
  

                                        

 

 

 

 

ENEKO AÑORGA 

 

DEVELOPMENT OF THE FEATURE 

EXTRACTOR FOR SPEECH RECOGNITION 

 

DIPLOMA WORK 

 

 

 

 

 

MARIBOR, OCTOBER 2009 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301211411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i 

  

 
FAKULTETA ZA ELEKTROTEHNIKO, 

RAČUNALNIŠTVO IN INFORMATIKO 

2000 Maribor, Smetanova ul. 17 

 

 

Diploma Work for Electronic Engineering Student Program 

 

DEVELOPMENT OF THE FEATURE 

EXTRACTOR FOR SPEECH RECOGNITION  

 

 

 

Student:  Eneko Añorga 

Student program: Electronic Engineering 

 

Mentor:    Prof. Dr. Riko ŠAFARIČ 

  Asist. Prof. Dr. Suzana URAN 

 

 

Maribor, October 2009



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGMENTS 

Thanks to Prof. Dr. Riko ŠAFARIČ for his 

assistance and helpful advices in carrying out the 

diploma work. 

Special thanks to my family and friends who are in 

all moments beside me.



iii 

DEVELOPMENT OF THE FEATURE 

EXTRACTOR FOR SPEECH RECOGNITION 

 

 

Key words: voice operated wheelchair, speech recognition, voice activity detection, neural 

networks, ultrasound sensor net 

UDK: 004.934:681.5(043.2) 

Abstract 

With this diploma work we have attempted to give continuity to the previous work done by 

other researchers called, Voice Operating Intelligent Wheelchair – VOIC [1]. A development of 

a wheelchair controlled by voice is presented in this work and is designed for physically disabled 

people, who cannot control their movements. This work describes basic components of speech 

recognition and wheelchair control system. 

Going to the grain, a speech recognizer system is comprised of two distinct blocks, a Feature 

Extractor and a Recognizer. The present work is targeted at the realization of an adequate 

Feature Extractor block which uses a standard LPC Cepstrum coder, which translates the 

incoming speech into a trajectory in the LPC Cepstrum feature space, followed by a Self 

Organizing Map, which classifies the outcome of the coder in order to produce optimal 

trajectory representations of words in reduced dimension feature spaces. Experimental results 

indicate that trajectories on such reduced dimension spaces can provide reliable representations 

of spoken words. The Recognizer block is left for future researchers. 

The main contributions of this work have been the research and approach of a new 

technology for development issues and the realization of applications like a voice recorder and 

player and a complete Feature Extractor system. 
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RAZVOJ PREVODNIKA SIGNALA ZA 

PREPOZNAVO GOVORA 

 

 

Klju čne besede: glasovno voden invalidski voziček, prepoznava govora, zaznava glasovne 

aktivnosti nevronske mreže, ultrazvočna senzorska mreža 

 

UDK: 004.934:681.5(043.2) 

 

Povzetek 

S tem diplomskim delom sem poskusil nadaljevati delo raziskave z naslovom Voice Operating 

Intelligent Wheelchair – VOIC [1]. V tem diplomskem delu je tudi predstavljen razvoj glasovno 

vodenega invalidskega vozička, narejenega za telesno prizadete ljudi, ki ne morejo nadzorovati 

svojih gibov. To delo opisuje osnovne komponente govornega nadzora in sistema vodenja 

invalidskega vozička. 

Sistem govornega nadzora uravnavata dva različna dela; prevodnik signala in 

prepoznavalec. V tem diplomskem delu se osredotočam na prevodnost ustreznega prevodnika 

signala na osnovi standardnega LPC Cepstrum koderja, ki posreduje prihajajoči govor v pot 

LPC Cepstrum prostora, temu postopku pa sledi t.i. “samoorganizacijska karta” (Self 

Organizing Map), ki razvrsti rezultat koderja za optimalni prikaz besed  na zmanjšanih 

dimenzijah prostora. Poskusni rezultati kažejo, da lahko te poti na zmanjšanih dimenzijah 

prostora zagotovijo zanesljiv prikaz izgovorjenih besed. Prepoznavalec je lahko predmet 

raziskovanja študentov tudi v prihodnosti. 

Glavni namen tega diplomskega dela sta bili raziskava in poskus uporabe nove tehnologije v 

razvojne namene, kakor tudi uporaba aplikacij kot so snemalec in predvajalnik zvoka ter celoten 

sistem prevodnika signala. 
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GLOSARY OF SIMBOLS 

Name Description 

1/Â(z) 

ai 

wlp(n) 

Hh1(z)  

s(n) 

s'(n) 

r(k) 

wlag(n) 

r' (k) 

ki 

fs 

f0 

LP synthesis filter 

LP coefficients (a0 = 1.0) 

LP analysis window 

Input high-pass filter 

Preprocessed/filtered speech signal 

Windowed speech signal 

Auto-correlation coefficients 

Correlation lag window 

Modified auto-correlation coefficients 

Reflection coefficients 

Sampling frequency 

Bandwidth expansion 

Table 1 – Glossary of symbols
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GLOSSARY OF ACRONYMS 

Acronym Description 

VOIC 

DSP 

LPC 

LP 

SOM 

CE 

SODIMM 

CAN 

GPIO 

BSP 

ITU 

ITU-T 

FE 

VAD 

DTX 

CNG 

RNN 

VQ 

HMM 

Voice Operated Intelligent Wheelchair 

Digital Signal Processor 

Linear Prediction Coding 

Linear Prediction 

Self Organizing Maps 

Compact Edition 

Small Outline Dual In-line Memory Module 

Control Area Network 

General Purpose Input/Output 

Board Support Package  

International Telecommunication Union 

Telecommunication Standardization Sector 

Feature Extractor 

Voice Activity Detection 

Discontinuous Transmission 

Comfort Noise Generator 

Recurrent Neural Network 

Vector Quantization 

Hidden Markov Model 

Table 2 – Glossary of acronyms
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1 INTRODUCTION 

1.1  MOTIVATION 

A prototype of a wheelchair controlled by voice was developed by previous researchers. The 

wheelchair was designed for physically disabled people, who have problems with mobility and 

are not able to use some mechanical devices like, for example, a joystick. For that reason the 

researchers worked in other way to control the wheelchair: the voice. 

The beginning of the project was in September 2003. Just to get an idea of how extensive the 

work was, in the project were involved 11 students of Mechatronics and Computer Science, of 

which 5 were working in the first part and 6 in the second one. The project was successfully 

completed in one year. 

The first part consisted in a production of a specific control module for the management of 

the wheelchair and the production of an adequate system of an ultrasound sensor net to capture 

data from the surroundings, such as location and distance barriers. 

The second part was oriented to identify the voice commands, building a speech recognition 

system to control the wheelchair. 

The main goal of the project was to recognize the user’s speech in different environments 

and consequently control the wheelchair. The speech recognition task is natural and easy for 

humans, but it is still a difficult job for computers and no perfect solution has been found until 

now. 

In general terms, the basic principles of the wheelchair operating using a recognized voice 

commands and the ultrasound sensor net system are shown in the Figure 1.1 and described in the 

following lines: 
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Figure 1.1 – Principle operation of the wheelchair 

 

1. A wheelchair user utters a command. 

2. The speech recognition system processes the speech signal, analyzes, reduces the 

coefficients dimensions and recognizes the signal trajectory. The result is a suitable 

coded recognized command. 

3. The command is transferred to the part of the system designed for its evaluation and 

execution. 

4. Wheelchair surrounding dynamical obstacles are being observed all the time during its 

operation by the ultrasound sensor net measuring the distance to the obstacles. 

5. A special designed component measures distance to the obstacle. 

6. A control system collects all necessary data and decides whether it is safe to execute 

recognized the voice command. 
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7. In the case that the recognized command implies no threat to the wheelchair user and 

people surrounding it, the command is transmitted to the wheelchair for execution. 

8. The wheelchair receives the command and executes it. 

As seen in the earlier description, all the tasks were centralized in a control system and the 

whole system was implemented specifically in a DSP Card TMS320C6711DSK from Texas 

Instruments manufacturer. For programming the DSP processor the Code Composer Studio 

software was used and also the Visual Studio .NET 2003 for C language programming 

environment. 

Till this point, all was ok but the problem came when the DSP Card was broken. At this point 

the researchers thought of changing it for a new DSP Card but they realized that it was already 

obsolete technology. Hence, a decision was taken: replace the DSP Card for a new device, which 

was able to perform the same task and was equipped with all necessary interfaces, like audio 

input to capture the voice signal and then make the speech recognition task or CAN bus for the 

ultrasound sensor system. In addition, this device would have to be able to control different 

systems, easy to use, small size to plug into the wheelchair, economical... 

Here is where our work began, so let’s see which have been our objectives and contributions 

to the project. 

 

1.2  OBJECTIVES AND CONTRIBUTION OF THIS WORK 

As mentioned before, the aim of the work was to replace the broken DSP Card by a new 

device which was able to control the whole system and which had some other important features 

like an audio input interface (microphone) to process the user’s voice signal, a CAN bus 

interface to control the ultrasound sensors net; it had to be scalable, a new technology, easy to 

use, small size, economical... 

After an in-depth research we found Colibri XScale® PXA320 computer module which 

contains all these features together, which will they will be explained in next chapters (2.1 Brief 

description of Colibri module). 
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Mainly the contribution of this work has been to adapt the work which was already 

developed to the new technology recently obtained. 

At this point, we have to say that this was not an easy task, specifically trying to adapt the 

developed code. As all the C code developed was targeted to the DSP Card, we had to start 

almost from the beginning to adapt it to the new device and new technology. In addition, 

knowing that the previous work was made by 11 students and the present work has been done by 

one person, we focus our objective on solving a part of the speech recognition system, and most 

particularly, on realizing the Feature Extraction block. 

In a speech recognition problem the FE block has to process the incoming information, the 

speech signal, so that its output eases the work of the recognition stage. The approach used in 

this work to design the FE block divides it into two consecutive sub-blocks: the first is based on 

speech coding techniques, and the second uses a SOM for further optimization (data 

dimensionality reduction). We will see the development of this block in more detail in the 

section 2.2 Design of the Feature Extraction. 

Summarizing, the main contributions of this work are the following: 

• The first one was to make a market research to find a technology that would meet our 

needs. We found it and also we prepared it for an adequate development environment. 

• Then, we built a complete audio Recorder and Player. This task was not strictly necessary 

but the aim of this has been to learn, practice and improve the C ++ programming skills. 

With this audio Recorder and Player we are able to record the voice during some time, 

with different sample rates, different resolutions and finally we can save it in a .wav file 

for next processing steps like the speech coding. In addition we will be able to play and 

listen to the recorded signals. 

• Finally, we made the FE block for the speech recognition system, based on the ITU-T’s 

G.729 Recommendation. This Recommendation contains the description of an algorithm 

for the coding of speech signals using Linear Prediction Coding. This Recommendation 

also includes an electronic attachment containing reference C code which we used as a 

reference to build our own software getting satisfying results. 
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1.3  ORGANIZATION OF THIS WORK 

The hardware and software used for the implementation of the work is detailed in first place. 

Then, the implementation of the FE block is presented, which is the major research of this work 

and is presented following the conceptual division stated in Figure 2.5. The work concludes by 

commenting on the results and proposing future steps for the continuing of the project. 

 

1.4  RESOURCES 

The resources used for this work, apart from obviously the infinite amount of information 

found in the internet to answer several questions, papers and articles..., were basically, the 

Colibri computer module and computational resources like a normal PC to generate the software 

for it. We did the programming tasks in C++ language using Microsoft embedded Visual C++ 

for developing environment. Also we used Matlab suite to contrast results. 
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2 DEVELOPMENT 

2.1  BRIEF DESCRIPTION OF COLIBRI MODULE 

2.1.1 Hardware 

The Swiss company Toradex AG is headquartered in Horw nearby the city of Lucerne, and 

maintains local customer support offices in several countries throughout Europe and North 

America. Toradex® is specialized in highly miniaturized embedded computers based on 

Marvell® XScale® (Bulverde PXA270, Monahans PXA3xx) and X86 (Intel® Atom®) 

Processors [9]. 

For our purposes we have used one of its products, exactly, the Colibri XScale® PXA320 

which is a SODIMM sized computer module (See Figure 2.1). Its processor runs at up to 806 

MHz and consumes about 800 mW. The module’s targets are the low power systems that still 

require high CPU performance. 

It also offers all the interfaces needed in a modern embedded device: beside the internal 

Flash memory, there are plenty of interfaces available for data storage: Compact Flash/ PCMCIA 

and SD Card. The module provides glueless connectivity to passive and active LCDs with 

resolutions of up to 1024x768, as well as 4-wire resistive touch screens. An integrated 16 bit 

stereo codec allows Colibri PXA320 to play and record sound. Colibri PXA320 can directly 

connect to a CMOS/CCD camera sensor. In addition Colibri PXA320 offers a 100 Mbit Ethernet 

connection as well as an USB host and USB device functionality. 
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Figure 2.1 – Colibri PXA320 

Module Specifications: 

CPU 

PXA320 806MHz 

 

Memory 

128MB DDR RAM (32Bit) 

1GB NAND Flash (8Bit) 

 

Interfaces 

16Bit External BUS 

Compact Flash/PCMCIA 

LCD (SVGA) 

Touch Screen 

Audio I/O (16Bit Stereo) 

CMOS image sensor  

I2C 

SPI 

2x SD Card 

USB Host/Device 

100MBit Ethernet 

2x UART 

IrDA 

PWM  

127 GPIOs 

 

Software 

Pre-installed  

Windows CE 5.0/6.0 

 

Size 

67.6 x 36.7 x 5.2 mm 

Temperature Range 

   0 to +70°C 

-45 to +85°C (IT version) 
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In order to have a flexible development environment to explore the functionality and 

performance of the Colibri modules the Colibri Evaluation Board is used (See Figure 2.2). 

Besides the user interfaces it provides numerous communication channels as well as a 

configurable jumper area to hook up the Colibri GPIOs to the desired function. To facilitate 

interfacing to the custom hardware the Colibri Evaluation Board provides the buffered CPU bus 

on a separate connector. 
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Figure 2.2 – Colibri Evaluation Board 

Module Specifications: 

CPU Modules 

Colibri PXA270 

Colibri PXA300 

Colibri PXA310 

Colibri PXA320 

 

Interfaces 

10/100MBit Ethernet 

USB Host/Device 

USB Host 

2x PS/2 

Analogue VGA 

Generic LCD Connector 

TFT: Philips LB064V02-A1 

Line-In, Line-Out, Mic-In 

IrDA 

2x RS232 

CAN (Philips SJA1000) 

SD Card 

Compact Flash 

 

Power Supply: 

Required Input:  

7-24VDC, 3-50W 

On-board Converter: 

3.3V, 5V max 5A 

 

Size: 

200 x 200 mm 
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The received invoice from Toradex, for the Colibri XScale® PXA320, plus the Colibri 

Evaluation Carrier Board and plus the support hours are shown in the next Figure 2.3: 

 

Figure 2.3 – Invoice from Toradex 

2.1.2 Software 

The module is shipped with a preinstalled WinCE 5.0 image with WinCE Core license. Other 

OS like Embedded Linux are available from the third-party. 

Toradex provides a WinCE 5.0 image and a WinCE 6.0. All WinCE images contain the 

Toradex Board Support Package (BSP) which is one of the most advanced BSPs available on the 

market. Besides the standard Windows CE functionality, it includes a large number of additional 

drivers as well as optimized versions of standard drivers for the most common interfaces and is 

easily customizable by registry settings to adapt to specific hardware. 

The Microsoft® eMbedded Visual C++ 4.0 tool is used as desktop development environment 

for creating the applications and system components for Windows® CE .NET powered devices. 

In conclusion, all the software presented in this work was done using the Microsoft® 

eMbedded Visual C++ 4.0 development tool and the Toradex BSP tool (Figure 2.4). 
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Figure 2.4 – Microsoft® eMbedded Visual C++ 4.0 and Windows® CE 

 

2.2  DESIGN OF THE FEATURE EXTRACTOR 

As stated before, in a speech recognition problem the FE block has to process the incoming 

information, the speech signal, so that its output eases the work of the classification stage. The 

approach used in this work designs the FE block and divides it into two consecutive sub-blocks: 

the first is based on speech coding techniques, and the second uses a SOM for further 

optimization (data dimensionality reduction). The different blocks and sub-blocks are shown in 

the next Figure 2.5: 
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Figure 2.5 – FE schematic 

2.2.1 Speech coding 

2.2.1.1 Speech sampling 

The speech was recorded and sampled using a relatively inexpensive dynamic microphone 

and a Colibri’s audio input interface. The incoming signal was sampled at 8.000 Hz with 16 bits 

of resolution. 

It might be argued that a higher sampling frequency, or more sampling precision, is needed 

in order to higher recognition accuracy. However, if a normal digital phone, which samples 

speech at 8.000 Hz with a 16 bit resolution, is able to preserve most of the information carried by 

the signal [6], it does not seem necessary to increase the sampling rate beyond 8.000 Hz or the 

sampling precision to something higher than 16 bits. Another reason behind these settings is that 
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commercial speech recognizers typically use comparable parameter values and achieve 

impressive results. 

2.2.1.2 Pre-emphasis filter 

After sampling the input signal is convenient to filter it with a second order high-pass filter 

with cut off frequency at 140 Hz. The filter serves as a precaution against undesired low-

frequency components. 

The resulting filter is given by: 

  ( )
21

21

1
9114024.09059465.11

46363718.092724705.046363718.0
−−

−−

+−
+−=

zz

zz
zHh  (1) 

 

2.2.1.3 Word Isolation 

Despite the fact that the sampled signal had pauses between the utterances, it was still needed 

to determine the starting and ending points of the word utterances in order to know exactly the 

signal that characterized each word. To accomplish this, we decided to use VAD (Voice Activity 

Detection) technique used in speech processing, instead of using the rolling average and the 

threshold, determined by the start and end of each word, used in the previous works, with the aim 

of achieving more accuracy and efficiency. 

For that, we based our work in the Annex B from the ITU’s Recommendation G.729 [5], 

where a source code in C language about the VAD is efficiently developed. 

VAD is a method which differentiates speech from silence or noise signal to aid in speech 

processing and the Annex B provides a high level description of the Voice Activity Detection 

(VAD), Discontinuous Transmission (DTX) and Comfort Noise Generator (CNG) algorithms. 

These algorithms are used to reduce the transmission rate during silence periods of speech. They 
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are designed and optimized to work in conjunction with [ITU-T V.70]. [ITU-T V.70] mandates 

the use of speech coding methods. The algorithms are adapted to operate with both the full 

version of G.729 and Annex B. 

Let’s see a general description of the VAD algorithm: 

The VAD algorithm makes a voice activity decision every 10 ms in accordance with the 

frame size of the pre-processed (filtered) signal. A set of difference parameters is extracted and 

used for an initial decision. The parameters are the full-band energy, the low-band energy, the 

zero-crossing rate and a spectral measure. The long-term averages of the parameters during non-

active voice segments follow the changing nature of the background noise. A set of differential 

parameters is obtained at each frame. These are a difference measure between each parameter 

and its respective long-term average. The initial voice activity decision is obtained using a 

piecewise linear decision boundary between each pair of differential parameters. A final voice 

activity decision is obtained by smoothing the initial decision. 

The output of the VAD module is either 1 or 0, indicating the presence or absence of voice 

activity respectively. If the VAD output is 1, the G.729 speech codec is invoked to code/decode 

the active voice frames. However, if the VAD output is 0, the DTX/CNG algorithms described 

herein are used to code/decode the non-active voice frames. 

2.2.1.4 Speech coding 

After the signal was sampled, the spectrum was flattened, and the utterances were isolated we 

tried to codify it using the Linear Prediction Coding (LPC) method [3]. 

In a variety of applications, it is desirable to compress a speech signal for efficient 

transmission or storage. For example, to accommodate many speech signals in a given 

bandwidth of a cellular phone system, each digitized speech signal is compressed before 

transmission. For medium or low bit-rate speech coders, LPC method is most widely used. 

Redundancy in a speech signal is removed by passing the signal through a speech analysis filter.  
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The output of the filter, termed the residual error signal, has less redundancy than the original 

speech signal and can be quantized by a smaller number of bits than the original speech. 

The short-term analysis and synthesis filters are based on 10th order linear prediction (LP) 

filters. 

The LP synthesis filter is defined as: 

  

∑
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where âi, i = 1,...,10, are the quantized Linear Prediction (LP) coefficients. Short-term prediction 

or linear prediction analysis is performed once per speech frame using the autocorrelation 

method with a 30 ms (240 samples) asymmetric window. Every 10 ms (80 samples), the 

autocorrelation coefficients of windowed speech are computed and converted to the LP 

coefficients using the Levinson-Durbin algorithm. Then the LP coefficients are transformed to 

the LSP domain for quantization and interpolation purposes. The interpolated quantized and 

unquantized filters are converted back to the LP filter coefficients (to construct the synthesis and 

weighting filters for each subframe). 

 The LP analysis window consists of two parts: the first part is half a Hamming window and 

the second part is a quarter of a cosine function cycle. The window is given by: 
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There is a 5 ms look-ahead in the LP analysis which means that 40 samples are needed from 

the future speech frame. This translates into an extra algorithmic delay of 5 ms at the encoder 

stage. The LP analysis window applies to 120 samples from past speech frames, 80 samples from 
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the present speech frame, and 40 samples from the future frame. The windowing procedure is 

illustrated in Figure 2.4. 

 

Figure 2.6 – Windowing procedure in LP analysis 

 

The different shading patterns identify corresponding excitation and LP analysis windows. 

The windowed speech: 

  ( ) ( ) ( ) 0,...,239   ==′ nnsnwns lp  (4) 

 

is used to compute the autocorrelation coefficients: 
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To avoid arithmetic problems for low-level input signals the value of r(0) has a lower 

boundary of r(0) = 1.0. A 60 Hz bandwidth expansion is applied by multiplying the 

autocorrelation coefficients with: 
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where f0 = 60 Hz is the bandwidth expansion and fs = 8000 Hz is the sampling frequency. 

Furthermore, r(0) is multiplied by a white-noise correction factor 1.0001, which is equivalent to 

adding a noise floor at –40 dB. The modified autocorrelation coefficients are given by: 

  
( ) ( )
( ) ( ) ( ) 1,...,10     

0 000110

==′
=′

kkrkwkr

r.r

lag

 (7) 

 

The modified autocorrelation coefficients r'(k) are used to obtain the LP filter coefficients, 

ai, i = 1,...,10, by solving the set of equations: 
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The set of equations in (8) is solved using an efficient algorithm known as Levinson-Durbin 

algorithm. This algorithm uses the following recursion: 
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The final solution is given as [ ]10
jj aa = , j = 0...10, with a0 = 1.0. 

Finally, the LPC Cepstrum coefficients were obtained using: 
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where a value of  m = 10  was used in the feature extractor, resulting in 10 LPC Cepstrum values 

per frame. As a result of the LPC Cepstrum extraction procedure, each utterance was translated 

into a sequence of points, each belonging to the LPC Cepstrum feature space of dimension 10, 

and each 10 ms apart. In other words, this procedure translates an air pressure wave into a 

discretized trajectory in the LPC Cepstrum feature space. 

2.2.1.5 Summing up 

The speech coding different stages are the following: 

1. Sampling: the voice signal is sampled at 8.000 Hertz with 16 bits of resolution. 

2. Pre-emphasis filter: the sampled signal is filtered by a second order high-pass filter. 

3. Word Isolation: the filtered signal is passed through the VAD block to isolate the word. 

4. Blocking: the isolated word is divided into a sequence of data blocks of fixed length, 

called frames and multiplied by Hamming window of same width. 

5. LPC analysis: for each frame, 10 LPC coefficients are calculated. 

6. Cepstrum analysis: the 10 LPC coefficients are converted in 10 Cepstral coefficient ones, 

which are the output from the speech coding sub-block and the input of next one: the 

Dimensionality reduction.  
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2.2.2 Dimensionality reduction using SOM 

The Self Organizing Map (SOM) is a neural network that acts like a transform which maps 

an m-dimensional input vector into a discretized n-dimensional space while locally preserving 

the topology of the input data [4]. The expression “locally preserving the topology” means that 

for certain volume size in the input space, points that are close together in the input space 

correspond to neurons that are close in the output space. This is the reason that explains why a 

SOM is called a feature map: relevant features are extracted from the input space and presented 

in the output space in an ordered manner. It is always possible to reverse the mapping and restore 

the original set of data to the original m-dimensional space with a bounded error. The bound on 

this error is determined by the architecture of the network and the number of neurons. The SOM 

considers the data set as a collection of independent points and does not deal with the temporal 

characteristics of the data. It is a very special transform in the sense that it re-expresses the data 

in a space with a different number of dimensions while preserving some part of the topology. 

A typical Kohonen SOM architecture is shown below (Figure 2.7). It consists of an input 

layer connected to an output layer (two-dimensional Kohonen layer) via a Kohonen Synapses. 

Each neuron in a Kohonen Layer is associated with a unique set of co-ordinates in two-

dimensional space, and hence is referred to as a Position Neuron. The input layer with 'n' input 

neurons is fed with n-dimensional input data one by one. The output layer organizes itself to 

represent the inputs. 

 

Figure 2.7 – A typical Kohonen SOM network 
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During the training phase, a SOM builds a representation of training samples. The trained 

network can be used to map any input vector onto two-dimensional space. 

The objective of SOM training is to ensure that different parts of the network respond 

similarly to similar input vectors. So, the training mainly involves analysing the behaviour of the 

network for a training sample and adjusting the weights of synapses to ensure that the network 

exhibits a similar behaviour for a similar input. 

The training procedure involves the following steps: 

1. The neurons are arranged in an n-dimensional lattice. Each neuron stores a point in an m-

dimensional space. 

2. A randomly chosen input vector is presented to the SOM. The neurons start to compete 

until the one that stores the closest point to the input vector prevails. Once the dynamics 

of the network converge, all the neurons but the prevailing one will be inactive. The 

output of the SOM is defined as the co-ordinates of the prevailing neuron in the lattice. 

3. A neighbourhood function is centred on the prevailing neuron of the lattice. The value of 

this function is one at the position of the active neuron, and decreases with the distance 

measured from the position of the winning neuron. 

4. The points stored by all the neurons are moved towards the input vector in an amount 

proportional to the neighbourhood function evaluated in the position of the lattice where 

the neuron being modified stands. 

5. Return to 2, and repeat steps 2, 3, and 4 until the average error between the input vectors 

and the winning neurons reduces to a small value. 

After the SOM is trained, the co-ordinates of the active neuron in the lattice are used as its 

outputs. 

Once the utterance is translated into a trajectory the word recognition problem becomes into 

a trajectory recognition problem. In this approach the dimensionality of the trajectories is 
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reduced before feeding them into the Recognizer block. In this manner, the trajectory 

classification is highly simplified. 

Even more, despite the fact that the utterances are produced by a biological system; a system 

that necessarily produces continuous outputs, different utterances can represent the same word. It 

is important to note that each of these alternate utterances is valid and none of them can be 

regarded as a deviation from some ideal way to enunciate that word or as an incorrect output. In 

other words, there is no one-to-one relationship between the set of possible utterances and the 

class to which they belong: one utterance necessarily implies only one class, but a class does not 

necessarily imply only one utterance. This aspect makes any analytical representation of the 

problem more complex than it could be expected. 

The most common approach is to use the obtained trajectory to generate a sequence of labels, 

normally by means of a Vector Quantization (VQ) scheme [7]. This sequence is then used for 

recognition. As an example, Carnegie Mellon’s SPHINX speech recognition system [8] fed the 

output of the speech coding scheme into a VQ system which translated the incoming data into a 

sequence of phonemes. The SPHINX system then used an HMM approach to process the 

sequences of labels and recognize the words. 

Using the fact that the SOM is a VQ scheme that preserves some of the topology in the 

original space, the basic idea behind the approach employed in this work is to use the output of a 

SOM trained with the output of the LPC Cepstrum block to obtain reduced state space 

trajectories that preserve some of the behaviour of the original trajectory. The problem is now 

reduced to find the correct number of neurons for constituting the SOM and their geometrical 

arrangement. 

The SPHINX speech recognition system quantized the trajectories, which belonged to a 

space of 12 dimensions, using a VQ scheme with 256 vectors to generate a sequence of labels 

[8]. The SPHINX system achieved high recognition accuracy in a much more difficult problem 

than the one being investigated in this work. It consisted of recognizing words from a 1000 word 

vocabulary, under continuous speech conditions, and in the presence of multiple speakers. Based 

on these results, since a SOM is a VQ scheme that preserves some part of the topology of the 

original space, a SOM with as many neurons as vectors the SPHINX system had in its codebook 
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set should be capable of an efficient quantization of the input space. In other words, it should be 

capable of at least retaining the amount of information needed to achieve the recognition 

accuracy reached by the SPHINX system. 

Based on the ideas stated above, it was decided that a SOM with 256 neurons was enough to 

reduce the dimensionality of the trajectories while keeping enough information to achieve high 

recognition accuracy. The SOM was arranged in a two-dimensional lattice. The co-ordinates of 

the lattice were used as the co-ordinates of the reduced space trajectory. The fact that the 

outcome is a two-dimensional trajectory which can be graphically represented for visual display 

was not particularly important for our decision about the number of dimensions of the output 

space. 

It must be noted that a similar approach was used by Kohonen, but instead of reducing the 

dimensionality of the trajectory, he used the SOM to generate a sequence of labels, which was 

then used by a word classifier. Thus the present use of the SOM for order reduction in trajectory 

representations is a novel one and this application can find appropriate use in other problems 

besides speech recognition where similar trajectories arise [2]. 

2.2.2.1 Optional Signal Scaling 

The output of the SOM is defined by the co-ordinates of the neuron that was activated by the 

input. The output values may need to be scaled before they are fed into the Recognizer. 

2.2.2.2 Summing up 

As it was defined before, the Feature Extractor block works as a transducer that translates the 

information contained by an air pressure wave into a trajectory in some feature space. 

Figure 2.5 sums up the processing done by the FE block. The different steps follow one 

another according to the following sequence: 
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1. The incoming pressure wave is reduced to a digital signal through a sampling process. 

2. The starting and the ending points of the utterance embedded into the signal are obtained 

using the VAD process. 

3. The spectrum of the extracted utterance is enhanced by means of a pre-emphasis filter 

which boosts the high frequency components. 

4. Several data blocks are extracted from the enhanced signal. 

5. The extracted data blocks are windowed to reduce leakage effects. 

6. LPC components are extracted from the filtered blocks. 

7. LPC Cepstrum components are then extracted from the LPC vectors. 

8. The dimensionality of the LPC Cepstrum vectors is reduced using a SOM. 

9. The resulting vectors are scaled if the Recognizer requires it. 

Nothing can still be said about the overall effectiveness of the FE block, since it depends on 

the recognition accuracy of the overall system. As an example, if the complete system achieves 

low recognition percentages, that can be caused by the FE block or the Recognizer, but, if it 

achieves higher percentages that means that the FE block was at least able to produce data that 

allowed these recognition accuracies. In other words, in order to know the usefulness of the FE 

block, the Recognizer outputs must be obtained first. 
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2.3  SOFTWARE DEVELOPMENT 

2.3.1 Audio Recorder and Player 

As we have mentioned before, we built a complete audio Recorder and Player. This task was 

not strictly necessary but the aim of this has been to learn, practice and improve the C ++ 

programming skills. The graphic interface of the program is shown in the following Figure 2.8: 

 

Figure 2.8 – audioce Recorder & Player 
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As we can see in the Figure 2.8, with this software we are able to record the voice during 

some time, with different sample rates, different resolutions and finally we can save it in a .wav 

file for next processing steps like the speech coding. In addition, we will be able to play and 

listen to the recorded signals. Along with the documentation (Annex 2) is included an electronic 

attachment containing the source code in C++ used to build the software and which is coming 

with all the necessary explanations. 

As we can see in the next Figure 2.9 we can see the difference between the different ways of 

sampling. In general, the memory occupied by the sound file is proportional to the number of 

samples per second and the resolution of each sample. For the first case the speech is sampled at 

8.0 KHz and with 8 bits of resolution (1 byte/sample), this means that the memory occupied for 

the sound file will be 8.000 (samples/sec) x 5 (sec) = 40.000 (samples) = 40.000 (samples) x 1 

(byte/sample) = 40 Kbytes. 

For the second case the speech is sampled at 44.1 KHz and with 16 bits of resolution (2 

bytes/sample), the memory occupied for the sound file will be 44.100 (samples/sec) x 5 (sec) = 

220.500 (samples) = 220.500 (samples) x 2 (bytes/sample) = 440.1 Kbytes. 
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Figure 2.9 – Different samplings of the same speech signal 

 

It might be argued that the higher the sampling frequency and the higher the sampling 

precision, the better the recognition accuracy. However, if a normal digital phone, which samples 

speech at 8.000 Hz with a 16 bit precision, is able to preserve most of the information carried by 

the signal [6], it does not seem necessary to increase the sampling rate beyond 8.000 Hz or the 

sampling precision to something higher than 16 bits. Another reason behind these settings is that 

commercial speech recognizers typically use comparable parameter values and achieve 

impressive results. So for the speech coder we decided to use 8.000 Hz of sample rate and 16 bits 

of resolution as configuration to record the voice. 
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2.3.2 Feature Extractor 

After built the audioce Recorder and Player we added some new functions to the program as 

the part which represents the FE block. For that, we based our work on the ITU-T’s G.729 

Recommendation. This Recommendation contains the description of an algorithm for the coding 

of speech signals using Linear Prediction Coding and in which more processes like the filtering 

of the sampled signal, the division into blocks and the windowing of filtered signal and the word 

isolation are implicit. The graphic interface of the program is shown in the following Figure 

2.10. 

 

Figure 2.10 – audioce Recorder & Player & VAD Detector & Speech Coder 
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With this software we are able to record and play voice signals and save them in .wav files. 

In addition, we will be able to detect and isolate the voice command from the sound file, create a 

new file with it and finally codify to reduce its dimensionality. Along with the documentation 

(Annex 2) is included an electronic attachment containing the source code in C++ used to build 

the software and which is coming with all the necessary explanations. 

When we press the button “VAD Detector...” we have to select a sound file which contains 

the recorded voice. Then the sampled signal will go through all these steps: 

(Sampling: the voice signal is sampled at 8.000 Hertz with 16 bits of precision and saved 

in a new file called “left.wav”.) 

1. Pre-emphasis filter: the sampled signal is filtered by a second order high-pass filter and 

saved in a new file called “filtered.wav”. 

2. Word Isolation: the filtered signal is passed through the VAD block to isolate the word 

and saved in a file called “vad.wav”. 

We can represent the results of the different stages of the signal using Matlab and the earlier 

created sound files (Figure 2.11). 
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Figure 2.11 – Different stages of the signal in VAD Detector process 

 

As we can see, the first graphic shows the original signal (Command “right”), sampled at 8.0 

KHz, with 16 bits of resolution and in mono or 1 channel. We can realize that the signal has a 

DC offset and also that the end of the recording, is a bit noisy. The second graphic shows the 

filtered sampled signal and finally the third graphic shows the isolated word, after the VAD 

process. 

At this point we have to explain that the result shown for the VAD process was obtained 

using an algorithm myVAD.m [10] obtaining pretty good results. The problem with the algorithm 

developed for Colibri module is that it does not avoid the silence and the non-speech parts from 

the voice very well as the myVAD.m algorithm does, as is shown in the next Figure 2.12. 
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Figure 2.12 – Different ways of VAD process 

 

In the above Figure 2.12, the second graphic shows the recorded signal after VAD process 

using the algorithm developed for Colibri module. Here, we can see that even though the sound 

file is reduced in some silent parts of the signal are avoided; these process is not doing the 

correct work as the third graphic does. We tried to find the solution to this but finally we did not, 

so this part need to be improved and is left for future researchers as we explain in the section 3.2 

Directions for future research. 

To continue our research we decided to use the file created trough Matlab and myVAD.m 

algorithm called “vad2.wav”. Once we get the isolated word (“vad2.wav”) we can start codifying 

the speech clicking in “Speech Coder...” button. The next steps are the ones which the isolated 

word signal will follow: 
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1. Blocking: the isolated word is divided into a sequence of data blocks of fixed length, 

called frames and multiplied by Hamming window of same width. 

2. LPC analysis: for each frame, 10 LPC coefficients are calculated. 

3. Cepstrum analysis: the 10 LPC coefficients are converted in 10 Cepstral coefficient ones 

(Figure 2.13). 

 

Figure 2.13 – The 10 Cepstral coefficients for each frame 

 



32  Eneko Añorga, Diploma Work 

Once we get the 10 Cepstral coefficients for each frame if we click in “SOM...” button and 

select the file with the Cepstral coefficients (“c_coeff.txt”), we will fed the input layer of the 

Kohonen SOM, with this input data one by one. The output layer will organize itself to represent 

the inputs in two-dimensional space. 

The training procedure involves the following steps: 

1. The neurons are arranged in an n-dimensional lattice. Each neuron stores a point in an m-

dimensional space. 

2. An input vector is presented to the SOM. The neurons start to compete until the one that 

stores the closest point to the input vector prevails. Once the dynamics of the network 

converge, all the neurons but the prevailing one will be inactive. The output of the SOM 

is defined as the co-ordinates of the prevailing neuron in the lattice. 

3. A neighbourhood function is centred on the prevailing neuron of the lattice. The value of 

this function is one at the position of the active neuron, and decreases with the distance 

measured from the position of the winning neuron. 

4. The points stored by all the neurons are moved towards the input vector in an amount 

proportional to the neighbourhood function evaluated in the position of the lattice where 

the neuron being modified stands. 

5. Return to 2, and repeat steps 2, 3, and 4 until the average error between the input vectors 

and the winning neurons reduces to a small value. 

After the SOM is trained, the co-ordinates of the active neuron in the lattice are used as its 

outputs. 

Along with the documentation (Annex 2) is included an electronic attachment containing the 

source code in C++ used to build the software and which is coming with all the necessary 

explanations. In this case part of the code for SOM has been developed but still needs to be 

improved and finished, so this part is left for future researchers as we explain in the section 3.2 

Directions for future research. 
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3 CONCLUSIONS 

3.1  SUMMARY OF RESULTS 

As we have mentioned in the section 1.3 Contributions of this work the main contributions of 

this work are the following: 

• The first one was to make a market research to find a technology that would meet our 

needs. We found it and we also prepared it for an adequate development environment. 

We can see the Colibri PXA320 computer module and the Colibri Evaluation Board used 

for this work in the next figures: 

  

Figure 3.1 – Colibri PXA320 Figure 3.2 – Colibri Evaluation Board 

 

• Then, we build a complete audio Recorder and Player. This task was not strictly 

necessary but the aim of this has been to learn, practice and improve the C ++ 

programming skills. With this audio recorder we are able to record the voice during some 

time, with different sample rates, different resolutions and finally we can save it in a .wav 

file for next processing steps like the speech coding. In addition we will be able to play 

and listen to the recorded signals. 

• Finally, we made the FE block for the speech recognition system, based on the ITU-T’s 

G.729 Recommendation. This Recommendation contains the description of an algorithm 

for the coding of speech signals using Linear Prediction Coding. This Recommendation 

also includes an electronic attachment containing reference C code which we used as a 

reference to build our own software. 
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The approach done in this diploma work seems to be good enough to prove that translating 

speech into trajectories in a feature space works for recognition purposes. The human speech is 

an inherently dynamical process that can be properly described as a trajectory in a certain feature 

space. Even more, the dimensionality reduction scheme proved to reduce the dimensionality 

while preserving some of the original topology of the trajectories; it preserved enough 

information to allow good recognition accuracy. 

 

3.2  DIRECTIONS FOR FUTURE RESEARCH 

Concerning future work, besides revising and improving the FE block the scope of the 

project should be to develop the Recognizer block and finally join the whole system. 

Starting from the FE block the VAD block must be improved. Summarizing, we decided to 

use VAD (Voice Activity Detection) technique used in speech processing, instead of using the 

rolling average and the threshold, determined by the start and end of each word, used in the 

previous works, with the aim of achieving more accuracy and efficiency, but there are still some 

aspects in which work. 

With respect to the dimensionality reduction, the source code has been developed but still 

needs to be improved and finished to get results. In other hand, it must take into account that as 

the vocabulary size grows, the reduced feature space will start to crowd with trajectories. It is 

important to study how this crowding effect affects the recognition accuracy when reduced space 

trajectories are used.  

So far, all the approaches that are used in speech recognition require a significant amount of 

examples for each class. In a thousand-of-words vocabulary problem this would require that the 

user of the system uttered hundreds of thousands of examples in order to train the system. New 

approaches must be developed such that the information acquired by one module can be used to 

train other modules i.e. that use previously learned information to deduce the trajectories that 

correspond to non-uttered words. 

Finally, the scope would be to join the two parts of the whole project. The first part is the 

control module for the management of the wheelchair and the system of an ultrasound sensor net 
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to capture data from the surroundings, such as location and distance barriers and the second one 

is speech recognition system to control the wheelchair. Also the scope would be to convert the 

whole system in a real time system, instead to continue being a simulation as has been until 

nowadays. 
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