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PREFACE 

 

The aim of this Thesis is to study and develop Estimation Technique that enhances the 

Dynamic Tracking capability of Maneuvering Targets based using Inertial Systems. 

Inertial Measurement Systems have measurement biases and drifts and properly 

estimating their errors is a real time problem. Moreover, different targets perform 

different types of maneuvers during different stages of their trajectory and as such it is 

not possible to obtain accurate tracking of target maneuvers using a filters based on 

conventional single model approach. As such, a technique is required which is dynamic 

in both estimating and filtering the errors in inertial measurements and in switching to 

appropriate motion models according to the current maneuver of the vehicle. This 

thesis suggests and evaluates ‘Interacting Multiple Models (IMM)’ scheme for the 

solution to the above problem. Performance of the IMM scheme is proven over 

conventional single model based filters like Kalman Filter through both simulations and 

real target tracking. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

 

Inertial Navigation Systems (INS) have been one of the most oldest and simplest forms 

of navigation systems. INS systems are based on Dead-Reckoning techniques. Dead-

Reckoning techniques use an initial known point of origin and then record 

measurements of acceleration or velocity over time to obtain resultant position using 

integration. Although simple, INS systems are prone to accumulating errors over time 

resulting in very high drifts away from the true navigation solution.  

 

Usually the technique adopted is to integrate INS systems with Global Satellite 

Navigation Systems (GNSS). INS and GNSS have complimentary error characteristics, but 

this too has its limitations. GNSS signals are very weak and noise corrupted as well as 

prone to jamming and spoofing. As such, dependence on GNSS for aiding purposes is 

not an option in many cases especially in indoor scenarios like robotic navigation or 

underground railway systems. 

 

The Estimation techniques used for vehicle tracking using standalone INS systems have 

been based on Bayesian filtering techniques which use a particular vehicle motion 
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model to predict the target motion. However, a vehicle’s trajectory is based on different 

types of maneuvers during different stages and hence, a single model cannot provide 

accurate description of its behavior during the entire trajectory.  

 

A technique is thus required which is dynamic in both estimating and filtering the errors 

in inertial measurements and in switching to appropriate motion models according to 

the current maneuver of the vehicle. The aim here is to reduce and eliminate the errors 

and increase the accuracy and reliability of navigation solution when using standalone 

INS systems which will enable new possibilities of using INS systems in multitude of 

applications. 

 

To realize the importance of this work, consider the example in Fig. 1.1 and 1.2 of INS 

data collected over a period of 1 hour. The device, although stationary, experiences 

noise and bias offset. The data has been processed both in this raw form and using the 

filtering technique we have proposed in this Thesis.  The error present in the raw data 

results in a drift of position estimate over time far away from the true value which 

would be origin (0,0) in this case. The estimate using the technique in this thesis is just 

around origin.  

 

 

Figure 1.1: Position Estimate with Processing Raw Data of 1 hour of Stationary Mode 
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Figure 1.2: Position Estimate with the Proposed Solution of 1 hour of Stationary Mode Data 

 

1.2 Thesis Outline 

 

Chapter 2 provides the introduction to Inertial Navigation Systems. It provides in detail 

the types of INS systems and presents the explanation of their working and how to 

obtain navigation solutions using them. It also discusses the errors associated to INS 

systems and presents the analysis of the effects these errors have on the navigation 

solution. An Inertial Measurement Unit (IMU) device called ‘Inertia-Link’ is taken as a 

case and data recorded from it is used to show how the performance of a commercial 

INS device is deteriorated over time. 

 

Chapter 3 is about filtering techniques and in particular to Kalman and Extended Kalman 

Filter. Their operational principals are explained and the reason of their selection. A 

Kalman Filter with a simple motion model based on Newtonian equations of motion is 

used to estimate the errors of the above mentioned INS device which shows that how 

much the performance of these filters is dependent on the motion models and the 

associated variances. 
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Chapter 4 provides a survey of Vehicle Dynamic Models. It provides some of the most 

basic and widely used motion models for vehicle tracking. Analysis is provided on the 

pros and cons of different models by testing them for different types of maneuvers. The 

effect of the important parameters of each model is analyzed. Based on this discussion, 

we develop the models which we will use in the next chapter with IMM scheme. 

 

Chapter 5 introduces the ‘Interacting Multiple Models’ (IMM) algorithm and discusses 

its operation and advantages. We then integrate the models develop in previous 

chapters into the IMM and compare and analyze the results of the single model based 

filters and their performances to the result of the IMM approach. It shows that the IMM 

is capable of identifying the behavior of vehicle at a particular time and estimate it 

position using appropriate motion model which was not possible using just a single 

model approach. 

 

In Chapter 6, we present the achievements by testing the performance of the solution 

we developed in chapter 5 with an experimental setup and perform target tracking of a 

small car on tracks. The performance is analyzed and compared to conventional filtering 

solutions. 

 

Finally, Chapter 7 provides the conclusion of this study and presents the achieved 

improvement in performances of INS systems. It also suggests some potential 

improvements for future development. 
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CHAPTER 2 

INERTIAL NAVIGATION SYSTEMS 

 

2.1 Introduction 

 

Inertial Navigation Systems (INS) have been present for a long time. Inertial Systems use 

Inertial Measurement Units (IMUs) which are typically equipped with tri-axes 

Accelerometers and tri-axes Gyroscopes which provide the measurement of 

Acceleration and Angular Velocity in 3 dimensions. These systems are based on Dead-

Reckoning techniques. Using Dead-Reckoning, the position can be obtained by 

integrating the acceleration using Newtonian Equations of motion. Similarly, knowing 

the initial orientation, the Gyroscopes measure the angular velocity (or angular rate in 

case of digital systems) and provide the update on orientation. 

 

Inertial Systems are used in wide range of applications from navigation of aircrafts and 

ships to tactical missiles and spacecrafts.  However, INS systems are prone to many 

issues which affect their reliability and accuracy and hence limit its standalone use. The 

main issues are the Bias in the output values of accelerometers and gyroscopes, the 

noise present in the measurement sensors and the drift that occurs over time due to 

temperature changes, wear-n-tear and other factors. However, recent developments in 

MEMS technology have enabled devices which are smaller, light in weight and more 

reliable. These devices together with the signal processing techniques that have been 

developed have widened the range of possibilities for INS standalone operations. 
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In the following sections we will discuss the types of Inertial Measurement devices 

available and their characteristics. 

 

2.2 Types of Inertial Systems 

 

2.2.1 Gimbaled Configuration 

In this configuration the accelerometer and gyro sensors are mounted on a platform 

using gimbals to isolate the IMU from any external rotation and keep it in alignment 

with the global frame. The global frame is the frame of reference in which our vehicle is 

moving while the body frame is frame of reference of the INS system. The gimbals allow 

rotation in all 3 axes. The Gyros provide the rotation information which is used to turn 

the motors, which in turn rotate the gimbals and align the IMU back with the global 

frame. 

 

 

 

Figure 2.1: The Body and Global Frame of Reference ( Adapted from [1] ) 
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Figure 2.2: A Stable Platform IMU ( Adapted from [1] ) 

 

2.2.2 Strapdown Systems 

These systems are mounted on a rigid platform and hence instead of the global frame 

provide the acceleration measurements in the local body frame of the IMU. For 

orientation, the outputs of rate gyroscopes are integrated and this orientation is then 

used to transform accelerations from body frame to global frame. The benefit here is 

that these systems are physically smaller in size and with less mechanical complexity but 

this comes at the cost of additional processing. However, since the computational 

devices have become faster, this downside of Strapdown systems has been overcome 

and such devices are therefore now preferred over gimbaled systems. 

 

2.3 The Navigation Solution 

To obtain the position information using Accelerometers and Gyros, we first, in the case 

of Strapdown INS devices, project the acceleration components from body frame to 

global frame using the rotation matrix. The elements of the rotation matrix are 

calculated using the values of orientation which are based on information from rate 

Gyros. This would be the case when using the Strapdown INS systems: 

 

( ) ( ( ), ( ), ( ))Tb bx by bza t a t a t a t=
 

( ) ( ). ( )g ba t C t a t=  
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Where ( )ba t is the acceleration represented in the INS local body frame, ( )ga t is the 

acceleration converted to the global frame and ( )C t is the Rotation Matrix at time t. 

Then the component of acceleration due to gravity is subtracted. Now for the individual 

dimensions, we integrate once to obtain the change in velocity and add this to initial 

value of velocity and then integrate the new total velocity to obtain the change in 

position adding it to the initial value of position to obtain new complete position 

estimate using the following equations. 

0

( ) (0) ( ( ) ( )) 
t

g g g gv t v a t g t dt= + −∫  

0

( ) (0) ( ) 
t

g g gs t s v t dt= + ∫  

Where (0)gv and (0)gs are the initial velocity and position respectively. 

 

2.4 Sources of Errors 

The Error in the measurements of the IMU is the accumulated effect of various 

components of error sources. Some of these error components are compensated for 

during the manufacturing of the device and using on-board filtering that comes with 

modern day IMU devices. Details on all such sources can be found in references [1,3,4]. 

In the following, we concentrate on the main residual errors which are present in the 

final outputs of the IMU and need to be handled in real-time.  

 

2.4.1 Bias and Drift 

These are the most devastating of all error sources and amount for most of the part of 

residual error. Bias is a constant offset from the true measurement values. If bias is not 

accounted for in the accelerometer outputs, after double integration for position, the 

error will increase quadratically which can cause tremendous amount of drift from true 

position even in small period of time. For example, consider Table 2.1 which shows how 

even a small bias can drift the position estimate extremely far from the true value. 

21

2
.error bias t=
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Bias 

(
2/m s ) 

Error (meters) 

t=100 seconds 

Error (meters) 

t=10 minutes 

.001 0.5 180 

.01 5 1800 

0.1 500 18000 

0.2 1000 36000 

 

Table 2.1: Effect of Acceleration Bias on Position 

 

Similarly, drift in the angular rate information from gyros, if not accounted for; causes 

the IMU to falsely report rotation. Since when converting to body frame to global frame, 

the rotation matrix is used, any error in this matrix will cause the projection of the 

vertical component of acceleration, to be projected on the horizontal x-y plane and 

hence cause error in position estimate. 

 

2.4.2 White Noise 

The samples from the IMU sensors are corrupted with white noise sequence. This noise 

has a rate much greater than the sampling rate of the sensors [1]. The integration of 

these errors causes what can be called Angle-Random walk for Gyro errors and Velocity-

Random Walk for Accelerometer errors. This noise can be of low variance but still needs 

to be eliminated using signal processing techniques to eliminate error in the position 

estimates. 

 

2.4.3 Temperature Effects 

The bias, drift and noise are sensitive to the temperature changes and as temperature 

change so does their values. The effect of temperature is more evident in scenarios 

where the device runs over long periods of time or is subject to sudden changes of 

environment/altitude. Fortunately, the device we used came with temperature 

compensation and we are using a real-time bias estimating technique so this error 

source does not affect our analysis. 
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2.4.4 Calibration Errors 

Calibration Errors refer to accumulative effect of alignment errors, linearity problem, 

and scale-factor errors. Many of them are compensated during manufacturing and using 

on-board filtering of the IMU. However, if not compensated, they cause additional 

errors in position and orientation. 

 

2.5 Inertia Link from MicroStrain 

Inertia Link is the IMU device that we have used in our analysis. We have studied its 

characteristics and the errors present in its outputs and fed this information in our 

simulations. In this way, we have carried out different analysis by simulating the 

characteristics of an actual INS device. 

 

 

Figure 2.3: Inertia Link IMU Wireless Sensor Unit 

 

The following information has been taking from the Inertia Link website: 

“Inertia-Link® is a high-performance Inertial Measurement Unit and 

Vertical Gyro utilizing miniature MEMS sensor technology. It combines a 

tri-axial accelerometer, tri-axial gyro, temperature sensors, and an on-

board processor running a sophisticated sensor fusion algorithm. 

Inertia-Link® offers a range of output data quantities from fully calibrated 

inertial measurements (acceleration & angular rate or delta-Angle & 
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delta-Velocity vectors) to computed orientation estimates (pitch & roll or 

rotation matrix).    

All quantities are fully temperature compensated and corrected for sensor 

misalignment. The angular rate quantities are further corrected for G-

sensitivity and scale factor non-linearity to third order.” 

 

Some of the Inertia Link specifications from the device datasheet are: 

 

 

Table 2.2: Available Outputs from Inertia Link and their Specifications 

 

2.6 Inertia Link Output Analysis 

 

The Inertia Link IMU comes with a software package which allows collecting basic 

output data from the inertial sensors. The software has different modes to record 

different parameters. We used this software to record the IMU data in static condition 

i.e. when the IMU device was held stationary on a stable platform. This procedure was 

helpful in determining the behavior of the outputs and the errors present in them as 

during the static condition the accelerometers should read zero acceleration and any 

Available Outputs Acceleration and Angular rate, 

delta-Angle and delta-Velocity, 

Euler angles, Rotation matrix. 

Accelerometer Range accelerometers: ± 5 g 

Orientation Range 360° about all axes 

Accelerometer Bias Stability ± 0.005 g 

Accelerometer non-linearity 0.2% 

Gyro Range gyros: ± 300°/sec 

Gyro Bias Stability ± 0.2°/sec 

Gyro non-linearity 0.2% 

Orientation Accuracy ± 0.5° typical for static test conditions 

± 2.0° typical for dynamic (cyclic)test conditions 

& for arbitrary orientation angles 

Output Data Rates 1 to 100 Hz 
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variations would be due to the noise. Similarly, the values of orientation parameters 

namely Pitch, Roll and Yaw (Heading) should also be stable.  

However, as expected, the performance of IMU was prone to errors mainly bias and 

measurement noise from sensors. The analysis of all those is presented below.  

 

2.6.1 The Orientation Parameters: 

The graphs below show the recorded variations in the orientation parameters when the 

device was in static condition. Ideally these parameters should have a constant value 

but in this case they are subjected to variance over time. The variations in the Pitch and 

Roll parameters are also due to the instability and inaccuracy of the device as 

mentioned in the specifications. The main problem is with the Heading parameter, as 

can be seen; that the values of the Heading are continuously cyclic from -180 to 180 

degrees. This total instability of the Heading parameter is explained in the Inertia Link 

manual to be the result of lack of magnetometers in the Inertia Link which are required 

for accurate Heading information. In this condition the Heading output available is not 

usable as the PDF of the noise is uniform which is the worst PDF for estimating errors. 

Figure 2.4 shows 1 hour of recorded data and the respective noise PDFs. 

 

2.6.2 Acceleration and Angular Velocity 

The Acceleration is measured by the Inertia Link in three dimensional components. The 

two components from the horizontal plane X and Y and the third representing the 

vertical axis Z which is subjected to the Earth’s gravity in addition to any forced 

acceleration. 

 

Figure 2.5 shows the realization collected with the IMU device in the static condition. 

This data is useful as it provides information about the noise present in the three 

components of acceleration. The noise, although it may seem small, has detrimental 

effect on the accuracy of position estimate as shown in Table 2.1. In Fig 2.6 the noise 

was compared to a Gaussian noise with same mean and variance to see if it can be 

modeled as Gaussian when using signal processing techniques to eliminate it. Similar 

analysis is done in Figures 2.7-2.8 for Angular Rate. 
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Pitch 

 

Roll 

 

Heading 

 

Figure 2.4: The Parameters of Attitude in Stationary State and their Noise Analysis 
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Figure 2.5: The variations in 3 dimensional Acceleration measurements in IMU stationary state 

 

Comparison with Gaussian Noise 

 

 

Figure 2.6a: Comparison of Noise in Acceleration measurements with Gaussian Noise 
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Figure 2.6b: The comparison of Noise in Acceleration measurements with Gaussian Noise (Continued 

from last page) 

 

 

 

 

 

Figure 2.7: The variations in 3 dimensional Angular Rate measurements in IMU stationary state 
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Comparison with Gaussian Noise 

 

 

 

Figure 2.8: Comparison of Noise in Angular Rate measurements with Gaussian Noise 

 

From the above graphs, it is evident that the noise has a non-zero mean which indicates 

Bias Error. The noises in different parameters have been compared to Gaussian noises 

with respectively same mean and variances. We performed different test such 

Anderson-Darling test and Kolmogorov–Smirnov to test its Gaussianity. The noise in 

Angular Rate parameters was found to be Gaussian but for Acceleration outputs the 

tests failed. But, even though the noise is not strictly Gaussian, as can be seen, the 

difference between actual distributions and Gaussian distributions is not large and as 

such we can approximate these noises as Gaussian Noises. This is a big advantage as 

when using Bayesian Filtering techniques for estimating the errors, the Gaussian 

assumption simplifies the problem to a great deal and simple filters such as Kalman and 

Extended Kalman filters can be employed. 
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The above analysis shows the Error characteristics in the different outputs of a typical 

IMU device. Our main focus is in obtaining the position estimate of the vehicle rather 

than its orientation. Therefore, further onwards; we will be treating our vehicle as a 

Point Target concerned with its position in 2D XY Plane. However, the principals of 

filtering discussed in Chapter 3 also hold valid in detecting the Bias and Noise in 

Orientation and Angular Velocity values. 
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CHAPTER 3 

KALMAN FILTERS 

 

 

The choice of filtering technique to eliminate noise depends on the nature of noise 

present in the system. Kalman Filters are based on the assumption of Gaussianity and if 

noise is not Gaussian then other filters such as Particle Filters are employed. As the 

analysis done in Section 2.6 of Chapter 2 indicates that the noises present in the INS 

sensors outputs can be approximated as Gaussian, Kalman Filter was chosen to process 

the Raw INS data and estimate the errors in measurements and provide position 

estimates. 

 

Kalman Filter is an estimation technique based on Bayesian estimation principles. Its 

purpose is to predict the true values of measurements and State values from those 

values of measurements which are corrupted by noise and other inaccuracies. State 

values are the parameters that are calculated by Kalman Filter and are related to the 

measured quantities. Kalman filter works by predicting the future values of 

measurements and state values based on the measurements available up to the current 

point in time, the system dynamical model, the control inputs and specified noise 

variances.  
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The system dynamical model defines the expected evolution of the state values in 

relation to each other and measurements. The system model also defines the expected 

amount of variation in state values from one estimate to another using variance of what 

is called ‘Process Noise’. Also, the expected variance of the noise induced into the true 

measurements values in the sensors is defined using variance of ‘Measurement Noise’. 

Both these noises are assumed to be Zero-mean Gaussian Noise processes and the 

performance of Kalman Filter is based heavily on the principle of Gaussianity.  

 

As it predicts, Kalman Filter also computes the uncertainty of that estimate. It then 

updates and corrects any error in that estimation as the future measurement values are 

made available. The Kalman filter averages a prediction of a system's state with the new 

measurement using a weighted average. The purpose of the weights is that values with 

better estimated uncertainty are more reliable. The weights are calculated from the 

covariance of the estimates which provide a measure of the estimated uncertainty of 

the prediction of the system's state. The result of the weighted average is a new state 

estimate that lies in between the predicted and measured state, and has a better 

estimated uncertainty than either alone. 

 

The proper specification of the dynamical model and the variances are important factors 

in Kalman filter performance. Also, if the system in non-linear, then this simple form of 

Kalman Filter has to be altered to accommodate system non-linearity resulting in what is 

called the ‘Extended Kalman Filter’ (EKF). 

 

In the following sub-section we provide equations for Vector State and Vector 

Observation Kalman Filter which is most widely used form of Kalman Filter. A detailed 

treatment of all cases and their derivations can be found in [12].  Also, an overview of 

EKF is provided. 

 

3.1 Vector State Vector Observation Kalman Filter 

This implies that measurements from more than one sensor are available and also the 

number of states to estimate based on those measurements; are also more than one. 
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The equation that defines the evolution of states is called the ‘State Equation’ which in 

this case is given by: 

 

[ ] [ 1] [ ]      0n n n n= − + ≥s As Bu  

 

Where A, B are known p p× and p r×  ‘State Transition’ and ‘Input Control’ matrices 

respectively, u[n] is a vector WGN with ~ (0, )� Q  and s[-1] ~ ( , )s s� Cµ  and is 

independent of u[n]. Q[n]represents the covariance matrix of process noises. Here A 

represents the System State Model or System dynamical Model which describes the 

evolution of states from one instance to another. B is a vector of control inputs which 

relate the u[n] to the state values and is optional.  

The equation that relates the measurements to the states is called the ‘Measurement 

Equation’ and is given by: 

 

[ ] [ ] [ ] [ ]n n n n= +x H s w  

 

Where x[n] is the 1M × vector of measurement variables, H[n] is a known M p× matrix 

that relates states to the measurements from M sensors and w[n] is zero-mean WGN 

noise which represents the error in the measurements. The elements in w[n] are 

independent of each other and u[n] and s[-1] and w[n] ~ (0, [ ])� nC . C[n] here is the 

covariance matrix of measurement noises. 

 

The Equations of a single iteration of Kalman Filter’s Estimation process are then given 

by:  

 

Prediction:  

This involves predicting the next value of State vector at time n using the State 

Transition Matrix and the previous value of State vector at time n-1. 

 

ˆ ˆ[ | -1] [ -1| -1]n n n n=s As  
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Minimum Prediction MSE Matrix ( )p p× : 

Calculates the uncertainty of the prediction made in the previous step 

 

[ | -1] [ 1 | 1]
T T

n n n n= − − +M AM A BQB  

 

Kalman Gain Matrix ( )p M× : 

Calculate the weight according to which correction is made to the previous estimate 

 
-1

[ ] [ | -1] [ ]( [ ] [ ] [ | -1] [ ])
T T

n n n n n n n n n= +K M H C H M H  

 

Correction: 

Correction of predicted s[n] based on new measurements and the Kalman Gain 

 

ˆ ˆ ˆ[ | ] [ | -1] [ ]( [ ] - [ ] [ | -1])n n n n n n n n n= +s s K x H s  

 

Minimum MSE Matrix ( )p p× : 

Calculates the uncertainty of the new estimate. 

 

[ | ] ( - [ ] [ ]) ( | -1]n n n n n n=M I K H M  

 

Where the mean square matrices are defined as 

 

ˆ ˆ [ | ] [( [ ] [ | ])( [ ] [ | ] ]

ˆ ˆ [ | 1] [( [ ] [ | 1])( [ ] [ | 1]) ]

T

T

n n E n n n n n n

n n E n n n n n n

= − −

− = − − − −

M s s s s

M s s s s
 

 

 

3.2 Extended Kalman Filter 

 

The Extended Kalman filter is a variation of Kalman filter employed when the system has 

non-linear equations resulting that instead of 

 

ˆ ˆ[ ] [ -1] [ ]n n n= +s As Bu  

[ ] [ ] [ ] [ ]n n n n= +x H s w  
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We would have 

ˆ ˆ[ ] ( [ -1]) [ ]

[ ] ( [ ]) [ ]

n n n

n n n

= +

= +

s a s Bu

x h s w
 

 

As a result we have to linearize a and h. We linearize a(s[n-1]) about the estimate of s[n-

1] and h(s[n]) about s[n]. The resulting State and Measurement equations will be: 

 

ˆ ˆ[ ] [ 1] [ -1] [ ] ( [ 1| 1]) [ 1] [ 1| 1])n n n n n n n n n= − + + − − − − − −s A s Bu a s A s  

ˆ ˆ[ ] [ ] [ ] [ ] ( ( [ | 1]) [ ] [ | 1]n n n n n n n n n= + + − − −x H s w h s H s  

 

Where A[n-1] and H[n] are defined using Jacobeans: 
 

ˆ[ 1] [ 1| 1]

[ 1]
[ 1]

n n n

n
n − = − −

∂
− =

∂ −
s s

a
A

s
 

ˆ[ ] [ | 1]

[ ]
[ ]

n n n

n
n = −

∂
=
∂

s s

h
H

s
 

 

The Recursive estimation Equations for the Extended Kalman Filter will now be: 

 

Prediction: 

ˆ ˆ[ | -1] ( [ -1 | -1])n n n n=s a s  

 

Minimum Prediction MSE Matrix ( )p p× : 

 

[ | -1] [ 1] [ 1 | 1]
T T

n n n n n= − − − +M A M A BQB  

 

Kalman Gain Matrix ( )p M× :  

 
-1

[ ] [ | -1] [ ]( [ ] [ ] [ | -1] [ ])
T T

n n n n n n n n n= +K M H C H M H  

 

Correction: 

ˆ ˆ ˆ[ | ] [ | -1] [ ]( [ ] - ( [ | -1]))n n n n n n n n= +s s K x h s  
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Minimum MSE Matrix ( )p p× : 

 

[ | ] ( - [ ] [ ]) ( | -1]n n n n n n=M I K H M  

 

Important thing to remember is that the Extended Kalman Filter has no optimality 

property and its result will depend on the accuracy of linearization which limits its usage 

as calculating Jacobeans in real-time is not easy and results are not accurate enough. 

 

3.3 Kalman Filter based Processing of Raw INS Data 

 

The choice between using Kalman or Extended Kalman Filter is based on the relationship 

between the State Vector and the Measurement Vector. Our State Vector comprises of 

True values of Position, Velocity, Acceleration and Bias in Acceleration in 2D XY Plane, 

whereas, the Measurement Vector comprises of Biased and Noise corrupted version of 

the X and Y component of true acceleration. As such the Measurement Acceleration is 

the sum of the true Acceleration and Bias. 

 

Using the Newton’s Equation of Motion, we developed a simple Dynamic Model for use 

as the State Transition Matrix to show the development and performance of Kalman 

Filter and its sensitivity to selection of proper noise Covariances. 

 

The State Model developed is: 
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Where Acc, Vel and Pos are Acceleration, Velocity and Position respectively and 

subscripts denote their dimension. u[n] is the vector of ‘Process Noise’. It is very 

important as this specifies that how much variations in a parameter of state vector can 

be expected and allowed. A small value of Process Noise will result in large variations to 

be suppressed and vice-versa. Here, the Process Noise is specified for the parameters of 

Acceleration and Bias only as the other two parameters i.e. Position and Velocity are 

dependent on Acceleration itself, so variance of Acceleration defines the variance of 

them as well. T is the sampling time period i.e. time between two consecutive 

measurements from the IMU. As T is constant, the model is Linear in its behavior.  

 

The Measurement Model corresponding to the above State Model is: 

 

[ ] [ ] [ ] [ ]n n n n= +x H s w  

 

[ ]

[ ]

x

y
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= 
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Here Ax and Ay represent the Biased and Noisy version of Acceleration in X and Y 

dimensions respectively. This means that measured acceleration is sum of true 

acceleration and bias plus some measurement noise. The vector w[n] represents 

measurement noise. It is the noise induced when reading the measurements from the 

IMU sensors. A small value of measurement noise indicates that the measurements are 

more reliable and are hence followed more closely by the Kalman Filter. A large 

measurement noise, on the other hand means that measurements are not so useful and 

Kalman Filter uses the State Model to predict and estimate the values of state vector. 

As can be seen, both State and Measurement Models are Linear. Therefore, we do not 

need to employ Extended Kalman Filter and simple Kalman Filter will suffice for our 

analysis. 
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Now we process data recorded from Inertia Link IMU device over a period of 

approximately 1 hour in static condition and try to determine the value of Bias present 

in Acceleration measurements and predict the position. Ideally the position should (0,0) 

in Cartesian coordinates. It is interesting to see the difference between the resultant 

positions when using Raw and Processed data. The sampling rate here is T=0.1 seconds 

which gives us 36000 samples. 

 

3.3.1 The Measurement Noise 

The values for measurement noises in X and Y components of acceleration were 

determined using the recorded data in stationary condition. As in stationary condition, 

the mean of the samples represent the bias and the variance of the samples represents 

the variance of the remaining Zero-mean Gaussian Noise present in the system. Since 

we are estimating the bias in real-time by including it in the state vector, we only 

needed to specify measurement variances for accelerations which were determined to 

be: 

• Measurement Noise Variance in X Component of Acceleration =  5.2464e-006 

• Measurement Noise Variance in Y Component of Acceleration = 5.4411e-006 

• Sampling Period T = 0.1 seconds or 10Hz 

 

3.3.2 Processing with High Process Noise Variance 

Allowed Variance in Acceleration = 1e-3 

Allowed Variance in Bias = 0.0015 

 

When processing with a relatively high value of process noise, the small 

variations in the acceleration which are due to noise are not filtered out properly 

and integrated. This integration results in a linear drift for velocity estimate and 

exponential drift in position estimate as can be seen in Figure 3.1. The final 

estimate using Kalman Filter, although has smaller error then the error due to 

raw data processing, is still very large and unacceptable which can be seen Figure 

3.5 
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Processing in X- Dimension: 

 

Processing in Y- Dimension: 

 

Figure 3.1: Processing INS data with variance equal to 1e-3 
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Position Estimate in XY Plane   

 

 

Figure 3.2: Position Estimates using Raw and Filtered Data (Variance=1e-3) 

 

 

3.3.3 Processing with Low Process Noise Variance 

Allowed Variance in Acceleration = 1e-9 

Allowed Variance in Bias = 0.0015 

 

Due to a very low process noise variance, the Kalman filter eliminates all the 

variations in the acceleration measurements. After the removal of bias and 

noise, the estimated acceleration is almost zero and so are the velocity and 

position estimates. This can be seen in Figure 3.3 and 3.4.  
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Processing in X- Dimension: 

 

Processing in Y- Dimension: 

 

Figure 3.3: Processing INS data with variance equal to 1e-9 
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Position Estimate in XY Plane   

 

 

Figure 3.4: Position Estimates using Raw and Filtered Data (Variance=1e-9) 

 

3.3.4 Comparison 

From the above graphs, the benefit of using the Kalman Filter is clear as the difference 

between values of position using Raw IMU data and filtered data is extraordinarily 

tremendous. Still, to choose between Low and High Process covariance, the below 

graphs of Kalman Filter estimated positions are helpful. 

 

 

Figure 3.5 Position Estimate with 1e-3 variance  
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Figure 3.6: Position Estimate with 1e-9 variance 

 

It can be seen that in case of High Process Variance, the resultant position is at ~(-7658,-

603)meters which is far much away from it ideal (0,0) position than compared to the 

position calculated using Low Process Variance which is only (0.38,1.95)meters. This is 

effect of choosing the Process Noise Variance carefully and according to the specific 

scenario. Since, the data was associated to stationary state, a Low Process Variance is 

found to generate the corresponding correct results in this case. We will be using the 

model developed here with this low process variance in chapter 5 as one of the models 

in the IMM structure and refer to it as the ‘Static Model’. 
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CHAPTER 4 

VEHICLE DYNAMICS MODELS 

 

The vehicle dynamic models describe different possible evolutions of a trajectory for a 

vehicle. Different types of vehicles like cars, ships, planes perform different types of 

maneuvers from simple to complex. As such a single model does not represent all such 

maneuvers and particular models are constructed to accurately describe and aid in 

predicting the trajectory according to the application. These Vehicle Dynamic Models, 

also known as Motion Models, are used in filtering techniques such Kalman Filter as 

State Transition Matrix. With the help of these models, Kalman filter is able to predict 

the next value in target tracking. The better are these models, the better is the 

performance of estimation filter. Therefore, a lot time was spent in studying and 

selecting models. One of the issues while designing motion models is that one should be 

able to relate the state vector to the measurement model. That is the parameters to be 

predicted must be related to the observations available. Many models in the literature 

were related to target tracking using range and bearing measurements form radars and 

as such we had to do slight modifications to relate them to inertial systems. 

 

A target dynamic model or motion model describes the evolution of the target state 

with respect to time. A non-maneuvering model is the straight and level motion at a 

constant velocity sometimes referred to as uniform motion. All other types of motion 

belong to maneuvering class. 
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In the following sub-sections, we discuss some of the typical types of models. We 

discuss here the Maneuvering Dynamic Models coupled and un-coupled across different 

coordinates. A detail treatment can be found in [13] which has been the main reference 

is developing motion models in this thesis. 

 

In all cases the 1 dimensional state vector, unless otherwise stated, is defined as: 

 

[ , , , ]'x position velocity acceleration bias=  

 

And the Measurement Model associated is same as defined in Section 3.3 of Chapter 3. 

 

4.1 Coordinate Un-Coupled Models 

 

Most target motion models are coupled across different dimensions i.e. the motion in 

one dimension effects on the motion in other dimension. But for most of the cases this 

coupling is assumed weak and the models are uncoupled which makes it easier to 

consider a particular direction at a time. 

We discuss here the models that were selected to be used during the development of 

this thesis. 

 

 

4.2 Wiener Process Acceleration Model 

 

This model assumes acceleration to be a Wiener process or more specifically that it is a 

process with independent increments which is not necessarily a Wiener process. It is 

also referred to as the Constant Acceleration or nearly-constant Acceleration Model 

(CA). 

This model has two variations. The first one is the White Noise Jerk Model which 

assumes that the Acceleration Derivative i.e. Jerk is an independent white noise process. 
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The Discrete-time Equivalent of this model in 1 Dimension with 

 [ , , ]'x position velocity acceleration=   is: 

 

2

1 1 ,        1

1 / 2

0 1

0 0 1

k k k

T T

x F x w F T+

 
 

= + =  
    

 

5 4 3

4 3 2

3 3

3 2

/ 20 / 8 / 6

cov( ) ,       / 8 / 3 / 2

/ 6 / 2

k w

T T T

Q w S Q Q T T T

T T T

 
 

= = =  
    

 

Where, [ ( ) ( )] ( ),wE w t w t Sτ δ τ+ =
 
and wS is the power spectral density, not the variance, 

of the continuous-time white noise. 

 

The second version called the Wiener-Sequence Acceleration Model assumes the 

Acceleration Increment as an independent white noise process. Acceleration Increment 

over a time is the integral of the jerk over that time. This model results in: 

 

2

1 1 1 , 1

/ 2

     

1

k k k

T

x F x G w G T+

 
 

= + =  
    

 

The vector 
kw is the discrete-time zero-mean Gaussian noise in acceleration and 

1G

relates it to the state vector elements. 

 

Note that its noise term has a covariance different from that of the White-Noise Jerk 

model: 

3 3 2

3 2

1 1

2

/ 4 / 2 / 2

cov( ) var( ) / 2 / 2

/ 2 1

k k

T T T

Q G w w T T T

T T
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= =  
    
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These models are crude as actual maneuvers are actually quite complex but they do 

provide modeling simple motions of a moving target. 

 

In our Thesis we used the Wiener-Sequence Acceleration Model and modified it slightly 

to accommodate for the inclusion of Bias parameter in State Vector and Covariance 

Matrix. 

 

The resultant one-dimensional State model and Covariance Matrix are 

 

2

1 2 2 , 2

/ 2

              
1

0

k k k

T

T
x F x G w G+

 
 
 = + =
 
 
 

 

Where  

[ , , , ]x Position Velocity Acceleration Bias=  

and 

2 1( ,1)F diag F=
 

2 1,( 1)Q diag Q=
 

 

The value of variance for
kw was chosen to be 0.001 which was sufficient to provide 

correct results in the simulation. The Bias is a constant offset, which is assumed to be 

invariant and hence it was set to zero process noise. Some of the results of simulations 

with synthetic data induced with the same noise and offset bias corresponding to the 

Inertia Link IMU device are shown on next page in Figure 4.1. In all figures, Acceleration 

has units of meter/sec
2
, velocity is expressed in meters/second and position is in  

meters. 
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X Dimension 

 

Y Dimension 

 

Figure 4.1: Synthetic Data of Acceleration and its Processing using Wiener Model 
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Figure 4.2: Comparison of trajectory estimates using  

Wiener Model and Noisy Data with the True trajectory 

 

4.3 Singer Model 

 

In stochastic modeling, a random variable is used to represent an unknown time-

invariant quantity whereas an unknown time-varying quantity is modeled by a random 

process. White-noise constitutes the simplest class of random processes but where 

white-noise models are not suitable either the independent increment i.e. wiener 

models are used or the Markov process models which include Wiener and white-noise 

as special cases [13]. 

 

A white noise process is uncorrelated in time while in a Markov process a value at one 

time depends on its immediate neighbors. The Singer Model which has been described 

in detail in [14] and [15] assumes target acceleration as a Zero-mean Stationary First-

order Markov Process where autocorrelation is given by: 

  

2( ) ( ) ( ) ,       0mr Ea t a t e
αττ τ σ α−= + = ≥  
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Such a process ( )a t  is the process of a linear time-invariant system 

 

( ) ( ) ( )a t a t w tα= − +ɺ  

 

Where ( )a t is a zero-mean white-noise process with constant power spectral density

22wS ασ= . The discrete time equivalent would be 

 
 

1

a

k k ka a wβ+ = +
 

 
 

Where 
a
k
w is zero-mean white-noise sequence with variance 2 2

(1 )σ β− . 

The state space representation is then given by 

 

2

1 3

1 ( 1 ) /

0 1 (1 ) /

0 0

T

T

k k k k k

T

T T e

x F x w e x w

e

α

α

α

α α
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−

−
+

−

 − +
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    

 

2 and α σ are design parameters and the performance of Singer model depends on the 

accuracy in determining them. The α is defined as 1 / mτ  i.e. the reciprocal of the 

maneuver time constant and depends on how long the maneuver lasts. For example, for 

an aircraft’s lazy turn it can be 60 seconds and for an evasive maneuver 10-20 seconds. 

2σ is the instantaneous variance of acceleration treated as a random variable.  

 

A distribution was suggested by Singer in [14] using ternary-uniform mixture shown in 

Figure 4.3.  A target may move without acceleration with probability
0P , accelerate or 

decelerate with a maximum probability of 
maxP or accelerate or decelerate at a rate 

uniformly distribute over 
max, max( )A A− . Given this, variance then results in 

 

2
2 max

max 0[1 4 ]
3

m

A
P Pσ = + −

 

 

Where 
0 max,P P and 

maxA are design parameters. 



 

 

Figure 4.3: Ternary-Uniform Mixture Distribution as Suggested by Singer [14]

 

The covariance matrix for Singer Model for a fixed sensor and sampling period T is given 

by: 

3lim ( ) 2 / 8 / 3 / 2
T

Q k T T T
α →

 

Again after accommodating for bias, the 1

Covariance Matrix becomes:
 

Where  

[ , , , ]x Position Velocity Acceleration Bias=

 

The choice of α and T determine the behavior of Singer Model. As 

decreases, Singer model corresponds more to a Constant Acceleration (CA) model. On 

the other hand as mτ decreases the Singer Model behaves more like Constant Velocit

(CV) model where acceleration is considered noise. Consequently, the value of 

determines its behavior between CA and CV models.

 

Uniform Mixture Distribution as Suggested by Singer [14]

The covariance matrix for Singer Model for a fixed sensor and sampling period T is given 

5 4 3

2 4 3 2

3
0 3 2

/ 20 / 8 / 6

lim ( ) 2 / 8 / 3 / 2

/ 6 / 2

m

T T T

Q k T T T

T T T

ασ
→

 
 

=  
  

 

Again after accommodating for bias, the 1-dimensional State Vector and corresponding 

Covariance Matrix becomes: 

1 4 ,k k kx F x w+ = +  

[ , , , ]x Position Velocity Acceleration Bias

 

4 3( ,1)F diag F=  

4 3,( 1)Q diag Q=
 

determine the behavior of Singer Model. As mτ increases,

Singer model corresponds more to a Constant Acceleration (CA) model. On 

decreases the Singer Model behaves more like Constant Velocit

(CV) model where acceleration is considered noise. Consequently, the value of 

determines its behavior between CA and CV models. 
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Uniform Mixture Distribution as Suggested by Singer [14] 

The covariance matrix for Singer Model for a fixed sensor and sampling period T is given 

tor and corresponding 

increases, and α   

Singer model corresponds more to a Constant Acceleration (CA) model. On 

decreases the Singer Model behaves more like Constant Velocity 

(CV) model where acceleration is considered noise. Consequently, the value of α
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Figure 4.4 shows some results which were obtained during simulations for finding the 

correct value of mτ for our analysis. They show the effect of high and low values of mτ

with respect to the maneuvers. The simulations were done with a Sampling rate T=0.01 

seconds and maneuver lasting for 1 second. In all figures, Position is expressed in 

meters. 

 

 

For mτ =0.2 

 

 

For mτ =0.5 

 

 

Figure 4.4a: Effect of maneuvering time-constant on tracking performance (a) 
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For mτ =1 

 

For mτ = 3 

 

 

Figure 4.4b: Effect of maneuvering time-constant on tracking performance 

 

The Singer acceleration model is a standard model for target maneuvers. It was the first 

model that characterizes the unknown target acceleration as a time-correlated (i.e., 

colored) stochastic process, and has served as a basis for the further development of 

effective target maneuver models. This is the advantage of Singer model over other 

models as acceleration in many cases is time-correlated and Singer model is able to use 

this correlation to better predict the states. Another advantage is that in Singer model 

the choice of process variance is not a trial-and-test procedure and by knowing the 

correct maneuvering time constant, the right value is calculated using the ternary-

uniform mixture distribution as shown in Figure 4.3. 
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A complete analysis and derivation can be found in the original paper written by Singer 

himself [14]. 

 

 

 

4.4 Coordinated Turn Model 

 

Two dimensional models are naturally turn motion models and are in particularly called 

Coordinated Turn models. Coordinated Turn implies constant forward speed and 

constant turn rate. They are established based on target kinematics rather than random 

processes. The underlying equations for a 2D horizontal plane CT motion are derived 

from the standard curvilinear-motion model from kinematics: 

 

 

( ) ( ) cos ( )

( ) ( ) sin ( )

( ) ( )

( )
( )

( )

t

n

x t V t t

y t V t t

V t a t

a t
t

V t

ϕ
ϕ

ϕ

=

=

=

=

ɺ

ɺ

ɺ

ɺ

 

 

 

Where (x,y) are the Cartesian coordinates, V is the forward speed, and ϕ is the heading 

angle. 

 

ta  and na  denote target acceleration in tangential (along-track) and normal(cross-track) 

directions in the horizontal plane respectively. [13] 

 

There are 3 special cases regarding ta  and na : 

 

1. na = 0, ta  = 0  — rectilinear, constant velocity motion; 

2.  na = 0, ta ≠ 0  — rectilinear, accelerated motion (CA motion if ta  = constant); 

3.  na ≠ 0, ta = 0  — circular, constant speed motion (CT motion if na = constant). 

 

The third case is known as a (standard) coordinated turn (CT), which has a constant 

forward speed and constant turn rate. 
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CT model has two variations, the case where the Turn rate ω  is known and the case 

where it is unknown.  Since the IMU device we used provides us with the Turn rate 

information, we used the CT Model with known Turn rate in our analysis. 

 

 

4.4.1 CT Model with Known Turn Rate 

The discrete time CT model with the state vector defined as '[ , , , ]x x x y y= ɺ ɺ is given by: 

 

1 5
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Since ω is known, the model is linear. An approximation of the above model is given by: 

 

2

2

6 2

2

1 0 / 2

0 1 ( ) / 2 0
( )

0 / 2 1

0 0 1 ( ) / 2

k k

T T

T T
F x x

T T

T T

ω
ω ω

ω
ω
ω ω

 −
 

− − ≈
 
 

− 

 

 

Which is a 2
nd

 order polynomial in ω . This approximation is simple but provides less 

accurate results and is valid only when 0Tω ≈ . In the cases where the Turn rate is 

known, like in our case, The CT model provides good tracking performance. 

 

 

To include acceleration and bias in the state vector, the modified state model becomes, 
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Where 

  

[ , , , , , , , ] 'x x x x y y y yx Position Velocity Acceleration Bias Position Velocity Acceleration Bias=  

[ , , , , , , , ]
x yx yx yx ypos posBias BiasAcc Acck vel vel

w w w w w w w w w=  

 

The Coordinated Turn model is critical is detecting coordinate turn motions as simple 

un-coupled models such as Wiener and Singer model discussed above are unable to 

detect the coupling between the X and Y dimensions i.e. the dependence of position 

and velocity in one dimension on the position and velocity in the other direction. 

Consider the example in Figure 4.5 which shows the data of coordinated turn trajectory 

as processed by a simple uncoupled model and using the above coordinated turn model 

 

Sampling Period T = 0.01 second, Angular Rate ω  = 0.3rad/sec 

In all figures, Acceleration has units of meter/sec
2
, velocity is expressed in 

meters/second and position is in meters. 
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Figure 4.5: Difference in processing measurements by CT Model and Wiener Model 
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In the figure above, the uncoupled model fails to follow the correct trajectory and 

generates a linear motion. Whereas, the Coordinated Turn model uses the coupling 

between the two dimensions and the extra information provided by the turn rate to 

produce the correct angular trajectory.  

 

Remarks: 

We have discussed few of the most simple and commonly used models in maneuvering 

target tracking and analyzed the effect of their important parameters on their 

performance. We also simulated the performances of these models with synthetic data 

that was induced by an offset bias and Gaussian noise with variance equal to the noise 

in the IMU device we took as a reference case. This enabled us to see the expected 

theoretical performance of an INS system with these models. But, as said earlier, no 

vehicle’s trajectory can be modeled by just any one of the above models and a 

maneuvering target has to be tracked with simultaneous models working together and 

detecting which type of maneuver is presently active and estimate its position according 

to the corresponding model. In the next chapter we will study and develop the 

technique that combines these models in such a way that these models work in parallel 

and estimates of the most relevant model are used to provide final navigation solution. 
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CHAPTER 5 

INTERACTING MULTIPLE MODELS 

 

In many target tracking applications the estimation of position, velocity and acceleration 

is difficult to achieve accurately using just a single model and/or sensor. Different types 

of vehicles perform different types of maneuvers at different stages and as such 

multiple models are required to provide estimation for different stages. Different type 

of Multi Model techniques have been evolved each with its own performance and 

complexity. The Interacting Multiple Model scheme is a sub-optimal filter which has 

been shown to achieve excellent compromise between performance and complexity. 

Compared to Decision based models, where only one model is being used for 

estimation, Interacting Multiple Model technique uses parallel filters estimating based 

on different models and then the final estimate is generated on a weighted sum basis of 

all individual estimates. The advantage here is that in decision-made techniques, if the 

hypothesis is incorrectly validated as true, all estimates will be based on a model that 

does not describe the current mode of maneuver, whereas, in IMM technique since all 

models are working in parallel and the final result is a weighted combination, the results 

are much more reliable. 

 

The complexity of IMM is nearly linear [17] and another advantage is its modularity 

which means IMM can be set up using different building blocks, isolated from each 

other. So there can be different types of filters like Kalman Filter or Extended Kalman 
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Filter to account for the non-linearities in the system and models based on different sets 

of measurement sensors. 

 

5.1 Baseline IMM Algorithm: 

 

The simplest form of IMM Algorithm, which is a 3 step process, is presented below with 

the description of the nomenclature: 

 

The quantities pertinent to filter j are denoted with subscript j 

 

fM  is the Model Space representing the set of all models i.e. filters used in the system. 

 

 

kZ  Denotes the measurement sequence through time k 

ˆ( | )x i l  Denotes the State estimate at time i conditioned on 
lZ  and 

( | )P i l  is the associated Covariance matrix; 

( ; , )� y y P  Denotes the (multivariate) Gaussian density function of y with 

mean y and covariance P 

i
∑  Denotes 

i fm M∈
∑  

ˆ ( | ), ( | )j jx k k P k k

 

Estimate and its Covariance in Mode-Matched filter j at time k

 

0 0
ˆ ( | ), ( | )j jx k k P k k

 
The mixed Initial Condition for Mode-Matched filter j at time k 

ˆ( | ), ( | )x k k P k k
 

The final combined State Estimate and its Covariance; 

( )j kµ  The Mode Probability at time k 

| ( | )i j k kµ
 

Mixing Probability at time k (the weights with  which the estimates 

from the previous cycle are given to each filter at the beginning  of 

the current cycle) 

( )j kΛ
 

The likelihood function of Mode-Matched filter j   
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STEP 1: Interaction 

Interaction is the phase where the parameters for initializing the filters; for each 

iteration of the IMM algorithm; are generated. It is based on weighted sum of the 

estimates from all the filters during the previous iteration. The weights are based on the 

‘Mixing Probability’. The ‘Mixing Probability’ is calculated at the beginning of each cycle 

using: 

|, , ( 1 | 1) 1 / ( 1)f i j j ij ii j M k k c p kµ µ∀ ∈ − − = −
 

Where 

( 1)j ij i

i

c p kµ= −∑
 

 

Then the state vector and covariance matrix is calculated to provide initial values to 

every filter. 

0 |
ˆ ˆ( 1| 1) ( 1| 1) ( 1| 1)j i i j

i

x k k x k k k kµ− − = − − − −∑  

         

0

0

0

|

( 1| 1) { ( 1| 1)

ˆ ˆ                             [ ( 1| 1) ( 1| 1)]

ˆ ˆ                             [ ( 1| 1) ( 1| 1)] }

                             ( 1| 1)

j i

i

i j

T

i j

i j

P k k P k k

x k k x k k

x k k x k k

k kµ

− − = − −

+ − − − − −

× − − − − −

× − −

∑

 

The estimates of state vector and uncertainty matrix are then forwarded to the 

individual filters. 

 

STEP 2: Filtering 

When the filters are initialized with the new estimates from previous cycles, they use 

them to provide new estimates based on their own state equations and motion models. 

This is a big advantage of IMM as all filters are independent of their structure and 

models. As such different models can work in parallel to provide the best possible 

estimates according to their state evolution models and the model which predicts the 

measurements closest to incoming true measurements is given more weight. After 

computing their new estimates and uncertainty, these values are returned to main IMM 

algorithm for final estimate using combination. 
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fj M∀ ∈  

The Initial Prediction: 

0
ˆ ˆ( | 1) ( 1) ( 1| 1) ( 1) ( 1)
j j j j j
x k k F k x k k k v k− = − − − +Γ − −  

                    

0( | 1) ( 1) ( 1| 1) ( 1)

                      ( 1) ( 1) ( 1)

T

j j j j

T

j j

P k k F k P k k F k

k Q k k

= − = − − − −

+ Γ − − Γ −  

Residual Covariance: 

( ) ( ) ( | 1) ( ) ( )T

j j j j jS k H k P k k H k R k= − +
 

Filter Gain: 

1( ) ( | 1) ( ) ( )T

j j j jW k P k k H k S k −= −
 

Measurement Prediction:
 

ˆˆ ( | 1) ( | 1)
j j j
z k k H x k k− = −  

Residual Error: 

( ) ( ) ( | 1)j jr k z k z k k= − −
 

 

Correction and Final Estimate with Covariance Update: 

ˆ ˆ( | ) (( | 1) ( ) ( )j j j jx k k x k k W k r k= − +  

( | ) ( | 1) ( ) ( ) ( )Tj j j j jP k k P k k W k S k W k= − −  

 

After estimating the new state vector values and the associated uncertainty, the 

individual filters calculate the ‘Mode Probability’ which is based on the on the residual 

error i.e. the difference between predicted measurements and true measurements 

defines the probability of a particular model to be active at time k. The less is the 

residual error of a filter, the more the probability that that filter and model best 

describe the current maneuver. Mathematically, this is done using the likelihood 

function: 

( ) ( ( ); 0; ( ))j j jk � r k S kΛ =
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 And Mode Probability is given by: 

 

1 1
( ) ( ) ( 1) ( )j j ij i j j

i

k k p k k c
c c

µ µ= Λ − = Λ∑

 

Where c is a normalizing factor: 

( )j j

j

c c k= Λ∑  

STEP 3: Combination 

This is the process where the new individual estimates are combined again using 

weights based on ‘Mode Probability’ at that time instant. This is a simple step but 

increases the accuracy of the final estimates. 

  

fj M∀ ∈  

ˆ ˆ( | ) ( | ) ( )j j

j

x k k x k k kµ=∑
 

 

ˆ ˆ ˆ ˆ( | ) { ( | ) [ ( | ) ( | ) [ ( | ) ( | )] } ( )T

j j j j j j

j

P k k P k k x k k x k k x k k x k k kµ= + − × −∑
 

 

We applied the IMM Algorithm to our problem of estimating position using Inertial 

Measurement System. We did simulations by using synthetic data for a trajectory with 

stationary, linear uncoupled motion and turn motion and we integrated the 

corresponding models in the IMM to see if IMM is able to identify the different stages of 

motion and estimate the position correctly. In all the simulation, the characteristic of 

the IMU device we have taken as a case were fed into the simulation. The Results for 

IMM system utilizing 2 and 3 parallel filters are shown in the next sections. 
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5.2 Interacting Multiple Model Scheme with 2 Parallel Filters: 

 

In order to provide good tracking performance using the IMU device we require at least 

two models to work in parallel. As shown in Chapter 2 Section 2.6, even when the device 

is stationary, the constant bias and noise causes false acceleration measurements which 

cause drift in position estimate over time. So one of the models we are going to use in 

IMM scheme with 2 filters will be the one we developed in Chapter 3 Section 3.3.3 to 

eliminate this noise and bias in stationary mode, which we referred to as ‘Static Model’. 

The other model is required to detect motion and provide the information about 

position as the trajectory evolves. We will be using the Singer model developed in 

Chapter 3 with maneuvering time-constant mτ = 3 seconds. 

 

In the below experimental results, we are using synthetic data, again induced with bias 

offset and Gaussian noise, which describes a trajectory with first 3000 samples of 

stationary phase and then acceleration along the X and Y dimensions. It is interesting to 

see how IMM, as it detects change in acceleration, shifts weights from one model to 

another based on which model best describes the current state. The sampling time here 

is T=0.01 seconds. In all figures, Acceleration has units of meter/sec
2
, velocity is 

expressed in meters/second and position is in meters. 

 

 

 

Figure 5.1: Simulated Measurements of Acceleration in meter/sec
2 

in X and Y Dimensions 
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Figure 5.2: Shifting of weights between Model 1 and Model 2 

 

As the state changes from stationary to accelerated state, the values predicted by Static 

Model are no longer close to the new measurements and hence, the IMM shifts its 

weights to the Singer Model which provides better and accurate measurement 

predictions. 

Consider the figures 5.3 and 5.4, although there was small acceleration due to noise up 

to sample number 3000, the Static Model eliminated it and the difference between the 

position obtained by processing raw measurements and filtered measurements is clear. 

See how the positions in both X and Y dimensions equal to 0 up to the 3000 sample in 

the IMM case.  

 

 

Figure 5.3: Comparison of the Position Estimates in X and Y Dimensions (unit: meters) 
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Figure 5.4: Comparison of the Trajectory based on Position estimates in XY Plane.  

The IMM Estimates are overlapped by the True values (unit: meters) 

 

 

 

Figure 5.5: A Zoom-In of the Fig. 5.4 showing IMM Estimate  

compared to True values of Position (unit: meters) 

 

This was a rather simple trajectory to test IMM performance. In section 5.3 we will test 

the IMM scheme with a more complex trajectory. But for now, it is interesting to see the 

benefits of IMM over Single Model based filters. 
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5.2.1 Performance comparison with Single Model based Filters 

 

Above graphs show the performance of IMM filter in choosing the right model to 

estimate the positions. Below is a comparison of IMM filter with Single Model based 

filters which shows the deterioration of position estimates because of using only one 

model to describe the entire trajectory. 

 

We simulated filters with Static and Wiener models using the same trajectory we used 

above with the IMM and compared the results with the true values. The results are 

shown below: 

 

 

Figure 5.6: Comparison of the Position Estimates  

using IMM Filter and Single Model Filters (unit: meters) 

 

In the above graphs the resultant position after the entire set of measurements with 

Static Model in still near the origin and the error is almost equal to the true values 

meaning all measurement have been ignored. This is because Static model has low 

process variance so it suppressed the measurements of acceleration even though they 

were not noise. In contrast, Wiener is able to predict the motion in the XY plane but it 

could not eliminate the noise in the measurements as effectively and hence has offset 

from true position values. In comparison, IMM filter provides the best of both worlds 

and its results overlap the true trajectory. 
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Figure 5.7: Error in Position Estimates in meters in X Dimension 

 

 

 

Figure 5.8: Error in Position Estimates in meters in Y Dimension 

 

 



56 

 

5.3 Interacting Multiple Model Scheme with 3 Parallel Filters: 

 

In this section we test the performance of the IMM techniques utilizing 3 Parallel filters. 

Two of the filters are as same as in the previous section i.e. filters using Static and Singer 

Models. The third filter is based on the Coordinated Turn Model. The performance is 

tested on synthetic data describing a trajectory as in the previous section but with the 

addition of a coordinate turn motion in the end. 

 

 

Figure 5.9: Measurements of Acceleration in meter/sec
2 

in X and Y Dimensions  

 

Up to sample number 3000, the state is stationary. From sample number 3000 to 

around 3600 there is motion in XY plane but this motion is uncoupled in dimensions. 

From 3600 onwards the acceleration defines a coordinated turn motion in which the X 

and Y coordinates are coupled to each other and the Angular Rate used in the 

simulation is 0.3 rads/sec. 

 

By selecting proper process variances, we were able to make IMM identify the 

difference between linear motion and coordinated turn motion. Although, the 

probability is assigned to both Singer and CT Model during the coordinated turn phase 

of the trajectory, more weight is given to the CT model which gives acceptable 

performance results. See the difference in Figures 5.12-16. 
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Figure 5.10: Shifting of weights between Model 1, 2 and 3 

 

 

 

Figure 5.11: Comparison of the Position Estimates in meters in X and Y Dimension 
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Figure 5.12: Comparison of the Position Estimates in XY Plane (unit: meters) 

 

 

 

Figure 5.13: A Zoom-In of the Figure 5.12 showing IMM Estimate  

compared to True values of Position (unit: meters) 
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Figure 5.14: A Further Zoom-In of the Figure 5.12  

showing Quality of IMM Estimation (unit: meters) 

 

As compared to IMM scheme with 2 models, here the results are slightly less accurate. 

This is because the trajectory in this case is more complex and the maneuvers are 

harder to distinguish. But still compared to single model filter, the estimates provided 

by the IMM are far much better which can be seen below: 

 

5.3.1 Performance comparison with Single Model based Filters 

 

Again, we processed the set of measurements describing the above trajectory using 

single model based filters, as before, the results are extremely poor. Again the IMM 

filter proves to provide the best estimates closest to the true values with minimum error 

in both dimensions compared to the other filters. See the figures on following pages. 
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Figure 5.15: Comparison of the Position Estimates using  

IMM Filter and Single Model Filters (unit: meters) 

 

 

 

Figure 5.16: A Zoom-In of fig 5.15 showing Position  

Estimate obtained by using only Static Model (unit: meters) 
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Figure 5.17: Error in Position Estimates in meters in X Dimension 

 

 

 

Figure 5.18: Error in Position Estimates in meters in Y Dimension 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

 

After Analyzing the INS Characteristics in Chapter 2, studying Signal Processing 

techniques in Chapter 3, developing models in Chapter 4 and performing their 

integration into the IMM in Chapter 5, we are now ready to process real INS motion 

data to track a moving target. In this chapter, details are provided about the 

experimental setup and the results of comparison in processing INS data with single 

model based filters and IMM filter. 

 

6.1 Experimental Setup 

For doing experiments with INS motion data, we mounted the INS device on a small 

electric car which moves on tracks with controllable acceleration. These tracks can be 

connected in different ways and provide power to the car to run the motor which 

provides acceleration through contact brushes. 

The models we can use with this experimental setup are the first 3 models in i.e. Static 

Model to suppress drift in stationary mode and Wiener and Singer model to track the 

vehicle while in motion. The fourth model i.e. Coordinate Turn model is basically for 

aircrafts where the turn rate of the aircraft vehicle can be controlled by the pilot. Since 

this is not possible with this experimental setup, we did our experiments with the linear 

trajectories on tracks with length of approximately 1.2 meters. 
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Figure 6.1: The Experimental Setup 

        

Figure 6.2: Length of the Track and the Electric Car used in the Experiments 

~
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In order to mount the INS device on the car, we had to perform its integration with the 

power supply of the car which it obtains from the electric lines in the tracks. This was a 

critical issue, as the car is equipped with motors inside it and it could induce noise in the 

power supply and vibration in the INS device platform creating additional measurement 

noise. By carefully designing the electrical power circuit, we were able to provide INS 

device a smooth power supply. 

 

 

Figure 6.3: The Electric Car’s Contact Brushes for Power Supply and Electric Motor for Acceleration 

 

6.2 Mechanical integration of inertia-link Wireless Sensor 

The parameters and requirements of this integration are: 

Power supply system using the lane power lines  

• Lane voltage: 18 V DC  

• Inertia-Link IMU voltage requirement: 5.2 – 16 V DC 

Issues:  

• On-Off Keying (OOK) scalextric telemetry every 100 ms on power lines  

• PWM-driven motor spurious interferences  

• Lane power line metallic brushes contacts: Sparks and sporadic micro power 

cuts  

Contact Brushes 

for Power Lines 
Electrical Motor 



65 

 

Solution:  

• EMC Filtered DC to DC linear voltage converter based on MC7806 linear  

voltage regulator  

• Output capacitor: 1500 uF  

 

 

Figure 6.4: Integration of IMU with the Car and Electronic  

Power Circuit for Smooth Power to IMU device 

 

6.3 Communications Protocol 

 

Inertia Link IMU is a wireless IMU device and data is received from the IMU sensors 

using a wireless Zig-Bee protocol. However, the IMU device comes with a software 

driver package which simplifies access to the IMU by providing a simpler interface. The 

simpler protocol is required to route the correct commands to obtain the wireless 

sensor data to the correct sensor and re-route the reply of the sensor to the host 

collecting the data. We had to develop a software code with this protocol to access the 

data regarding acceleration, angular rate and orientation matrix measurements. The 

protocol is defined by the Inertia Link manual as: 

 



 

6.3.1 Command Packet (from the host PC to the sensor)

 

Table 6.1

 

 

All fields preceding ‘Command’ bytes are required by the protocol to for routing 

purposes. The field ‘Node-Address’ provide

was 89. The ‘Command’ byte determines

 

 

The ACK/NACK byte  

 

The command packet is always followed by an ACK or NACK byte sent back to the PC 

from the wireless sensor.  The ACK byte value is 0xAA and the NACK byte val

The ACK signifies that the packet was accepted and broadcast by the 

station to the wireless sensor.

any reason such as error.   

 

6.3.2 The Data Packet (from the sensor to the

The data packet is essentially the same as command packet except for the additional 

bytes which carry the reply data from the sensor. Each reply byte has its own 

representation format described in the Inertia Link manual 

needs to be interpreted. 

from the host PC to the sensor) 

Table 6.1: Protocol for Sending Command 

All fields preceding ‘Command’ bytes are required by the protocol to for routing 

Address’ provides the address of the sensor which in 

byte determines which data is sent as a reply. 

The command packet is always followed by an ACK or NACK byte sent back to the PC 

sensor.  The ACK byte value is 0xAA and the NACK byte val

The ACK signifies that the packet was accepted and broadcast by the wireless 

wireless sensor. A NACK indicates that the packet was not accepted

ket (from the sensor to the PC) 

The data packet is essentially the same as command packet except for the additional 

bytes which carry the reply data from the sensor. Each reply byte has its own 

representation format described in the Inertia Link manual [6] according to which it 
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All fields preceding ‘Command’ bytes are required by the protocol to for routing 

the address of the sensor which in our case 

The command packet is always followed by an ACK or NACK byte sent back to the PC 

sensor.  The ACK byte value is 0xAA and the NACK byte value is 0x21.   

wireless base 

NACK indicates that the packet was not accepted for 

The data packet is essentially the same as command packet except for the additional 

bytes which carry the reply data from the sensor. Each reply byte has its own 

according to which it 



 

Table 6.2

 

6.3.3 Setting up Output Mode

The two commands that we require to obtain the inertial data from the IMU at the 

continuous rate of 100Hz using the above protocol are:

 

1. Set Continuous Mode (0xC4)

This command sets the Inertia Link in a continuous mode in which it outputs the 

data continuously at a rate of 100Hz i.e. 0.01 seconds of sampling time. This is very 

necessary because accuracy of tracking depends of data rate and sampling time 

period and polling technique cannot work as there are chances of missing important 

packets while data is being processed by the PC. In this way data keeps on collecting 

in the PC buffer and recorded in 

 

Table 6.3

Table 6.2: Format of the Reply Packet 

Setting up Output Mode 

The two commands that we require to obtain the inertial data from the IMU at the 

continuous rate of 100Hz using the above protocol are: 

Set Continuous Mode (0xC4) 

his command sets the Inertia Link in a continuous mode in which it outputs the 

data continuously at a rate of 100Hz i.e. 0.01 seconds of sampling time. This is very 

necessary because accuracy of tracking depends of data rate and sampling time 

lling technique cannot work as there are chances of missing important 

packets while data is being processed by the PC. In this way data keeps on collecting 

in the PC buffer and recorded in a .csv (comma separated values) file. 

Table 6.3: Format of Continuous Mode Command 
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The two commands that we require to obtain the inertial data from the IMU at the 

his command sets the Inertia Link in a continuous mode in which it outputs the 

data continuously at a rate of 100Hz i.e. 0.01 seconds of sampling time. This is very 

necessary because accuracy of tracking depends of data rate and sampling time 

lling technique cannot work as there are chances of missing important 

packets while data is being processed by the PC. In this way data keeps on collecting 

 



 

2. Acceleration, Angular Rate & Orientation Matrix (0xC8)

This is the command to obtain the measurements of Acceleration, Angular Rate and 

Orientation Matrix. This command is sent in the ‘command byte’ field of the ‘Set 

Continuous Mode’ command so that measurements can be obtained with 100Hz 

sampling. 

 

Table 6.4

 

6.3.4 Collecting Data 

Data from the serial buffer is read using Matlab code and the bytes are interpreted in 

the format they are represented in the Inertia Link communications protocol manual

A .csv file is used to then save this data for offline processing. The format of the .csv file 

is given below: 

 

 

Acceleration, Angular Rate & Orientation Matrix (0xC8) 

This is the command to obtain the measurements of Acceleration, Angular Rate and 

Orientation Matrix. This command is sent in the ‘command byte’ field of the ‘Set 

mand so that measurements can be obtained with 100Hz 

Table 6.4: Command for Inertial Data Measurements 

Data from the serial buffer is read using Matlab code and the bytes are interpreted in 

represented in the Inertia Link communications protocol manual

A .csv file is used to then save this data for offline processing. The format of the .csv file 
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This is the command to obtain the measurements of Acceleration, Angular Rate and 

Orientation Matrix. This command is sent in the ‘command byte’ field of the ‘Set 

mand so that measurements can be obtained with 100Hz 

 

Data from the serial buffer is read using Matlab code and the bytes are interpreted in 

represented in the Inertia Link communications protocol manual [6]. 

A .csv file is used to then save this data for offline processing. The format of the .csv file 



 

Column 1:7 

 

Column 8:16 

Figure 6.5: Format of CSV File use for Recordin

 

6.3.5 Orientation/Rotation Matrix

The orientation matrix is based upon 9 elements as shown below. This matrix is required 

to transform the measurements of acceleration from local body frame to the global 

body frame. For simple linear motion

convenient to visualize a straight line motion in local body frame. For curvilinear motion, 

the measurements in global body frame are better. 

The orientation matrix describes the attitude of the IMU 

mounted on. But, as shown in Chapter 2, Inertia Link is not equipped with a 

Format of CSV File use for Recording Measurements 

Orientation/Rotation Matrix 

The orientation matrix is based upon 9 elements as shown below. This matrix is required 

to transform the measurements of acceleration from local body frame to the global 

body frame. For simple linear motion, we will be using the local body frame as it is more 

convenient to visualize a straight line motion in local body frame. For curvilinear motion, 

the measurements in global body frame are better.  

 

The orientation matrix describes the attitude of the IMU device and vehicle it is 

mounted on. But, as shown in Chapter 2, Inertia Link is not equipped with a 
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The orientation matrix is based upon 9 elements as shown below. This matrix is required 

to transform the measurements of acceleration from local body frame to the global 

, we will be using the local body frame as it is more 

convenient to visualize a straight line motion in local body frame. For curvilinear motion, 

device and vehicle it is 

mounted on. But, as shown in Chapter 2, Inertia Link is not equipped with a 
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magnetometer and hence it cannot provide heading information correctly. We expect 

that this will cause error when converting from local body frame to the global body 

frame as well. 

 

6.4 Tracking the Vehicle 

With the above experimental setup we recorded many realizations of a linear trajectory 

about 1.2 meters in length. Some of the realizations also included stationary phase 

before or after the motion which contained noise that without eliminating would result 

in drift of the position estimates. Consider the results in Figures 6.6 - 6.10 to see the 

performance of IMM in detecting in which mode, stationary or motion, the vehicle is 

and providing the position estimates: 

 

Realization 1: 

  

 

Figure 6.6: Measurements of Acceleration and IMM Model Switching 
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Figure 6.7: Result of Processing data with IMM Filter for Realization 1 
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Realization 2: 

 

   

 

 

 

Figure 6.8a: Comparison of Position Estimates for Realization 2 
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Figure 6.8b: Result of Processing data with IMM Filter for Realization 2 

 

Realization 3: 

 

  

Figure 6.9: Measurements of Acceleration and IMM Model Switching for Realization 3 
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Figure 6.10: Result of Processing data with IMM Filter for Realization 3 

 

These examples show IMM performance in selecting the right model. The performance 

of the IMM algorithm is very dynamic and this is possible by selecting the right models 

and tuning their parameters and covariances carefully. But the essential question is 

what are the needs and advantages of IMM techniques over conventional single model 

based filters. In the next section, this question is answered by providing such analysis 

which empirically proves the superior performance of IMM algorithm in tracking a real 

target. 
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6.5 IMM vs. Single Model based Filters in Real Target Tracking 

 

In order to show the performance difference between the IMM scheme and 

conventional filters, three cases are presented which make the performance and 

advantages of IMM scheme quite obvious.  

 

Case 1: We have the realization 2 as same as above. We use the Wiener and Static 

model based filters on it. The Resultant position estimates are: 

 

 

 

Figure 6.11: Comparison of Estimates for Realization 2 Data 

with IMM, Wiener and Static model based Filters 
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Clearly, while Wiener model was able to perform as good as IMM in estimating close to 

true trajectory, the Static model failed, suppressing all the motion by considering the 

acceleration measurements as noise. 

Case 2: We have a realization of the vehicle in stationary mode for a period of 50 

seconds. The performance of different filters in suppressing the noise can be seen here: 

 

 

 

 

Figure 6.12: Comparison between IMM, Wiener and Static model based Filters 
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Here, as expected, the static model does suppresses the noise but Wiener model, which 

allows a high process variance, takes the noise samples and process them to estimate 

false position which cause large drift from the true position value which should be the 

origin in this case. IMM, in this case also, by selecting correct weights for the model, 

performs almost as good as the Static Model based filter. 

Case 3: We had a vehicle perform some straight line motion and then come to rest and 

stay in that mode for a while. During the stationary state, noise is present in the 

acceleration measurements. It can be seen that Wiener model is unable to suppress this 

noise in stationary phase whereas static model is unable to detect motion in 

maneuvering state properly. In contrast, IMM provides the best of both the worlds. It 

detects motion and estimates position accurately and then when it detects low 

measurements due to noise, it switches to stationary mode and prevents the drift. Even 

though at some samples some high noise values in stationary mode cause the IMM to 

switch falsely to the Wiener model, still the results obtained using IMM are very good 

and close to the ideal trajectory. 

 

   

   

Figure 6.13: A Realization with both Stationary and Motion Phases 
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Figure 6.14: Position Estimates using IMM, Wiener and Static model based Filters 
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All this analysis has proven the superior performance of Interacting Multiple Model 

(IMM) technique over single model based filters. We have shown this difference in 

performance using both simulations and real data. With the proper analysis of the 

Inertia Measurement Unit device characteristic, carefully selecting models and using the 

IMM technique, the performance in maneuvering target tracking using inertial systems 

can be highly improved and stand-alone INS devices can be used in a number of 

applications. 
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CHAPTER 7 

CONCLUSION 

 

Achieving the task that was defined in the Problem Definition required study of different 

areas from Inertial Navigation Systems to Mathematical Modeling, Signal Processing and 

Bayesian Filtering and advance topics such as Interacting Multiple Model. The proposed 

solution was developed after considering multitude of different options. The potential 

of the IMM solution to the problem in maneuvering target tracking using Inertial 

Systems was tested both theoretically using simulation and practically using 

experiments. It was a time-constraint project is which very good performance results 

were obtained. Here is a summary of what were the steps taken to reach this 

accomplishment and what are the improvements achieved in performance through this 

solution. Also some suggestions for future work are included. 

 

7.1 Steps to the Solution 

• Study of the fundamentals of Inertial Navigation. The types of devices available 

and their characteristics.  

• Analysis of Errors in Inertial System and their effect on the degradation of the 

Navigation Solution. Characterizing the Noise in the Measurement sensors and 

obtaining its parameters. 

• Study of a large number of mathematical models related to Maneuvering Target 

Tracking and the selection of appropriate models from this pool. 
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• Analyzing the effect of important parameters of individual models and tuning 

them. 

• Study of Signal Processing and Filtering techniques for Error estimation. 

Choosing the right covariances. 

• Integration of selected models into the Interacting Multiple Model Scheme. 

• Running Simulations to test the performance of IMM filter compared to 

conventional filters. 

• Setting up experimental equipment for testing the performance of the suggested 

solution in real world scenario. Integrating the IMU device with the experimental 

setup. 

• Developing software for communications with the IMU and recording the 

measurements. 

• Estimating the trajectory of a moving target using the proposed solution. 

Analysis and comparison of final results. 

 

7.2 Achievements 

The improvements achieved have been shown and proven through both 

simulations and real target tracking experiments. Here is a summary, 

• Eliminated the Error in Navigation Solution due to Bias and Noise. Added 

immunity to the drift in stationary mode. 

• Developed Models capable of describing different types of maneuvering and 

non-maneuvering states. 

• Developed a robust technique of identifying the current maneuver in progress in 

real-time and estimating the true trajectory. 

• Immense improvement in the accuracy of Position Estimation using Inertial 

Systems. 

• Increased the reliability of low-cost Inertial devices. 

• Increased the possibilities of the use of Stand-alone INS systems. 

 

7.3 Possible Future Improvements 

The solution has provided a ground work over which there is a lot of space for 

creativity. Here are some of the suggestions. 
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• Integration with Wireless Sensor Networks for indoor Navigation. 

• Integration with cellular networks localization data for outdoor Navigation. 

• Use of advance filtering techniques such as Particle Filters for IMU devices 

having non-Gaussian noise in sensors. 

• Using advance versions of IMM algorithm based on sojourn time spent in a 

particular maneuver to anticipate the next maneuver. 

 

 

7.4 Final Remarks 

I conclude this Thesis with the statement that based on the performance 

evaluations; this thesis has been tested successful in achieving the targets set in 

the Problem definition.  
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