>
<freq>586000000 < /freq>
<available>0</available>
<pid>999</pid>
<status >disabled </status >
</stream>
</streamlist>

9.1.3. Web-Page Code

The entire code can be found in the direction: http://escher.iet.unipi.it

9.1.3.1. Broadcast.php

<! DOCTYPE HTM. PUBLI C "-//WBC//DTD HTM. 4.01//EN' "http://ww. w3. org/ TR/ htm 4/strict.dtd">
<ht m ><head>

<meta nane="author" content="Stefano Lucetti">

<meta http-equi v="Content -Type" content="text/htm ; charset=lSO 8859-1">

<meta nane="keywords" content="university, P sa, engineering, teleconmrunications, networks">

<link rel ="styl esheet" type="text/css" href="style2.css">

<link rel ="SHORTCUT | CON' href="http://wwtlc.iet.unipi.it/favicon.ico"><title>TLCNETGROUP Horme Page - University of
Pisa</title>

</ head><body>

Annexes

117

<script |anguage="javascript">
function vol ume_up()

var previous = docunent.videol.get_vol ume();
var newol ume = previous + 10;
if(newolune > 200) newolune = 200;
docunent . vi deol. set _vol ume(newol ume);
var vol ume = docunent. get El ement Byl d("vol ume_status");
vol une. i nner HTM. = docunent . vi deol. get _vol une() + " %;

function vol ume_down()

var previous = docunent.videol. get_vol ume();

var newol ume = previous - 10;

if(newolunme < 0) newolume = 0;

docunent . vi deol. set _vol une(newvol ume);

var vol ume = docunent. get El ement Byl d("vol une_status");
vol une. i nner HTM. = docunent . vi deol. get _vol ume() + " % ;

}

function status()

var play_status = docunent.get El ement Byl d("pl ay_status");
var tinme = docunent.getEl enentByld("tinme");

var |ength = docunent. get El ement Byl d("| ength");

pl ay_status.innerHTM. = docunent. vi deol.isplaying() ?

i f(document.videol.isplaying() == true)

got _tine = docunment.videol. get_tine();

hours = Math. floor(got_tine/ 3600);

mnutes = Math. floor((got_tine/60) % 60);
seconds = got_tinme % 60;

if (hours < 10) hours = "0" + hours;

if (mnutes < 10) minutes "0" + minutes;

if (seconds < 10) seconds "0" + seconds;
time.innerHTM. = hours+":"+ni nut es+": " +seconds;
got _| ength = docunent . vi deol. get _| ength();
hours = Math. floor(got_|ength/ 3600);

mnutes = Math. floor((got_I| ength/60) % 60);
seconds = got_|ength % 60;

if (hours < 10) hours = "0" + hours;

if (mnutes < 10) minutes "0" + minutes;

if (seconds < 10) seconds "0" + seconds;

| engt h. i nner HTM. = hour s+": " +m nut es+": " +seconds;

el se

time.innerHTML = "--:1--:--";
length.innerHTML = "--:1--:1--";

set Ti meout ("status()", 1000);
}

function play_sel ected()

{
sel ect = docunent.getEl enentByld("item');
set _iten(select.value);

}
function set_iten(nane)

{
docunent . vi deol. stop();
docunent . vi deol. cl ear _playlist();
docunent . vi deol. add_i ten{ nane);
}
</ script>

<div class="fl oat nenu">
<tabl e border="0" cel | paddi ng="0" cel | spaci ng="3" wi dth="180">
<col w dth="180">

<t body><tr>
<td class="cx">

</td>

" Pl ayi ng"

"Not playing";

docunent . vi deol. pl ay();

<i nput name="chewa" val ue="Play selected iten onclick="play_selected();" type="button"

</[tr>
<tr>
<td>
<div class="playlist">
<di v cl ass="head" >BROADCAST TV </div>
<div class="mini">
<select id="itent>
</ sel ect>
/>
</ div>
</ div>
</td>
</[tr>
<tr>
<td>

<div class="status">

<di v cl ass="head" >St at us</ di v>

<div class="content">

<t abl e>

<t body>

<tr>

<td>Status</td>

<t d>Unknown</ span>
</td>

Linux-Box: DVB and VoD Streaming Over Local Area Networks

118

</[tr>
<tr>
<t d>Ti me</td>
<td>-:--:--
</td>
</[tr>
<tr>
<td>Total Length</td>
<td>--:--:--</td>
</tr>
<tr>
<t d>Vol une</t d>
<td></ span></td>
</tr>
</ t body>
</tabl e>
</ div>
</ di v>
</td>
</tr>
<tr>

<td><div class="playlist">

Vi deo

Broadcast TV

<7dhref ="personal . php" target="_sel f">Your Playlist

< 1v>

<div class="playlist">
Home

Hel p
</ di v>
</td>
</[tr>
</t body>
</ di v>
<div class="controls" id="cont">
<div cl ass="pl ayback">
<div clas head" >Pl ayback Control </ div>
<div class="content"> <jinput name="chewa" val ue="Play" onclick="docunent.videol.play();" type="button" /><input
name="chewa" val ue="Pause" onclick="docunent.vi deol. pause();" type="button" /><input name="chewa" val ue="Stop"
oncl i ck="docunent . vi deol.stop();" type="button" />

<i nput nane="chewa" val ue="Seek -10s" onclick="docunent.vi deol. seek(-10,true);" type="button" />
<i nput nane="chewa" val ue="Seek +10s" onclick="docunent.vi deol.seek(10,true);" type="button" /></div>
</ di v><div class="av">
<di v cl ass="head">AV Control </ di v><div class="content">
<i nput nane="chewa" val ue="Vol +" onclick="volune_up()" type="button" /><input nane="chewa" val ue="Vol -"
onclick="vol ume_down()" type="button" /><input name="chewa" val ue="Mite" onclick="docunment.videol. nute()"
type="button" /><input nane="chewa" val ue="Ful| Screen" onclick="docunent.videol.fullscreen();" type="button" />
</ di v></ di v></di v>
<l-- i
<di v cl ass="mai npage2">
<enbed type="application/x-vlc-plugin" id="videol" autoplay="no" |oop="yes" hei ght="300" w dth="400"
target="videol">
<script |anguage="javascript">
var vol ume = docunent. get El ement Byl d("vol ume_status");
vol une. i nner HTM. = docunent . vi deol. get _volume()+ " % ;
set Ti meout ("status()", 1);

END OF MENU ::::::iiririiriiiir -->

</script>
<l--
<p class="cx">

<a cl ass="nohover" href="http://validator.ws.org/check/referer">

<inmg src="/inmages/valid htnl 401. png" styl e="wi dth: 88px; hei ght:31px" alt="Valid HTM. 4.01!">
</ a>

<a cl ass="nohover" href="http://jigsaw w3. org/css-validator/">

<ing styl e="wi dt h: 88px; hei ght: 31px" src="/images/vcss. png" alt="Valid CSS!I'">

</ a>

</ p>

>
</ di v>
</ body></ht m >

9.2. Protocols related to streaming do not used in the work

9.2.1. Video codec

9.2.1.1. MPEG-4
MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts
Group). MPEG-4 is designed basically in three fields:

¢ Digital television

e Interactive graphics applications (synthetic content)

e Interactive multimedia

With these fields MPEG-4 pretends to provide standardized ways for units
called “media objects”.

These media objects can have natural or synthetic origin, for example a video
camera or a computer. Anyway the objective is to be able to transport this
media objects over network channels providing QoS and interact with the scene
created.

The following sections illustrate the MPEG-4 functionalities described above,
using the audiovisual scene depicted in Figure 9-1.

Figure 9.1: an example of an MPEG-4 Scene

Linux-Box: DVB and VoD Streaming Over Local Area Networks 120

MPEG-4 makes possible to:

¢ Identify access units, transport timestamps, clock reference information
and data loss.

e Transmit control information to the required QoS for each stream and
convert it into network resources.

e Associate elementary streams to media objects.

e Transmit the mapping of elementary streams to the channels.

Annexes 121

9.2.1.2. Other Codecs

The purpose of this section is not to enumerate all existing codecs in Internet
but a brief explanation of the most used.

As explained in section “2.4.3. Header Format”, depending on the field Payload
type it can be different audio or video codecs®’ being implemented.

AUDIO
PAYLOAD | ENCODING | /VIDE | CLOCK | CHANNE
TYPES NAME (0] Tﬁ;;z (Al!l_gl 0)
(AIV)

0 PCMU A 8.000 1

1 1016 A 8.000 1

2 G721 A 8.000 1

3 GSM A 8.000 1

4 unassigned A 8.000 1

5 DVI4 A 8.000 1

6 DVI4 A 16.000 1

7 LPC A 8.000 1

8 PCMA A 8.000 1

9 G722 A 8.000 1

10 L16 A 44.100 2

11 L16 A 44.100 1

12 unassigned A -

13 unassigned A -

14 MPA A 90.000 -

15 G728 A 8.000 1
16-23 unassigned A -

24 unassigned V -

25 CelB V 90.000 -

26 JPEG V 90.000 -

27 unassigned V -

28 Nv V 90.000 -

29 unassigned \ -

30 unassigned V -

31 H261 V 90.000 -

32 MPV V 90.000 -

33 MP2T AV 90.000 -
3471 unassigned - - -
72-76 Reserved N/A N/A N/A
77-95 unassigned - - -

96-127 Dynamic - - -

Table 9.1 Payload types (PT) for standard audio and video encodings38

37 Extracted from RFC 3551: RTP Profile for Audio and Video Conferences with Minimal Control

Linux-Box: DVB and VoD Streaming Over Local Area Networks 122

Audio

PCM: PCMA and PCMU

PCMA and PCMU audio data is encoded as eight bits per sample, after
logarithmic scaling. PCMU denotes mu-law scaling, PCMA A-law scaling. The
56 kb/s and 48kb/s modes are not applicable to RTP, since PCMA and PCMU
always be transmitted as 8-bit samples.

GSM

GSM (Group Special Mobile) denotes the European GSM 06.10 standard for
full-rate speech transcoding, ETS 300 961, which is based on RPE/LTP
(residual pulse excitation/long term prediction) coding at a rate of 13 kb/s.
Blocks of 160 audio samples are compressed into 33 octets, for an effective
data rate of 13,200 b/s.

G722

G722 is specified in ITU-T Recommendation G.722, "7 kHz audio-coding with
64 kbps". The G.722 encoder produces a stream of octets, each of which shall
be octet-aligned in an RTP packet. The octet rate or sample-pair rate is 8,000
Hz.

G723

G723 is specified in ITU Recommendation, "Dual-rate speech coder for
multimedia communications transmitting at 5.3 and 6.3 kbit/s". The G.723.1
5.3/6.3 kbit/s codec was defined by the ITU-T as a mandatory codec for ITU-T
H.324 GSTN videophone terminal applications. Audio is encoded in 30 ms
frames, with an additional delay of 7.5 ms due to look-ahead. A G.723.1 frame
can be one of three sizes: 24 octets (6.3 kb/s frame), 20 octets (5.3 kb/s
frame), or 4 octets.

Video
H.261

This code is used to video-conference. It is organized in groups. The video
stream is composed of a sequence of images, or frames, which are organized
as a set of Groups of Blocks (GOB). Each GOB holds a set of 3 lines of 11
macro blocks (MB). Each MB carries information on a group of 16x16 pixels,
including luminance information specified for 4 blocks of 8x8 pixels, while
chrominance information is given by two "red" and "blue" color difference
components at a resolution of only 8x8 pixels. The bits resulting from the
Huffman encoding are arranged in 512-bit frames, containing 2 bits of

% Extracted from the RFC number 3551: “RTP Profile for Audio and Video Conferences with
Minimal Control”

Annexes 123

synchronization, 492 bits of data and 18 bits of error correcting code. The 512-
bit frames are then interlaced with an audio stream.

Some other characteristics:

e Bitrate: p x 64Kbps, where p = 1, 2 ... 30. Typically bitrates from 64 to
384 kbps.

e CODEC DCT with motion compensation

e Sampling 4:2:0 Y:Cr.Cb

e Support resolutions

e CIF: 352 x 288

e QCIF: 176 x 144

The encoding is specified for "Video coding for low bit rate communication”.
9.2.2. QoS

9.2.2.1. RSVP (Resource ReSerVation Protocol)

RSVP is a resource reservation setup protocol designed for an integrated
Internet service. It is used to request specific QoS from the network to particular
application data streams or flows and establish and maintain the provided
service.

RSVP has the following attributes:

e Makes resource reservations for unicast and multicast applications and
unidirectional data flows.

e Receiver-oriented: The receiver initiates and maintains the resource
reservation used for a flow.

e Provides support for dynamic membership changes and automatic

adaptation to routing changes.

Depends on a routing protocol.

Transports and maintains traffic and policy control parameters.

Provides transparent operation through routers that do not support it.

Supports IPv4 and IPv6.

Header and Objects Format

An RSVP message consists of a common header, followed by a body
consisting of a variable number of variable-length, called “objects".

Linux-Box: DVB and VoD Streaming Over Local Area Networks

124

Feld length,
inbits

4 4 a 16 18 g g 3z 15

Wersian Flag= Typ= Checleum L=ngth Peasne rved Send TTL Mem=ages Remerved
1]

REVP object fielde

Feld length,
in bits
18 a 8 Wariable
Lengh Clazs-num C-Type Object confents

Figure 9.2 : RSVP message header and object fields*°

The fields in the common header are as follows:

e Vers: 4 bits. Protocol version number.

¢ Flags: 4 bits. 0x01-0x08: Reserved

e Msg Type: 8 bits

e Checksum: 16 bits.

e Send_TTL: 8 bits. The IP TTL value for the message sent.

e Length: 16 bits. The total length of this RSVP message.
Object Formats

MF

F ragmeni
atimei

Every object consists of one or more 32-bit words with a one-word header. An

object header has the following fields:

Length: A 16-bit field containing the total object length.
Class-Num: Identifies the object class.
C-Type: Identifies the Object-Class.

form of the object content.

9.2.2.2. RTCP (Real Transfer Control Protocol)

What is RTCP?

Object contents: The Length, Class-Num, and C-Type fields specify the

The RTP control protocol (RTCP) is used with RTP and is based on the periodic
transmission of control packets to all participants in the session, using the same
distribution mechanism as the data packets. The messages include information

% Extracted from: http://www.pulsewan.com/

125

that can be used by higher-level applications to control the session and improve
the transmission. RTCP has four primary functions:

Provide feedback on the quality of the data distribution.

RTCP takes a persistent transport-level to identify the source called the
canonical name or CNAME. The CNAME is an identifier item required to
provide compromise from the SSRC identifier to an identifier for the
source that remains constant.

Each participant send its control packets to all the others.

Optionally, transmits always minimal session control information.

Header Format and Types

The common header format is this, although depending on packet type the Data
field will change:

RTCP packet header format:

2|3 8 16 32bit
Ver | P| Count Type Length
Data

Figure 9.3: RTCP Packet Format.*

Version (V): 2 bits. Identifies the version of RTCP.
Padding (P): 1 bit.

Report count (RC): 5 bits. Contains the number of blocks contained in
Data.

Packet type (PT): 8 bits. Identifies the RTCP type packet.

Length: 16 bits. Contains the length of the RTCP packet in 32-bit words
minus one, including the header and any padding.

SSRC: 32 bits: Contains the source identifier for the originator of the
packet.

Data: depending the kind of the packet the information and fields can be
very different.

“0 Extraced from: “http://www.protocolbase.net/protocols/protocol_RTCP.php”

Linux-Box: DVB and VoD Streaming Over Local Area Networks

126

RTCP Packet Types (PT)

Type ab. Description
0-191
Full INTRA-frame request, indicates that a
192 | FIR . :)
receiver requires afull encoded image.
193 | NACK | Negative acknowledgement.
194-
199
200 | SR Sender report.
201 |[RR Receiver report.
202 | SDES | Source description items, including CNAME.
203 | BYE Goodbye, Indicates end of participation.
204 | APP Application-specific functions.
205 | RTPFB |, Generic RTP Feedback.
206 | PSFB | Payload-specific.
207 | XR RTCP extension.
208-
255
Table 9.2: RTCP PT
SDES TYPES
Abbrev Name Value
END End or SDES list 0
CNAME | Canonical Name 1
NAME User Name 2
EMAIL User’s Electronic mail Address 3
PHONE | User's Phone Number 4
LOC Geographic user Location 5
TOOL Name of Application or Tool 6
NOTE Notice about the Source 7
PRIV Private Extensions 8
Table 9.3 : Sources Description Types
Why RTCP?

The bit-rate of a stream could be changed to combat network congestion.
Network congestion varies with the number of users on the net, and this also
affects to the available bit-rate on the network for streaming. To optimize this
server has to adjust itself dynamically to the highest bit-rate possible. These
adjustments are possible by using the RTCP reports from the media player to
measure the network congestion and switch the stream rates to multiple bit-rate

media files.

