

 Final Project Report

Universitat Politecnica de Catalunya

Departament d'Enginyeria Electronica

in cooperation with

Technical University of Lodz

Faculty of Electrical, Electronic,

Computer and Control Engineering

Design of a charge injection compensation system for

MEMS electrostatic actuators

by

Kamil Karliński
index nr. 131180

Supervisors:

Daniel Fernández, Ph.D.

Jordi Madrenas, Asoc. Prof.

Barcelona 2010

Yesterday is history.

Tomorrow is a mystery.

And today?

Today is a gift.

That's why we call it the present.

To my dear parents,

Moriola and Jan Karlińscy

and my crazy siblings

Mateusz and Kasia

Acknowledgements

Unconditional thanks goes to my supervisors Jordi Madrenas and Daniel

Fernández. First of all for accepting me as their student. Then for all the highly

intelligent conversations along the way through this project. For every heavy step in the

creative process of this project. And for patience in answering my question and

explaining the basic of electronics sometimes. My courage was always increased after a

discussion with my supervisors. These conversations are, without any doubt, the main

reason that this project is now completed.

Abstract

The main goal of this project is to implement and experimentally verify various control algorithms

for MEMS electrostatic actuators. Those algorithms include a charge injection compensation

subsystem.

The hardware platform consists of some MEMS electrostatic actuators, a front-end sensing

system (comprising a full-custom mixed-signal integrated circuit designed at UPC and a high-

speed A/D converter) and a Xilinx FPGA for algorithm coding.

The work involves the following:

o Understanding the working principle of the hardware platform and the issues related to

MEMS electrostatic actuators.

o Improve the hardware platform, if required by the control algorithm. This might involve

some simple PCB design and test with laboratory instrumentation.

o Algorithm implementation in VHDL. This includes the signal-processing algorithms and

also the ancillary routines for I/O data extraction and signal visualization.

Capacitance of MEMS electrostatic actuators were measured under different voltages

conditions. It was found that positive voltage stress caused negative charging of the dielectric

whereas negative voltage stress caused positive charging of the dielectric. This is consistent with

the nature of traps in the silicon oxynitride dielectric used for the switches.

Report is divided into three parts, the first chapter is devoted to the description to the MEMS

word. The chapter is devoted a small multiplexing board design description. And finally chapter 3

introduce a development of a VHDL code to control all system.

Contents

Abstract .. ix

Contents ... xi

1 Introduction ... 1

1.1 Overview .. 1

1.2 Actuators: Transducers with Mechanical Output .. 1

1.3 Theoretical background ... 2

1.4 Manufacture process ... 3

1.5 Characterization of dielectric charging in MEMS .. 4

1.6 Controlling the charge ... 5

2 Hardware ... 7

2.1 Overview .. 7

2.2 Delirium-I-feael .. 7

2.2.1 Jumpers ... 10

2.2.2 Potentiometers .. 13

2.2.3 Connections ... 14

2.3 MEMS actuators board .. 16

2.4 Multiplexing board ... 17

2.4.1 General description ... 17

2.4.2 Operational amplifier .. 19

2.4.3 Multiplexers ... 22

2.4.4 Negative voltage calculation ... 25

2.4.5 Printed circuit boards .. 25

2.4.6 Jumpers ... 27

3 Algorithm implementation ... 29

3.1 Overview .. 29

3.2 Codes description .. 29

3.2.1 ASM chart .. 29

3.2.2 Clocks in design ... 31

3.2.3 Important instantiates ... 33

3.2.4 Averaging as a low-pass filter .. 35

3.2.5 State machine description ... 38

3.2.6 Do files ... 42

3.2.7 Program – user communication .. 42

3.3 Simulation .. 44

3.4 Measurements ... 47

4 Conclusion .. 51

5 Bibliography ... 52

 xii

Appendixes .. 54

A – DELIRIUM-I-FEAEL documentation. .. 54

Schematic.. 54

Reference Design Assembly Drawing ... 55

B – Multiplexing board documentation .. 56

Schematic.. 56

Reference Design Assembly Drawing ... 57

Bills of materials ... 58

C – A MEMS actuators floor-plan. ... 59

D – Source codes ... 60

MEMS_ChargeInReduce.vhd – top level .. 60

dsp.vhd 66

misc.vhd .. 69

Display.vhd ... 70

TB_MEMS_ChargeInReduce.vhd .. 72

sim.do 74

1 Introduction

1.1 Overview

In this chapter there will be briefly presented a theoretical background of MEMS electrostatic

actuators.

1.2 Actuators: Transducers with Mechanical Output

An actuator is a device that converts energy from one form, such as electrical, mechanical,

thermal, magnetic, chemical, and radiation energy, into the mechanical form. [12] (For example,

resistive heating elements convert electrical energy into bending of a bimorph microstructure.) In

some cases, a microactuator may convert energy into intermediate forms before resulting in the

final mechanical output (such as inductively coupled heating elements, which convert electrical

energy first into magnetic energy before finally resulting in thermal energy serving to deflect a

microelement). Such devices are said to be based on tandem transduction [17].

Table 1.1 Transduction Methods

 Output signal

Input signal Mechanical Electrical

Mechanical

Electrical

Thermal

Magnetic

Chemical

Fluidics, acoustics

Electrostatics, electromagnetic

Thermal expansion

Magnetometer

ChemAbsorber

Piezoresistive

Langmuir probe, transformer

Pyroelectric

Magnetoresistance

Ionization, ChemFET, ChemResistor

Electrical microactuators are by far the most common and diverse type of microactuator.

This is primarily because of the ease with which most electrical microactuators can be produced

using conventional microfabrication processes and materials. Examples of electric microactuators

include static, resonant, rotary, and stepper-motor configurations. Electrical microactuators can

be driven by an electrical-to-mechanical conversion that makes use either of the direct

electrostatic forces between charged objects or a piezoelectric material that can mediate the

 2

energy transformation. Electrostatic and piezoelectric transduction mechanisms, the physical

relationships involved, the material properties that govern their operation.

1.3 Theoretical background

Electrostatic forces are commonly observed even on the macroscale during everyday activities,

such as combing dry hair or drying clothes. The discovery of elemental charge and the concept of

electric fields have led to an understanding of electrostatic energy and the forces acting between

objects charged to a different extent.[1]

 In the literature there are a lot of equations which allow to calculate a magnetic fields,

and forces between plate as well [6] [12]. All of them base on well know Gauss’s and Maxwell’s

laws. Important thing in the actuators analysis is amount of energy that is require to charge a

plate and move them in any other position. Because in the project there will be only consider the

effect of charge injection into between plate space, only derivation of accumulated charge will be

given.

Figure 1.1: Generic electrostatic actuator

The capacitance of the generic structure shown in Figure 1.1 is given by:

 0r A
C

g

 
 (1.1)

where

= permittivity of material between the parallel plates

(free space permittivity 8.85 10-12 F/M)
A = plate area
g = gap between the plate

 3

For a variable parallel plate capacitor, the movable plate moves normally to the fixed plate as

defined by the coordinate, z. The capacitance for the movable capacitor is

 0r A
C

g z

 



 (1.2)

The charge Q on each plate is proportional to the capacitance C and the voltage V:

 Q CV (1.3)

The equations are given only as to preview, and remind basics, next section focus on manufacture

process [15].

1.4 Manufacture process

Despite the attractive performance characteristics of MEMS actuators, their commercialization is

difficult because of a number of factors such as reliability and packaging cost. In particular, there

can be affected by dielectric charging effects such as control-voltage drift and stiction [10]. The

dielectric is typically silicon dioxide or nitride formed by plasma-enhanced chemical vapor

deposition (PECVD) with a high density (~1018/cm3) of traps associated with silicon dangling bonds

[11]. The board contain a MEMS electrostatic actuator which is depicture in the Figure 1.2 (and in

Appendix C – A MEMS actuators floor-plan.) was next manufactured in the Multi-User MEMS

Processes, or MUMPs [9]. The main purpose of this board it to provide a lot of MEMS actuators

with different capacitance and dynamic characteristic.

Figure 1.2: MEMS actuator chip layout.

 The MUMPs process is a commercial program that provides cost-effective, proof-of concept

MEMS fabrication to industry, universities, and government worldwide. MEMSCAP offers three

 4

standard processes as part of the MUMPs program: PolyMUMPs, a three-layer polysilicon surface

micromachining process: MetalMUMPs, an electroplated nickel process; and SOIMUMPS, a

silicon-on insulator micromachining process.

The PolyMUMPs process is a three-layer polysilicon surface micromachining process

derived from work performed at the Berkeley Sensors and Actuators Center (BSAC) at the

University of California in the late 80’s and early 90’s. Several modifications and enhancements

have been made to increase the flexibility and versatility of the process for the multi-user

environment.

Figure 1.3: PolyMUMPs process cross section

Figure 1.3 is a cross section of the three-layer polysilicon surface micromachining

PolyMUMPs process. This process has the general features of a standard surface micromachining

process: (1) polysilicon is used as the structural material, (2) deposited oxide (PSG) is used as the

sacrificial layer, and silicon nitride is used as electrical isolation between the polysilicon and the

substrate [9]. The MEMS board was manufactured in PolyMUMPs technological process.

Knowing basic of manufactures process it is time to explain how the MEMS actuators are built.

1.5 Characterization of dielectric charging in MEMS

Figure 1.4 shows a schematic representation of an MEMS. The switch consists of two electrodes,

of which the top electrode is suspended by tiny springs. The top electrode can be pulled down by

applying a voltage across the air gap between the two electrodes. Above a certain voltage, the

balance between the attracting electrostatic force and restoring spring force becomes unstable

and the switch closes.

 5

Figure 1.4: Schematic representation of an MEMS

The top electrode of a parallel plate capacitor can be pulled down by applying a voltage greater

than the pull-in voltage, which is pulled up again by the springs if the voltage is lowered beneath

the pull-out voltage.[10]

Figure 1.5 shows how charges are trapped into the MEMS structure.

Figure 1.5: E-field in a parallel plate capacitor. a) No fixed charges in the

dielectric. b) Fixed surface charge at height z = d.

The traps are amphoteric [10] so they can be either positively or negatively charged. During

switch operation, the electric field across the dielectric can be of the order of 106 V/cm causing

electrons or holes to be injected into the dielectric and become trapped. With repeated

operation, charge gradually builds up in the dielectric resulting in control-voltage drift or stiction.

1.6 Controlling the charge

A graph in Figure 1.6 presents how charge is controlled by external source. At the beginning, after

turn ON a power supply, there is no any loads inside. Loads pass through the electrode and

nested in the space between the plates during the time. This process is very slow and depends on

MEMS actuator. Some of them doesn’t have such a strong injection. After changing a sequence,

which means reverse a divider supply polarity, charge from previous mode is compensated at

 6

first. When actuator is totally discharge, the reverse polarity charging process begin. The list

below and figures describe this process more clear from the beginning.

1. after power supply turn ON (t = 0).

2. after short while working in sequence I.

3. while after changing a sequence

4.

5.

6. while after changing a sequence again to I

Presented train of thoughts in this section (power supply changes - as charge compensation)

was carried out by multiplexers - as part of a executive hardware and state machine as system

controlling part. The following chapter describe the first one.

Figure 1.6: The charge injection effect

 15V

 2.

 15V

 3.

 15V

 5.

15V

 6.

15V

NO CHARGE

 1.

 15V

 4.

NO CHARGE

presently reside in the sequence II

2 Hardware

2.1 Overview

This chapter presents a hardware part of project. Here will be description of boards which were

used to test a MEMS chip, and explanation how they were designed. In this chapter there will be

shown how to get started with each boards and how to properly configure them. Whole project

consist of three printed circuit boards and one Xilinx Spartan-3 Starter Kit [19].

2.2 Delirium-I-feael

The board was designed by Sergi Gorreta under Daniel Fernandez supervision. It contain a main

integrated circuit responsible for generate appropriate signals for measuring the actuator

capacitance. The board provides three voltage regulators separated for each power supply,

analog to digital converter with differential driver and a big amount of jumpers and

potentiometers for tuning and mode selection. Figure 2.1 shows a simple functional block

diagram, but the Figure 2.2 their schematic.

Figure 2.1: Simple functional block diagram

 8

Figure 2.2 Delirium-I-FEAEL schematic

Briefly explaining the operation of this board, it should be noted that its heart is the Delirium-I

chip, responsible for generating a H, D, and R control signals. The functional diagram of this chip is

depictured in the Figure 2.3.

Figure 2.3 Simplified schematic of Delirium-I chip.

The circuit is better understood by analyzing the running sequence of the digital control signals D,

R and H. This sequence can be summarized as follows [7]:

o In normal operation, signals D, R and H are equal to 0. In this mode, a high voltage is

applied to theupper node of the actuator though the U1 inverter, the switch M2 is turned

off and the transmission gateM1 is turned on. Thereby, the output voltage VOUT tracks VCS

by means of the PMOS voltage followerM3.

 9

o When a reset is required, the signal H is set to logic 1 (and H to 0). This disconnects the

transmission gate M1 so the output voltage VOUT is hold constant regardless of VCS.

o Then, signal R is set to 1, discharging the serial capacitor CS.

o Next, signal D is set to 1, discharging the electrostatic actuator.

o After both capacitances have been discharged, R is set back to 0 and the capacitances can

be charged again.

o Finally signal D is set back to 0, charging the capacitive divider and, after a short time,

signal H is set also to zero, enabling the transmission gate, so the output voltage tracks

again VCS and the sequence is repeated.

Figure 2.3 shows VOUT voltage which provide the current MEMS actuator capacitance. This

information is pass through to fully differential amplifier, where it is filtrated and a little bit

gained. Then it land in high speed analog to digital converter, and in digital way goes to FPGA

circuit, where it is subjected final signal processing. There is also feedback in this circuit, after

analyzing it, the FPGA could impact on system operation. This device have control of main chip,

and divide supply duty cycle. Figure 2.4 shows the layout of main board and next few section

describe their proper configuration, started with jumper.

Figure 2.4: DELIRIUM-I-FEAEL board.

 10

2.2.1 Jumpers

The most important jumper in this circuit is J17, the main objective of it is to prevent the burning

of chip. It connects 3.6V Zener diode to a middle node of MEMS system, as depicted in Figure 2.5.

That jumper should always be in place during making changes in the fixed capacitor or actuator.

Single glitches or short overvoltages, can occur and cause chip damage.

WARNING

Before making ANY changes with capacitance divider make sure that jumper is closed and power

supply is off. After work, also leave the jumper in that position.

Figure 2.5: Jumper J17 application

Jumper J13 and J14 are used for voltage selection for supply a capacitive divider made up

of fixed capacitor and MEMS actuator. All possibilities that can be chosen with the help of this

jumper are shown in Table 2.1.

 11

Option
Jumper J13

Setting
Jumper J14

Setting
Description

High voltage

Dependent on selected mode:

MODE_I (positive)

HI_MEMS

 LO_MEMS always grounded.

MODE_II (negative)

HI_MEMS

 LO_MEMS

Low voltage

Irrespective of selected mode:

HI_MEMS

 LO_MEMS always grounded.

DAMAGE

This configuration may cause a damage to

Delirium-I chip in mode_II. The chip is able to

work only from 0 to 3.3V voltage range.

In mode_II middle point of capacitive divider

provide a negative voltage.

0V_out

In this configuration a capacitive divider out is
always equal to ground.

Table 2.1: Capacitive divider voltage configuration

In the Table 2.1 there is one configuration with can cause a damage to circuit. It is because

Delirium-I chip was designed to work only with positive voltage. In this case there is a possibility

when HI_MEMS is active with -11.7V, LO_MEMS is grounded and middle point of divider goes into

negative voltage.

Another jumper in that circuit is marked as J6. It can be used to disconnect Delirium chip’s

main clock. It is also possible to connect an external clock as showed in the picture.

 12

Figure 2.6: Jumper J18 application.

J8 is a jumper which allow you to chose a correct path output signal from capacitive

divider as explained in the Figure 2.7 and Table 2.2.

Figure 2.7: Jumper J8 application.

Option
Jumper J8

Setting
Description

MEMS_direct

This position is used to connect the middle point of divider
directly to ADC driver for further processing.

MUX_board

The middle point of divider is led to multiplexing board where
a few simple operations are performed depending on the
mode

Table 2.2: J8 configuration

At the beginning of the work the jumper was set only in MEMS_direct position.

On the right side of this board there are still other jumpers available. By the means of them one

can disconnect some potentiometers or measure appropriate current. When the board stops

working without no reason it is a good idea to check the currents in the jumpers. Ranges of an

allowed currents are gathered in the end of the next section.

 13

2.2.2 Potentiometers

The board provide a several potentiometer to set appropriate value e.g. in the power section

there are a possibilities to adjust a power supply voltage. Figure 2.8 shows which power voltage

can be set by each potentiometer.

Figure 2.8: Power section description.

a part of board scheme

PIN no. 1 2 3 4

On board description AUX GND 15V 60V

Recommend voltage supply -11.7V ground 15V NC
1

Table 2.3: Main power connection/socket pin configuration.

In power supply section a simple National Semiconductor positive voltage regulators are

used. Leading feature is a low dropout voltage, a maximum of 1.5V at 1.5A of load current. The

circuit marked as LM1086 is available in an adjustable version, which can set the output voltage

with only two external resistors included by described potentiometer. A simple application circuit

can be founded in datasheet. A good habit is to separate analog and digital power supply. For that

reason the board provide two different voltage regulators,

moreover there is another one. This one is used to supply half-

bridge PWN generator depicted in Figure 2.9. The signal

VACT_EXT is led to HI_MEMS pin while – Low voltage –

configuration is selected, look in Table 2.1.

Figure 2.10 depicts a general purpose of the right side

potentiometers. The most important of them are located at the

1
 NC = NO CONNECT

Figure 2.9: PWM half-bridge

 14

bottom in row. They are responsible for setting a active width time in H, D, and R signal, what was

explained in Introduction.

The Figure 2.10 shows a part of scheme containing a suitable potentiometer. The most

important resistors are marked in an ellipse in the figure above. First one from the top provide a

duty cycle adjustment in H signal, the middle one is used to set the same property but in D signal,

and the last one in R signal. The main purpose of remaining jumpers is to measure and adjust a

current. It is important to check it if something happened with the circuit. Two jumpers marked

square should conduct current between 50 and 60µA, through remaining three current flow

should be close to 2 µA. Adjusting a current is made by appropriate potentiometer.

2.2.3 Connections

In prototype and research department a fundamental PCB design criterion is to create a easy

reconfigurable board. For that reason designing process was not focused on size but on future

Figure 2.10: Right side potentiometer application

 15

usefulness. Several connections, jumpers, ports repeaters and probe pins were placed. This

subsection focus on the connectors and theirs pin configuration.

Description start from the female socket marked MEMS in Figure 2.4. It is used to connect

a MEMS actuators system or two fixed capacitors. The work with this project began from second

option. The Figure 2.11 shows pin signals and part of the scheme containing this component.

Another important female connector is used to connect a multiplexing board. It is located

on the right side at the top. The multiplexing board will be presented in details in next section.

Figure 2.10 presents a pinouts of that connector. There are two abbreviation: V_ext[22] =

VACT_EXT (PWM wave generated from chip) and O_d[26] = OUT_dig – output from capacitance

divider after simple arithmetic operation. OUT[25] is output directly from divider. Vaux[7,8] a

negative voltage supply that goes from main power socket depicted in figure 2.5. Vccd[9,10] and

Vcca[34] are respectively 3.3V digital and analog power supply, as GND*…+ and GNDA[33] are digital

and analog ground. R[11], D[13] and H[15] are MEMS system control signals and nR[12], nD[14], nH[16]

are theirs negation. There are also multiplexer control signals marked as Dig1[29]..Dig4[32].

2

GND
4

60V

6

15V

8

Vaux

10

Vccd

12

nR

14

nD

16

nH

18

HI
20

LO

22

V_ext
24

GND

26

O_d

28

GND

30

Dig2

32

Dig4

34

Vcca

1

GND

3

60V

5

15V

7

Vaux

9

Vccd

11

R

13

D

15

H

17

GND

19

GND

21

GND

23

GND

25

OUT

27

GND

29

Dig1

31

Dig3

33

GNDA

Figure 2.12: Pin used in the multiplexing board (CONN34)

 The last connector is located at the right edge. It gives a possibility to control the whole

system by Xilinx FPGA board. Figure 2.13 presents a pin signals, but only previously not mentioned

will be discussed. As before there are a few abbreviations: NC[19,34] = no connect, Cadc[6] = CLOCK

on main scheme and represents a high speed clock connected to analog-digital converter, Cchip =

CLKIN_R0 on main scheme that represents a clock connected to Delirium-I chip with possibility to

1 2 3 4 5 6 7 8

9 HI 11 12 13 14 LO 16

17 18 19 20 21 22 23 24

 IN_EXT

 Vcc nullcap_placa (shield) GND

HI = HI_MEMS LO = LO_MEMS

Figure 2.11: Pin used on the MEMS connector (CON24)

 16

adjust the duty cycle to control and measure the MEMS capacitance. The D0[7]..D9[16] and OR

signals come from ADC and are respectively data output bits and out-of-range indicator. AOUT+

and AOUT- are available as output from differential ADC driver, but only after placing the jumpers

near to this area.

2

GND

4

15V

6

Cadc

8

D1

10

D3

12

D5

14

D7

16

D9

18

Dig1

 22

GND

24

GND

26

GND

28

MAN

30

GND

32

H0

34

NC

36

H

38
AOUT+

40

GND

1
GNDA

3

60V

5

Vaux

7

D0

9

D2

11

D4

13

D6

15

D8

17

OR

19

NC

21

Dig2

23

Dig3

25

Dig4

27

CMP

29

Cchip
31
D0_C

33

D

35

R

37
AOUT-

39
GNDA

Figure 2.13: Pin used in the FGGA board (CON40)

 There is one more connector for ADC but it is not necessary to describe it in details except

of indicating where a first pin of ADC should go that is on the right side at the bottom.

2.3 MEMS actuators board

At this time is worth to mention about another small board which contains only a MEMS socket

and few other connectors that allow to select an actuator and insert a fixed capacitor. On that

board there are a lot of descriptors to facilitate a work with it, so here not all of them will be

explained, only the most important. The board is presented in Figure 2.14, in the same figure the

capacitor connector is depicted.

Figure 2.14: MEMS electrostatic actuators board with capacitor connector pin-outs

In this board there is a jumper between CAV and SUB signals, which are respectively the

cavity of the chip and the substrate of the MEMS. CAV and SUB should be shorted. Other jumper,

"NC" - "GP" - "GND", this is for selecting at which potential the ground plane (GP) should be, if it is

connected to nullcap (NC) or directly to ground (GND), during measurements the GP signal should

be grounded.

 MEMS fixed cap.

2

HI
4

NC

6

IN

8

NC

10

IN

12

NC

14

LO

 90º left rotation

 17

 The best way to obtain a good performance with actuator movable plate is to connect

signal marked as HI to SUB or CAV and IN signal to ones of pins located around the chip. The

MEMS actuators board floor-plane is shown in the Figure 1.2. It can be seen that some of

actuators have two and some of them just one available connection. The principle gave at the

beginning of this paragraph concerns the second one, with only one lead called anchor. This

connection have the same thickness through the entire length.

There is possibility to work with two-leads MEMS but configuration is different and

deflection smaller. In this case it is necessary to combine HI signal to POLY0. In tested MEMS

board this layers are affixed to paths which are shared with other actuators. This path is also

thinner near actuator connection. As an example the pins number in MEMS floor-plan are given:

2, 4, 9, 19, 22, 60, 79 and so on. The second lead (anchor – similar to one-lead actuators) should

be connect to IN signal. The 1.4 section presents how MEMS has been constructed, and where

exactly POLY0 layer is.

Before describing how to choose an adequate fixed capacitor, it is important to mention

about turning off a power supply.

WARNING

Another, faster prevention from burning the MEMS chip is to unplug a power supply.

To see a significant actuator plate movement it is important to choose appropriate fixed

capacitor. The best way is to start doing this at 56pF. The fixed capacitor value strongly depend on

MEMS capacitance and manufacture process, so the safest way is to start with the large one.

After fastening it in a correct socket a chip clock’s (not ADC clock) duty cycle should be set to

90%. The next important thing is to not turning on the power supply rapidly but increasing it

slowly and observing at the same time ADC driver’s differential output. The differential outputs

from ADC driver should be approximately equal with properly matched capacitor and 15V power

supply.

2.4 Multiplexing board

2.4.1 General description

This part has been completely designed by author of this thesis, of course, after consultation with

coordinator. The main purpose is to generate a control PWM waveform in two different voltage

 18

level combinations. The Introduction chapter presents how change a actuator capacitance with

duty cycle and why the change of a voltage polarity is necessary.

The appendix B – Multiplexing board documentation presents a full user's guide of this board. In

this section only a functional part and configuration will be describe. The schematic of this board

is presented in Figure 2.15.

Figure 2.15: Multiplexing board’s scheme

Through the CN1 connection this board communicate with the rest of system. Among

another thing there are two multiplexers to change the capacitive divider supply voltage, and one

to choose a divider’s output signal path. This path could pass directly through multiplexer or firstly

through inverting amplifier and then multiplexer. The output of this multiplexer is connected to

voltage follower to match the impedance for both paths. There is negative voltage regulator as

well, to generate a split power supply for amplifier to avoid a virtual ground introduction. The

amplifier calculations are presented in the next section, and the problem with virtual ground is

depicture in Figure 2.18. All multiplexers will be discussed in the 2.4.3 section.

 19

2.4.2 Operational amplifier

A part of project was to design a circuit which should do some basic operations with capacitance

divider output. Before pass on to amplifier configuration paragraph, one equation need to be

derived. It is important to make the divider’s output in seq_I dependent on the same output in

seq_II. To make it clear les star at the beginning.

The capacitance of the electrostatic actuator C(t) and the series capacitor CS form a

capacitive divider circuit. If both capacitances are initially discharged and a voltage V_hi is applied

to the upper node of the capacitive divider and V_lo voltage to the lower node, the intermediate

voltage VOUT follows the equation

 

 HI LO
out LO

S

V V
V C t V

C C t


  


 (2.1)

The Figure 2.16 presents a capacitance divider to demonstrate the equation correctness. The

electrostatic actuator is represented as the variable capacitor C(t), the series capacitor as CS and

the output as VOUT .

Figure 2.16: Capacitance divider.

For sequence I, where VHI=15V and VLO=0V the output VOUT is therefore given by:

 

 () 15out I

S

C t
V V

C C t
 


 (2.2)

For sequence II, where VHI=-11.7V and VLO=3.3V output equal to:

 

 () 15 3.3out II

S

C t
V V V

C C t
   


 (2.3)

 20

The next step is to determined from equation 2.2 a
 

 S

C t

C C t
 component and insert it to 2.3.

Finally desired relationship amount to.

 () () 3.3out II out IV V V   (2.4)

As equation 2.4 shows after changing between mode it is necessary to invert a output

voltage and add a little offset. This task is performed by Texas Instrument’s amplifier, and a

scheme is presented in Figure 2.17.

Figure 2.17: A inverting amplifier configuration

This is a simplified version of this amplifier, in original scheme there are also power supply

filtering capacitors and many jumpers to select a mode configuration. The next paragraph

describe all of them.

In the past there have been a lot of groups of op-amp circuits, but all of them have split

power supply. While designing a single supply amplifier it is necessary to remember about specific

conversion. It is not possible to change a supply from slip to single without doing modification in

circuit. The next paragraph will explain this conversion. Figure 2.16 present split and single supply

amplifier.

Figure 2.18: A split and single supply circuit

 21

The power supply depicture on the left draws consist of positive and equal opposite

negative pole. In this case input and output voltage are changed to the ground and swing to a

limit of VOM, the maximum peak-output voltage swing.

In single supply mode a new concept should be introduced. Virtual ground is a half of

positive supply and ground. That is why it is necessary to add this voltage to a input signal. In fact

only single supply configuration is used, and this error is compensating by adding a little less

offset voltage. To clarify, the slope of input signal is controlling by a gain, and it isn’t depend on

power supply mode.

To make a board more useful and flexible the variable gain was designed. The gain range

is 0.5 to 1.5, and the calculation is presented below.

Figure 2.19: A adjustable gain on the Left G=0.5 and Right G=1.5.

Simultaneous equations presented below allow to derive all unknowns.

0.5

1.5

f

in p

f p

in

R

R R

R R

R


 


 




 (2.5)

There are three unknown, for that reason the assignment one of them is necessary. This value

should be available in resistance series of types. For the potentiometer’s resistance equal Rp =

500Ω other values are Rin = 750Ω and Rf = 625Ω. The 625Ω value doesn’t exists in E24 series of

types and the nearest is 620Ω. So finally the gain range for values arrangement presented below

is from 0.49 to 1.5.

620

500

750

f

P

in

R

R

R

 


 
  

 (2.6)

 22

After explanation of all calculation in amplifier section it is time to present works in

graphical way. Figure 2.20 presents only a shape without scales and any values. The dashed line

present a system work with operational amplifier, but a continuous line without.

Bold black line shows the course of the signal directly from the divider. In the sequence I,

dashed lines show the possibilities, that may occur after changing the polarity. If stored charge is

large enough, the measured capacitance is overstated after switching – this is represented by

lower line, but the dashed line above present a behavioral if charge is not sufficient.

 It is true that inverting and offset adding could be make by software, but much faster and

easier is to do it by analog way.

Now the question arises why, after calibrating the device at the beginning of the work

may appear there not enough charge. Answer is that, after the change of polarization, the

capacitor is loaded opposite charge which in the next sequence should be re-charged. This

situation was better describe in 1.6 Controlling the charge section.

2.4.3 Multiplexers

In this part describe a multiplexers choice to change a voltage polarity. Section takes to consider

only two signals: PWM HI_MEMS supply a capacitance divider and PWM D which is controlled by

Delirium-I. The high-voltage logic (+15V) inverter was implemented using the discrete commercial

device ICL7667, which allows continuous operation at voltages up to 15 V. This scheme was

presented in Figure 2.21.

too much
charge
cause stay
in next
sequence

charge is not
sufficient,
system stay
in previous
sequence

polarity
change

dashed and
continuous
line overlap

offset

invert this slope

Figure 2.20: A charge injection shape with amplifier correction

 23

Figure 2.21: Divider’s supply wave generator by inverter

This approach is good for only one mode, just for positive voltage +15V and GND wave. In

design -11.7V and 3.3V voltage wave is also needful, so there was a problem to find a negative

supply inverters or that circuit was very expensive. The new idea was proposed. Inserted there a

symmetrical supply multiplexer solved that problem. More over this multiplexers could be order

for free from Analog Device research center. Everything will be perfect but new circuit has a

longer turning ON and OFF times. The solution for that problem also was founded by placed

parallel two of them. The scheme of new approach was presented below in Figure 2.22. For

limpidity a second multiplexer was omitted.

Figure 2.22: Divider’s supply wave generator by multiplexer

To calculate the time constants of divider supply circuit, equivalent capacitance should be

estimated at first. Substitute capacitance connected in series could be calculated by the formula

2.7, and for CMEMS ≈ 20pF and CS = 68pF, a Ceq = 15pF.

1 1 1

eq MEMS S

MEMS S
eq

MEMS S

C C C

C C
C

C C

 






 (2.7)

 24

A switching time calculation for both approaches was presented below.

 Inverter

At VCC = 15V, the output impedance of the inverter is typically Rout = 7Ω. The time constant

is derived in formula below.

 7 15 105out eqR C pF ns      (2.8)

 Multiplexer

The output impedance of this multiplexer with dual power supply is typically Rout = 130Ω,

and time constant is derived below.

 130 15 1.95out eqR C pF us      (2.9)

This time has been reduced twice by connected two MUX in parallel. More over there are

introduced several modifications in the code to slightly delay the start of sampling, it will

be thoroughly explained in the chapter devote to the program.

To choose a right multiplexer a logic level capability is important. The Delirium-I chip was

designed to work with TTL level, for that reason the ADG1309 device with 3V, logic-compatible

digital input where: VIH = 2.0 V and VIL = 0.8 V was selected.

 The selected multiplexer has a active high digital input to disconnect all switches. When

this signal is low, the device is disabled and all switches are off. When high, Ax logic inputs

determine on switches. In project there are no needs to disconnect them so the EN input is

shorted to 3.3V.

 The controlling signals A0 and A1 allow to select a appropriate input. As it is depicture in

documentation block diagram this multiplexer has a 1-of-4 decoder and in fact consists with two

identical 4 inputs and 1 outputs multiplexers and at the same time the control Ax signals connect

both switches. This is useful to generate a both LO and HI_MEMS signals concurrently. One of this

outputs goes to high point of actuator and another to low of fixed capacitor. This situations is

depicture in figure 2.20. Another useful combination was that D signal is connected directly to A0.

This makes the PWM generation independent from FPGA, because D is generated by Delirium-I

 25

chip, and only changing between sequence is controlled by FPGA program. This situation is also

presented in the Figure 2.22.

2.4.4 Negative voltage calculation

To generate a negative supply voltage the UCC384-adj Texas Instrument’s linear regulator was

used. In this projects it is no necessary to choose high efficiency regulators just to supply one

amplifier which can consume less then 20mA current. The adjustable version was placed because

of major functionality. The output voltage is defined by equation 2.10.

 1

2

1.25 1out

R
V

R

 
    

 
 (2.10)

Experience shows that in prototype version it is better to use potentiometer, which allows

voltage adjustment in wide range. This solution entails some danger. It is necessary to tune

voltage before lead it to circuit.

2.4.5 Printed circuit boards

This section describe a board layout design. There will be presented two version of multiplexing

board, and a rules which was kept during designing process. Board were made using a free 30-day

trial version of Altium Designer. Despite the fact that this program provides a appreciable library

items, sometimes it is needed to add a new one, and the standards are becoming very useful in

this. That is why this section shall begin by introduce to the most important of them.

a) The CAD Library standard

Standard component package outlines come from industry standard organizations that

specialize in component packaging data and standardization of documents and publications. One

of the most well known organization is IPC – Association Connecting Electronics Industries. IPC is

the trade association that brings together all of the company in this industry: PCB designers, PCB

manufacturers, PCB assembly companies, suppliers, and original equipment manufacturers.

 These standards define all aspects of facing the engineer. Collection of materials created

for this project does not meet all of them, since these standards are developed for large

companies where the production takes place in series. Although the multiplexing board is not

complicated design, and will not be mass produced, it is worth to follow the standards for each

project.

 26

 Since 1987, when an engineer needed information about the dimensions and ranges

footprint tolerance, reached the standard IPC-SM-782. This standard defines the appearance of

PCB components for a huge number of standard SMD components, but does not define

specifically their names. In 2005 appeared the standard IPC-7351. All libraries included in Altium

Designer is made in complying with this standard. At the points below there are listed the most

useful standards.

 IPC-2221A: Generic Standard on Printed Board Design

 IPC-2222: Sectional Design Standard for Rigid Organic Printed Boards

 IPC-7351A: Generic Requirements for Surface Mount Design and Land Pattern Standard

 IPC-7251 (draft): Generic Requirements for Through-Hole Design and Land Pattern Standard.

All boards in this project were manufactured in milling process without metallization. That has

imposed the following requirements, all tracks, pads, and vias was enlarged.

b) A first version

This version of the board had a few bugs. The first was its size 52 x 27 mm too small. It was very

difficult to make any modification or measurements on the tracks or pins. In addition, in the

second mode (negative divider supply), HI_MEMS and LO_MEMS signals looked the same as

control D signal. Capacitors are not discharged during the reset, however, during the

measurement. The layout of the first version is presented below in the figure 2.21.

Figure 2.23: A first version of multiplexing board

c) A second version

Advantages of this board were introduced a numerous descriptions in the cooper. All elements

are logically arranged and work with it is more intuitive and requiring no schema. Board is double

layer with components of only one side, with the majority of surface mount elements. A vias

were hand made with silver steel. All polygon plane were connected to analog ground, provide

efficient shielding.

 27

The dimension of new board are: 100 x 27 mm, and rounding in top left corner R = 10

mm. All tracks were placed according to the principle – horizontal on top, vertical at the bottom,

then circuit became more clear. The maximum absorbed current is 20 mA so there is no need to

increase the thickness of power paths.

TOP LAYER

BOTTOM LAYER

Figure 2.24: A two layers of second version of multiplexing board.

2.4.6 Jumpers

This section as before, includes a paragraph about the jumpers and their proper configuration.

The majority of them comes from amplifier.

 Jumper JP1 is used to select on offset voltage. In equation 2.4 this value amount to 3.3V.

Therefore, this level could be achieve from power supply or LO_MEMS signal in the second mode.

Assuming that the PWM voltage may be modified equation 2.4 may take the form, and offset

could depend on VLO_MEMS voltage.

() ()

() () () ()

() ()

() ()

HI II LO II

out II out I LO II LO I

HI I LO I

out II out I LO

V V
V V V V

V V

V gain V V


   



  

 (2.11)

 Jumpers JP2 and JP3 are used to choose a amplifier’s supply voltage, split or single.

Difference between these modes of supply was discussed in 2.4.2 section.

 28

Option
Jumper JP2

Settings
Jumper JP3

Settings
Description

Single
supply

This position it is necessary to remember about
virtual ground during a measurements.

Slit supply

This is basic and very useful configuration,
amplifier operates in the manner described in
every manuals

Single
supply
without
ground
shifted

This configuration was used during testing circuit,
as it was describe before, gain was adjust
separately and offset error was corrected by PR1
potentiometers.

Table 2.4: Amplifier power supply configuration.

 The JP4 jumper is useful to test only amplifier operation without reordered circuit. Output

of amplifier is available on gold pin marked as out on PCB cooper.

Option
Jumper JP2

Settings
Description

Normal mode

In this position the out from capacitance divider are connected
to inverting input of amplifier, this is normal operational mode.

Test mode

This position is used to test a amplifier correct operation.
There is possible to connect an external signal source –
through this jumper and tune a gain and offset.

Table 2.5: The jumper’s JP4 purpose

 The JP5 jumper is used to disconnect a amplifier. Signal DIG(4) set a sequence mode,

when the jumper is in place the multiplexer switch between first and second input depends on

current sequence. In sequence II the output from divider is led thought amplifier circuit. If JP5

jumper is removed, the R7 resistor pull off the A0 control input to ground, assuring S1 terminal

connect to the output drain D. Which means output from capacitance divider is permanently

connected to ADC circuit, and do not depend on current sequence, the amplifier is bypassed.

 Board provide 3 probe pins to observe a several control signals. All of them are depictured

in the Figure 2.25.

Figure 2.25: Pin signal in probe terminals.

P1

1

R
2

D

3

H

4

GND

P2

1

Vaux
2

GND

P3

1

DIG4
2

DIG3

3 Algorithm implementation

3.1 Overview

This chapter presents a hardware description and synthesis with VHDL. At the begging the block

diagram will be shown with a description of each state. Then, will be description of all important

pieces of code that will be included in the Appendix.

3.2 Codes description

3.2.1 ASM chart

This section present a flow chart of designed algorithm and also describe the most important part.

An FSM (finite state machine) is used to model a system that transits among a finite number of

internal states. The transitions depend on the current state and external input. Unlike a regular

sequential circuit, the state transitions of an FSM do not exhibit a simple, repetitive pattern.[3]

An FSM is usually specified by an abstract state diagram or ASM chart (algorithmic state

machine chart), both capturing the FSM's input, output, states, and transitions in a graphical

representation. The two representations provide the same information. The FSM representation

is more compact and better for simple applications. The ASM chart representation is somewhat

like a flowchart and is more descriptive for applications with complex transition conditions and

actions. The ASM chart of the project is depictured in Figure 3.1.

 30

Figure 3.1: The ASM chart of charge injection algorithm.

State machine at the beginning of work, consisted of only two states, for readability and

ease of troubleshooting there were introduced an additional two states, responsible for making

decision in which sequence system should stay to reduce a parasitic phenomenon. There are also

another state called manual, which allow to change a sequence with pushing a button. These

mode is used to test circuit and to better show a charge injection effect. Program starts work

from SEQ.1, and at the beginning the counter start measure a 1s time in order to change a

polarity and compare the quantity of charge that has been injected into the structure. Before

switching the program have to collect all samples to do average, and wait for high level of D

signal. In this state (seq.I) there is also possibility to go to manual mode, by asserting a slide

 31

button high. After meeting all requirements the program pass to pre_seq.II. Where its main task is

to take a decision in which sequence program should stay further, but before that a samples

should be averaged. So again collecting all 2AVGS samples, do average, and decide. When a decision

will be made a next step is to wait for high level of D signal. Operation principle in state seq.II and

pre_seq.II is similar to seq.I and pre_sqe.I. Anyway for the transparency of the code, separates

state have been introduced, thereby increasing the number of flip-flops only by 2. In a simple

projects, this number does not play the role, although in larger system it should be take into

account as the best code and hardware optimization. Before pass through the main part it is

worth to mention about clocks in whole system.

3.2.2 Clocks in design

The Spartan-3 Starter Kit board has a dedicated 50 MHz series clock oscillator source but also

provide a advanced clocking capabilities as Digital Clock Managers (DCMs) [20]. DCMs optionally

multiply or divide the incoming clock frequency (50Mhz) to synthesize a new clock frequency.

DCMs also eliminate clock skew, thereby improving system performance. This property has been

used in the project to generate digital to analog converter’s clock with 100MHz frequency. It is

worth to mention that converter belong to family of monolithic, single 3V supply, and 10-bit data

resolution, with three different processing speed. In the design the fastest one is used, with

105MSPS (Million Samples Per Second). It means that, the highest frequency which could be

apply, amount 100MHz.

The main clock synchronize all processes is called CLK_IF. It is generated also from DCM

instantiate as CLKFX which is an output from Frequency Synthesizer. The Digital Frequency

Synthesizer (DFS) provides a wide and flexible range of output frequencies based on the ratio of

two user-defined integers, a Multiplier (CLKFX_MULTIPLY) and a Divisor (CLKFX_DIVIDE). The

output frequency is derived from the input clock (CLKIN) by simultaneous frequency division and

multiplication. As it is depicture in the listing 3.1 (in line 126) a first variable depend of SSFACTOR

constant, which takes the value 3. Moreover this constant is used to connects a clock frequency

with output pattern width. DCM instance is presented in the Listing 3.1.

 32

Listing 3.1 DCM instantiate – MEMS_ChargeInReduce.vhd

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

148

--==

-- DCM instantiate

--==

 DCM1 : DCM

 generic map (

 CLKDV_DIVIDE => 10.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6

 -- 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0

 CLKFX_DIVIDE => 2**(SSFACTOR), -- Can be any integer from 1 to 32

 CLKFX_MULTIPLY => 2, -- Can be any integer from 1 to 32

 CLKIN_DIVIDE_BY_2 => FALSE, -- TRUE/FALSE to enable CLKIN divide by two…

 CLKIN_PERIOD => 20.0, -- Specify period of input clock

 CLKOUT_PHASE_SHIFT => "NONE", -- Specify phase shift of NONE…

 CLK_FEEDBACK => "2X", -- Specify clock feedback of NONE, 1X or 2X

 DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS", -- SOURCE_SYNCHRONOUS,

 -- SYSTEM_SYNCHRONOUS or an integer from 0 to 15

 DFS_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency…

 DLL_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for DLL

 DUTY_CYCLE_CORRECTION => TRUE, -- Duty cycle correction, TRUE or FALSE

 FACTORY_JF => X"C080", -- FACTORY JF Values

 PHASE_SHIFT => 0, -- Amount of fixed phase shift from -255 to 255

 STARTUP_WAIT => FALSE) -- Delay configuration DONE until DCM LOCK,…

 port map (

 CLK0 => CLK_50MHz, -- 0 degree DCM CLK ouptput

 CLK2X => CLK_100MHzI, -- 2X DCM CLK output

 CLKFX => CLK_LF, -- DCM CLK synthesis out (M/D)

 CLKFB => CLK_100MHz, -- DCM clock feedback

 CLKIN => CLK_IN -- Clock input (from IBUFG, BUFG or DCM)

);

 BUF1: BUFG port map (I => CLK_100MHzI, O => CLK_100MHz);

In the project was being implemented additional clock divider for general purpose. It is

used mainly to timing and delays. A Listing 3.2 presented its implementation.

Listing 3.2: General purpose clock divider – MEMS_CharageInReduce

224

225

226

227

228

229

230

-- General-purpose clock pre-scaler

process (CLK_LF)

 begin

 if rising_edge(CLK_LF) then

 CLK_DIV<=CLK_DIV+1;

 end if;

 end process;

 Another very important clock is a clock that control a chip’s operation. In this project

there is possible to select one of several output clock patterns. The main of them was designed by

Daniel Fernandez and that of the ruts is very extensive, including lot of collateral types, and

providing a user intervention.

 Due to the lack of accurate documentation and misunderstandings of all inserter

protections, a new simple clock, allowing only a period and duty cycle adjust was introduced. It is

presented in the , below.

 33

Listing 3.3: General purpose clock divider – MEMS_ChargeInReduce.vhd.

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

entity MY_PATTERN is

 Port (

 clk : in std_logic; -- 12,5 MHz clock what means 80ns period

 dutyCycle : in NATURAL range 1 to 1023;

 patternPeriod : in natural range 1 to 1023;

 out_pattern : out std_logic

);

end MY_PATTERN;

architecture Behavioral of MY_PATTERN is

 signal Counter : natural range 0 to 1023 := 0;

begin

 process (clk) begin

 if rising_edge(clk) then

 if (Counter < patternPeriod) then

 Counter <= Counter + 1;

 else Counter <= 0; end if;

 end if;

 end process;

 out_pattern <= '1' when Counter < dutyCycle else '0';

end Behavioral;

As it was described in the Introduction chapter, a MEMS actuator capacitance could be

changed with duty cycle. In the 3.2.7 section there will be description how to do it, but in the first

place an important instantiates will be presented.

3.2.3 Important instantiates

At the beginning of this section it is worth to mention what is a current information path to be

correctly interpreted in order to make a proper decision. The easiest way to present it is to show

it on the functional block diagram.

Figure 3.2: A whole system functional block diagram

 In the next part there will be explanation for each module, start with Sample & Hold.

Instantiate is presented in the Listing 3.4

 34

Listing 3.4: S&H instantiate – MEMS_ChargeInReduce.vhd.

136

137

138

139

140

141

142

143

------------------- Sample and Hold for ADC data --------------------

SAHP : entity work.sampleandhold(Behavioral)

 generic map (n=>11)

 port map (

 clk => CLK_100MHz,

 hold => H_POS,

 din => DATA_ADC_SIGNED,

 dout => SAHP_OUT

);

When the hold is high, capacitance was recharged and this kind of information should be

separated from other part to prevent glitches among other things. For this reason there was

introduced a module responsible for stopping the sampling at the time of capacitance reset. To

control the sample and hold module it was used hold signal (H) generated by the chip, but before

the signal is subordinate to a small modification. Below there is presented a listing and detail

explanation.

Listing 3.5: Hold signal delayed – MEMS_ChargeInReduce.vhd.

136

137

138

139

140

141

142

143

--------------- Delayed of the HOLD (H_DACEA) signal -------------

HLDP : entity work.delayed_stim(Behavioral)

 generic map(predelay=>PREHOLD_TIME, postdelay=>HPOS_TIME, preventive=>'1')

 port map (

 clk => CLK_100MHz,

 inp => H_DACEA,

 outp => H_POS

);

 To explain why the signal delay was introduced it is necessary to mention about how

converter operation is based. The AD9215 uses a multistage differential pipelined architecture

with output error correction, and this of course means that the actual capacitance value are

delayed, more over introducing this delay could prevent a short interferences appear after

changing a control level. Figure 3.3 present a timing diagram, and demonstrate how ADC process

the samples.

Figure 3.3: ADC timing diagram.

 35

3.2.4 Averaging as a low-pass filter

In this section there will be averaging function description. At the beginning of project several

question arise, one was: how to determine the typical amount, a valid estimate, or the true value

of some measured parameter?

In the physical world, it is not easy to do because unwanted random disturbances

contaminate measurements. These disturbances are due to both the nature of the variable being

measured and the fallibility of our measuring devices. Each time during accurate measurement

some physical quantity, a slightly different value was get. Those unwanted fluctuations in a

measured value are called noise, and digital signal processing practitioners have learned to

minimize noise through the process of averaging. The literature, shows not only how averaging is

used to improve measurement accuracy, but that averaging also shows up in signal detection

algorithms as well as in low-pass filter schemes [13] [15].

In digital signal processing, averaging often takes the form of summing a series of time-

domain signal samples and then dividing that sum by the number of individual samples.

Mathematically, the average of N samples of sequence x(n), denoted xave, is expressed in the

equation 3.1.

  
       

1

1 2 3 ...1 N

ave

n

x x x x N
x x n

N N

   
  (3.1)

Explaining the process of averaging is worth to mention about one well know filter

structure. FIR (Finite Impulse Response) low pass filters given a finite duration of nonzero input

values. This filter use addition to calculate their outputs in a manner much the same as the

process of averaging uses addition. In fact, averaging is a kind of FIR filter and successive time-

domain outputs of an N-point averager are identical to the output of an (N–1)-tap FIR filter whose

coefficients are all equal to 1/N. Figure 3.4 shows the discussed idea.

Figure 3.4 An N-point average depicture as a FIR filter

 36

Listing 3.6 Avarage implementation in VHDL – dsp.vhd

213

214

215

221

222

224

225

226

227

228

229

231

232

233

234

236

237

238

239

240

241

242

243

244

245

246

247

249

250

251

252

253

254

255

256

257

--

-- Averaging device

--

entity averaging is

 generic (avgs : integer;

 n : integer);

 port (

 clk : in std_logic;

 din : in STD_LOGIC_VECTOR(n-1 downto 0);

 dout : out STD_LOGIC_VECTOR(n-1 downto 0)

);

end averaging;

architecture Behavioral of averaging is

 type samples IS ARRAY ((2**avgs)-1 DOWNTO 0) OF STD_LOGIC_VECTOR(n-1 downto 0);

 signal dataSamples : samples;

begin

 process (clk)

 variable accumulator : STD_LOGIC_VECTOR(n+avgs-1 downto 0) := (OTHERS => '0');

 begin

 if rising_edge(clk) then

 -- add new sample and detele the last one (Shift right)

 -- first LSB is deleted, then array is shifted right

 -- and the new sample is put in MSB place

 for index in 0 to (2**avgs)-2 loop

 dataSamples(index) <= dataSamples(index+1);

 end loop;

 dataSamples((2**avgs)-1)<=din;

 -- average all data in array

 accumulator := (others=>'0');

 for index in dataSamples'range loop

 accumulator := accumulator + ext(dataSamples(index),n+avgs);

 end loop;

 dout <= accumulator(n+avgs-1 downto avgs);

 end if;

 end process;

end Behavioral;

Listing 3.6 presets software implementation of averaging module. Number of samples

averaging in one cycle is determine by avgs generic, and amount to 2avgs samples. All of them are

accumulated in a array at first (line 247). During the time, when new sample arise, array is shifted

to the right and new value goes to the MSB (Most Significant Bit) place. After that all data in the

array are summed into accumulator (lines: 251-253). Division by the number of samples was carried

by the logical right shift accumulator register, whose bits are simply moved a number determine

by the avgs generic. The n predefined variable specify a data sample’s number of bits.

As it was illustrated in the Figure 3.3, to obtain one average sample it is necessary to

collect min 2avgs data. That figure 3.2 shows more clearly the principal of progressive averaging. A

average from rectangles marked with a cross will not be further subjected to process because of

incomplete set of samples.

 37

The system have to wait to collect all samples, the special counter was designed for doing

that task and it is presented in the listing 3.3, but before discussing this part a short explanation is

necessary. Counter is synchronize with CLK_LF clock, and it could be asynchronous reset by RST

signal, or synchronous by assert a slide button high. A DIGS_int(4) is a signal flag to indicate

and control a sequence mode. The different settings of the DIGS_int(4) bit have the following

effects:

 DIGS_int(4) = '0':

HI_MEMS:

LO_MEMS: permanently grounded

 DIGS_int(4) = '1':

HI_MEMS:

LO_MEMS:

Due to the possible changes in the number of averaging samples up-down counter was proposed.

Collect all samples is indicated by setting a overflow bit in the same counter. Counter declaration

is shown in the Listing 3.7.

Listing 3.7 Averaging counter declaration – MEMS_ChargeInReduction.vhd

93 signal avgCount : STD_LOGIC_VECTOR (AVGS DOWNTO 0) := (others=>'0');

Figure 3.5 An N-point progressive average with prohibited cases

 38

The maximum value amount 2AVGS+1 not 2AVGS, as should be normally. The new concept was

introduced. The MSB(Most Significant Bit) is used to indicate, that 2AVGS value was counted, when

it happen in the next iteration counter just overload, assert meanwhile the avgCount(AVGS) bit.

Listing 3.8: Averaging counter implementation – MEMS_ChargeInReduction.vhd

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

-- ------------------------ avgCount ------------------------

process (CLK_LF, RST) begin

 if RST = '1' then

 avgCount <= (others=>'0');

 elsif rising_edge(CLK_LF) then

 if SLIDE_FILT(3) = '0' then

 if DIGS_int(4) = '0' then

 if avgCount(AVGS) = '1' then avgCount <= (others=>'1');

 else avgCount <= avgCount + 1; end if;

 elsif DIGS_int(4) = '1' then

 if avgCount(AVGS) = '0' then avgCount <= (others=>'0');

 else avgCount <= avgCount - 1; end if;

 end if;

 else

 avgCount <= (others=>'0');

 end if;

 end if;

end process;

During sequence II, avgCount is counting up, but in sequence I down. For that reason counter

have to be loaded to one of limits value. When the avgCount(AVGS)bit is set, it is loaded to

maximum (line 473), and when avgCount(AVGS) = 0 counter is cleared (line 476).

After presented all the most important instantiates in the module it is time to show how the state

machine was implemented.

3.2.5 State machine description

 Several approaches can be conceived to design a FSM (Finite State Machine) which consist of

lower and upper section. The lower one contains the sequential logic (flip-flops), while the upper

section contains the combinational logic. The sequential section in this design has three inputs

(CLK_LF, RST and state_next), and one output (state_reg). The Listing 3.9 shows this part.

Listing 3.9: Lower (Sequential) section of state machine – MEMS_ChargeInReduction.vhd

429

430

431

432

433

434

435

436

437

438

439

-- #################### Lower section (registers) ####################

-- ------------------------ STATE_REG ------------------------

process (CLK_LF, RST) begin

 if RST = '1' then

 state_reg <= seqI;

 elsif rising_edge(CLK_LF) then

 if D_DACEA = '1' then

 state_reg <= state_next;

 end if;

 end if;

end process;

 39

To encode the states of a state machine, there are several available styles. The default style is

binary. Its advantage is that it requires the least number of flip-flops. In this case, with n flip-flops

(n bits), up to 2n states can be encoded. The disadvantage of this encoding scheme is that it

requires more logic and is slower than the others. At the other extreme is the onehot encoding

style, which uses one flip-flop per state. Therefore, it demands the largest number of flip-flops. In

this case, with n flip-flops (n bits), only n states can be encoded. On the other hand, this approach

requires the least amount of extra logic and is the fastest.

 In this design the binary encode style was used, and a number of flip-flops could be

calculated from the following equation: log2n where n is the number of states. Figure 3.6 confirm

that. This is a part of RTL (Register Transfer Level) schematic [4] representation, generated by

Xilinx Synthesis Technology (XST) [18]. There are 3 flip-flop marked as D1..D3, to store one of five

state possibilities (pre_seqI, seqI, pre_seqII, seqII and manual).

Figure 3.6: A part of RTL scheme shows state encoding.

 Upper section will be discussed separately for each state, start with seqI state which is

presented in the Listing 3.10.

Listing 3.10: A seqI state – MEMS_ChargeInReduce.vhd

502

503

504

505

506

507

508

509

510

511

512

513

 ----------------------- SEQUENCE I -----------------------

 when seqI =>

 DIGS_int(4) <= '0';

 LEDS(1) <= '1';

 if SLIDE_FILT(3) = '0' then

 if secCount(26 downto 23) = secTime then

 state_next <= pre_seqII;

 else state_next <= seqI;

 end if;

 else state_next <= manual;

 end if;

 40

After power ON or reset signal program begin from this state. Here there is also possibility to go

to manual mode after set a fourth slide button to high which is represent as SLIDE_FILT(3) in

the program. When a counter secCount which will be presented in next section reach

predefined value secTime,the program goes to pre_seqII state to do comparison. This part is

presented in the Listing 3.11.

Listing 3.11: A pre_seqII state – MEMS_ChargeInReduce.vhd

515

516

517

518

519

520

521

522

523

524

525

 ---------------------- PRE-SEQUENCE II --------------------------

 when pre_seqII =>

 DIGS_int(4) <= '1';

 LEDS(1) <= '0';

 if avgCount(AVGS) = '0' then

 if (AVGS_OUT < capSeqI - dataInterval) then

 state_next <= seqII;

 else state_next <= seqI;

 end if;

 else state_next <= pre_seqII; end if;

In this state at the beginning the polarization of voltage supply capacitance divider was

changed. Next there are collecting a samples to average them, if a sufficient amount was

accumulated and permission to average was given program pass to comparison. The state with

the lowest ADC data which mean with the lowest MEMS capacitance is chosen. Remaining states

(pre_seqI, and seqII) operate in the same manner and they are shown in the Listing 3.12.

Listing 3.12: A remaining state: pre_seqI and seqII – MEMS_ChargeInReduce.vhd

490

491

492

493

494

495

496

497

498

499

500

527

528

529

530

531

532

533

534

535

536

537

538

 ---------------------- PRE-SEQUENCE I -----------------------

 when pre_seqI =>

 DIGS_int(4) <= '0';

 LEDS(1) <= '0';

 if avgCount(AVGS) = '1' then

 if (AVGS_OUT < capSeqII - dataInterval) then

 state_next <= seqI;

 else state_next <= seqII;

 end if;

 else state_next <= pre_seqI; end if;

 ----------------------- SEQUENCE II -----------------------

 when seqII =>

 DIGS_int(4) <= '1';

 LEDS(1) <= '1';

 if SLIDE_FILT(3) = '0' then

 if secCount(26 downto 23) = secTime then

 state_next <= pre_seqI;

 else state_next <= seqII;

 end if;

 else state_next <= manual;

 end if;

 41

Listing 3.13 presents a last state in which user can chance supply manually.

Listing 3.13: A manual mode state – MEMS_ChargeInReduce.vhd

540

541

542

543

544

545

546

547

548

549

 ----------------------- MANUAL MODE -----------------------

 when manual =>

 if CLK_DIV(20) = '1' then LEDS(1) <= '1';

 else LEDS(1) <= '0'; end if;

 if PUSH_FILT(2) = '1' then DIGS_int(4) <= '1';

 else DIGS_int(4) <= '0'; end if;

 if SLIDE_FILT(3) = '0' then state_next <= seqI;

 else state_next <= manual; end if;

As it was shown in the Figure 3.1 it is possible to reach this state only form sequence I or II

with putting a fourth slide button to high. A throbbing second led LEDS(1) inform about

operations in this state. A third push button can be used to change voltage polarity.

Connected with lower section there is another one register which should be described. It

is presented in the Listing 3.14.

Listing 3.14: A sequence timer – MEMS_ChargeInReduction.vhd

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

-- ------------------------ secCount ------------------------

process (CLK_LF, RST) begin

 if RST = '1' then

 secCount <= (others=>'0');

 elsif rising_edge(CLK_LF) then

 if SLIDE_FILT(3) = '0' then

 -- comment that instead next line put this for sim.

 if secCount(26 downto 23) = secTime then

 secCount <= secCount;

 if D_DACEA = '1' then

 secCount <= (others=>'0');

 end if;

 -- elsif secCount = (secTime & B"000" & X"0_0000") - 1 then

 -- if (SLIDE_FILT(4) = '0') then

 -- secCount <= secCount + 1;

 -- stopStoraging <= '0';

 -- else

 -- stopStoraging <= '1';

 -- end if;

 else secCount <= secCount + 1;

 end if;

 else

 secCount <= (others=>'0');

 end if;

 end if;

end process;

When secCount reach secTime value counter is stopped and reset only after asserted a

control D signal. When it happened in the same time a state_next register will be updated. The

secCount could be stopped just before achieving a secTime value by set a fifth slide button

high. This opportunity was introduced for changing a capacitance just before switching and

 42

interfere thereby in normal mode. Finally this option was removed due to easier way to force a

sequence charge in normal mode. Difference between capacitance in two mode could be changed

by the offset. As it was describe in the Figure 2.17 in 2.4.2 section, in sequence II output from

capacitance divider pass through amplifier before goes to converter. By changing a offset in this

amplifier user can manipulate a capacitance values in seqII, and force staying in different modes.

 Before sequence changing storage a previous capacitance value is necessary. It was

implemented with two D-type flip-flops as shown in the figure and listening below.

Figure 3.7: Capacitance storage section

Listing 3.15: A VHDL implementation of capacitance storage – MEMS_ChargeInReduce.vhd

553

554

555

556

557

558

559

560

561

-- to storage a ADC data before switch

process (CLK_LF) begin

 if rising_edge(CLK_LF) then

 if (state_reg = seqI) or (state_reg = manual and DIGS_int(4) = '0')

 then capSeqI <= AVGS_OUT;

 elsif (state_reg = seqII) or (state_reg = manual and DIGS_int(4) = '1')

 then capSeqII <= AVGS_OUT; end if;

 end if;

end process;

3.2.6 Do files

In situations where there are repetitive tasks to complete, it is possible to increase productivity

with DO files. DO files are scripts that allow to execute many commands at once. The scripts can

be as simple as a series of ModelSim commands with associated arguments, or they can be full-

blown TCL(Tool Command Language) programs with variables, conditional execution, and so

forth. Appendix D – Source codes presents all do file used in this project.

3.2.7 Program – user communication

This section describe program collaboration with users. There will be depicture, what diodes and

7-segment LED display shown, and for what are push and slide buttons responsible.

 43

 The main control is executed by slides buttons. Below in the graph form there will be

presented a proper configuration.

SW0

SW1

SW2

SW3

SW4

SW5

SW6

SW7

chip clock (CLK_DACEA) selector

(SW7,SW6)=00=> : Daniel’s pattern

(SW7,SW6)=01=>

 : L_DUTY

(SW7,SW6)=10=>

 : H_DUTY

(SW7,SW6)=11=>

 : basic pattern

ADC clock (CLK_ADC) selector

(SW5,SW4)=00=> : ground (clk_off)

(SW5,SW4)=01=>

 : CLK_LF (12,5MHz)

(SW5,SW4)=10=>

 : CLK_50MHz

(SW5,SW4)=11=>

 : CLK_100MHz

presented data to 4-digit LED display:

(SW2,SW1,SW0)=000 => : average data [*]

(SW2,SW1,SW0)=001 =>

 : secTime

(SW2,SW1,SW0)=010 =>

 : dataInterval

(SW2,SW1,SW0)=011 =>

 : HALFPERIOD

(SW2,SW1,SW0)=100 =>

 : dutyCycle

(SW2,SW1,SW0)=000 => : patternPeriod

(SW2,SW1,SW0)=100 =>

 : dutyCycle

(SW2,SW1,SW0)=101 =>

 : patternPeriod

(SW2,SW1,SW0)=others : E00E

transition to manual mode

 SW3 = 0: normal mode
 SW3 = 1: manual mode

connecting with manual mode, the
polarization could be changed by
push button 2.

for:
 BTN2 = 0: positive pol.
 DIG(4) = 0

 BTN2 = 1: negative pol.

 DIG(4) = 1

BTN2

BTN3

BTN1

BTN0

Figure 3.8: Slide switches configuration

 44

3.3 Simulation

This section shows correctness the algorithm operation, and also demonstrate work principle in

graphical way.

 A changing a sequence is allow only when H (Hold) signal is active high. For that reason a

capacitance divider is disconnected from measurement part and prevent a glitches occurrence.

This behavior is depicture on Figure 3.9.

Figure 3.9 Sequence changes when H is high.

The MEMS capacitance could be changed in several ways. The most obvious is by

destruction, but unfortunately in this thesis there is no description of this method. Other

important way is designed by Daniel Fernandez. A distance between plates is changed with a

PWM duty cycle width. By increasing a time of high level PWM the capacitance increase too [8].

The third method to change it, is by charge injection.

Because user can tune a MEMS capacitance, a charge injection phenomena could be see

only after changing a power supply, as it was explained in 1.5 section. For that reason we have to

capture a ADC data just before and after switch and decide which mode should be selected next.

When ADC data are equal or not exceed a interval value in both sequence the program

change a voltage polarity every defined period of time(defined by secTime register). The Figure

3.10 presented that situation. The time is set by user because injection speed is different for each

MEMS.

 45

Figure 3.10: Sequence changes every secTime period.

In the Figure 3.12 the data from the ADC are not constant, but increasing due to injected charge.

There are register named charge which indicate how large load is injected to MEMS structure.

This register does not include charge’s sign. The digs(4) flag which indicate a current sequence,

helps to determinate to which pole a capacitor is loaded. This is better explain in the Figure 3.11,

and the Figure 1.6 in 1.6 section will also be useful. During each sequence there are discharging

from previous pole and charging to opposite one.

Returning to Figure 3.12 there are two artificial addition of load, marked as discharging A and B.

This stimulation was performed to show that system is able to stabilize, and also that algorithm

reduce a charge to the minimum. In this figure there are another signal – leds(1) to indicate what

is current state. When leds(1) = 0 the program is in one of two pre-sequence, in pre_seq_I when

digs(4)=0 and in pre_seq_II when digs(4)=1.

discharging from positive pole/
see draw nr. 3 in Figure 1.6

charging to negative pole/
see draw nr. 4 in Figure 1.6

charging to positive pole/
see draw nr. 6 in Figure 1.6

discharging from negative
pole/
see draw nr. 6 in figure 1.2

Figure 3.11: Charging sign explanation

 46

After short explanation a few basic signals in design it’s time to present a main task. Figures below

depicture a ADC data – which mean MEMS capacitance stabilize in different interval times.

interval = 0

interval > 0

discharging

A.

discharging

B.

periodical

switching
 Figure 3.12: Artificial charge addition

 47

Figure 3.13: Charge reduction for different interval times.

The first curve in the figure above shows that the ADC data are stabilize as fast as

possible, in this case for each 1s, and digs(4) signal looks like PWM wave with 50% duty cycle. The

situation is different for curves where some interval value changes was inserted. This is defined by

dataInterval register in main program. User can change this value, when it is displayed on 7-

segment led display.

In the figures where dataInterval > 0 there are short switch between sequence for

checking if injected charge increase a critical value. If that happens program change sequence for

next 1s, then check and decide again.

ModelSim software allow to do a long time simulation but it takes a lot of time. For that

reason the switching between sequence was shorted.

3.4 Measurements

As it commonly happens in real world, simulations and experimental results may differ from each

other in many cases. This follows from the fact that, all phenomena that occur in reality are not

yet known. Of course it is beautiful and provides jobs for researches, whose main goal is making

life easier and safer.

 One of the first measurement was to review the operation of the system and test correct

operation of Delirium-I-FEAEL board presented in the Figure 2.4. It gives reliability in work with

capacitance estimation and driving circuit, designed by Daniel Fernandez [7]. First, system was

driving by external generators sources, not by FPGA, analog to digital converter was removed as

well. So whole system consist of Delirium-I-FEAEL with MEMS actuator (Figure 2.14) boards and

one small with inverter. Then PWM generator was connected to CLKIN_R0 as depicture in Figure

2.6, with 10us period time, and 90% duty cycle. It was observed that gradual reduction of duty

cycle, change a capacitance divider’s output voltage. This confirmed the correct operation of

initial part of system, and allow to find actuators with good performance.

 48

The next measurements were related to measure the actuator capacitance. This task has

been made mainly on the basis of the Daniel’s manuscript [5]. Many tests have been carried out,

however, here is presented a most interesting one with MEMS connected to 10th terminal (figure

attach in appendix C – A MEMS actuators floor-plan.). In the first place the curve voltage-

capacitance was determinate with two fixed capacitors. One of them substitute a actuator and its

value was increased, whereas the second one, represented the CS capacitor (see Figure 2.16)

remind unchanged. The ADC driver’s output voltage was measured and calculated Vmath = Vout+ -

Vout-. Observed that it is proportional to the changing capacitor’s value. This dependence is

presented in the Figure 3.14

Figure 3.14 Voltage-capacitance curve, obtained from two fixed

capacitance divider’s output.

The linear trend line was calculated, and its formula as well. In next step these capacitors was

replaced by MEMS actuator board (Figure 2.14), but this time changing the supply duty cycle

change a MEMS actuator’s plate distance. The capacitance was calculated from the derived

formula.

Duty Cycle [%] Vmath = Vout+-vout- [mV] C(t) [pF]

10% 63 14

20% 218 14,7

30% 340 15,4

40% 580 16,6

Table 3.1: The MEMS actuator capacitance calculation.

Further measurements have the task of verifying the correctness of the algorithm,

however, previously it is necessary to show that the charge injection phenomenon already exists.

In the figure below the courses presents a manually sequencing change, the changing aren’t so

appreciable. During approximately 6s a voltage change by about 100mV. Both channels presented

a ADC driver outputs, and on the bottom there is a DIG(4) signal which indicate a divider supply

 49

mode. The obtaining measurements are confirmation of assumptions erected at the beginning of

1.6 section. Figure 3.7 presents a ADC driver outputs (channel 1 and 2), and DIG(4) signal (D1 from

logic analyzer) – indicates a current sequence.

Figure 3.7: Manually mode changing and a charge injection confirmation.

It was obvious that during the measurements and work under the project a lot of

problems and concerns occur. Most of them may have been due to inaccurate documentation

equipment, as well as novelty and complexity of the design and wide range of material which

needs to be achieve before work. Most of them have been resolved through consultation and

conversation with the promoters and coordinators, but still not all of them. One of them,

associated with high sensitivity device to external disturbance still occur.

In the first phase of work there was two fixed capacitor (instead of MEMS actuator)

connected to the MEMS connector (CON24) depicture in the Figure 2.11. Noticed that divider is

very sensitive for electromagnetically field. Bringing a hand near to system changes a

characteristic curves change too.

There were also one another problem with ADC clock, or measuring equipment. When the

ADC clock was switched ON the small interference goes to the output voltage. Observed that the

magnitude of this interference depend on oscilloscope cables placement, and got rid of them by

using the simplest averaging in the oscilloscope screen. After obtain clean output waveforms

something happen to DIG(4) signal, which cannot remain stable in high level, but random change

to low on the D edges. Due to a lack of time, which still has been very extended this problem

remained unsolved. Figure 3.8 presents a described situation.

 50

Figure 3.8: Manually mode changing with ADC clock ON.

In the 3.2.7 section there was a description how to change a ADC clock frequency which is applied

to the converter. In the further work the source of such interference should be found. A few

advise, that could be given know is to check all paths, cause short or bridge find.

The last measurements shows the proper work of system excluding those outside interferences.

Curves show the same as in Figure 3.7 but know in automatic mode, with 100MHz ADC clock.

Figure 3.9: Automatic operation

4 Conclusion

Dielectric charging caused by charge injection under voltage stress was observed. The

amphoteric nature of traps and its effect on switch operation was noticed under both positive and

negative control voltages.

Dielectric charging is a complicated process involving different types of traps with time

constants differing by orders of magnitude. The presented in this document charging effect is

probably one of many charging effects that can impact switch operation and lifetime.

 After lengthy attempts, it contributed to find the system that provide the minimum

amount of charge inside the structure of MEMS actuators. A few measurements should be made

in a vacuum chamber as a further work. It was stated previously, that these devices are very

sensitive to external factors. Atmospheric pressure and humidity in the air negatively affected the

accuracy of measurements.

During the execution of this project a lot of interesting problems have been corrected.

World is not yet fully known, and ability what engineer must possess, sometimes outweigh its

potential. Enormity of knowledge available on the web, might cause that answer to be

ambiguous. Therefore, many attempts have been made before finding the right one.

Before the end, it is still worth pointing out what exactly has been done by the author of

this work. At the beginning he verified the correctness of the main board, with preliminary

measurements included. Then he designed the schematic and layout of multiplexing board, and

finally author implemented a charge injection reduce algorithm with simulation and confirmed by

measurements.

Summarizing the project has been done in correct manner what is presented in the

simulation and measurement part. The main goal which was to implement and experimentally

verify various control algorithm for MEMS electrostatic actuators was achieved.

5 Bibliography

[1] Allen, J. J. (2005). Micro Electro Mechanical System Design . Broken Sound Parkway

NW, USA: Taylor & Francis Group.

[2] Ashenden, P. J. (2008). The designer's guide to VHDL. Burlington: Morgan Kaufman

Publishers.

[3] Chu, P. P. (2008). FPGA prototyping by VHDL examples. Hobokon: Wiley-Interscience.

[4] Chu, P. P. (2006). RTL hardware designe using VHDL. Hoboken: Wiley-Interscience.

[5] D. Fernández, Jordi Madrenas. Pulse-Drive and Capacitive Measurement Circuit For

MEMS Electrostatic Actuators, Analog Integrated Circuits and Signal Processing.

Accepted for publication.

[6] D. Molinero, R. C. (2006). Dielectric charge measurements in capacitive

microelectromechanical switches. Barcelona, Spain.

[7] Daniel Fernándeza, Jordi Madrenas. (2008). A Self-Test and Dynamics Characterization

Circuit for MEMS Electrostatic Actuators., (pp. 3-4). Barcelona.

[8] Horsley, D. (2004). Patent nr US 6,674,383 B2. Berkeley, CA (US).

[9] Carter J., Cowen A., MEMSCAP Inc. (2005). PolyMUMPs Design Handbook. Rev. 11.0.

[10] Goldsmith C., Ehmke J., (2001). Lifetime characterization of capacitive RF MEMS

switches., Dig. IEEE Int. Microwave Symp., (pp. 227-230).

[11] Krick D. T., P. Lenahan, (Oct. 1988.) Electrically active point defects in amorphous

silicon nitride: An illumination and charge injection study, (pp. 3558-3563).

[12] Korvink, J. G., & Korvink, J. G. (2006). MEMS: A Practical Guide to Design, Analysis, and

Applications. Freiburg, Germany: Springer-Verlag GmbH & Co. KG.

[13] Lyons, R. G. (2007). Streamlining Digital Signal Processing A Tricks of the Trade

Guidebook. Piscataway, New Jearsy : IEEE Press .

 53

[14] Lyons, R. G. (2004). Understanding Digital Signal Processing, Second Edition. Upper

Saddle River, New Jersey: Bernard Goodwin.

[15] M.-C. Lu, G. F. (2004). Position Control of Parallel-Plate Microactuators for Probe-

Based Data Storage, Microelectromechanical Systems. pp 759–769. Journal of 13 (5).

[16] Pedroni, V. A. (2004). Circuit Design with VHDL. Cambridge, Massachusetts: MIT Press.

[17] Senturia, S. D. (2002). Microsystem Design. New York: Kluwer Academic Publishers.

[18] Xilinx. (2009). PlanAhead User Guide.

[19] Xilinx. (2005). Spartan-3 Starter Kit Board User Guide.

[20] Xilinx. (2006). Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs. Application

Note: Spartan-3 and Spartan-3L FPGA Families.

Appendixes

A – DELIRIUM-I-FEAEL documentation.

Schematic

 55

Reference Design Assembly Drawing

 56

B – Multiplexing board documentation

Schematic

 57

Reference Design Assembly Drawing

Top Layer Copper

Top Layer Assembly

Bottom Layer Copper

Bottom Layer Assembly

There is no components on that layer.

 58

Bills of materials

 59

C – A MEMS actuators floor-plan.

 60

D – Source codes

MEMS_ChargeInReduce.vhd – top level

--

-- ###################################### JUNE VERSION ######################################

-- Company: Politechnical University of Catalonia (UPC)

-- Engineer: Kamil Karliński / Daniel Fernández (dfernan@eel.upc.edu)

--

-- Create Date: 17:59:21 03/23/2010

-- Design Name:

-- Module Name: MEMS_ChargeInReduce - Behavioral

-- Project Name:

-- Target Devices: DACEA platform

-- Tool versions:

-- Description: Algorithm to reduce the failure mechanizm in elektrostatic actuators like CHARGE INJECTION

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use ieee.numeric_std.all;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

library UNISIM;

use UNISIM.VComponents.all;

entity MEMS_ChargeInReduce is

 Port (CLK_IN : in STD_LOGIC;

 CLK_ADC : out STD_LOGIC;

 DATA_ADC : in STD_LOGIC_VECTOR (9 downto 0);

 CLK_DACEA : out STD_LOGIC;

 BCD_OUT : out STD_LOGIC_VECTOR (7 downto 0);

 BCD_SEL : out STD_LOGIC_VECTOR (3 downto 0);

 FILTER_OUT : out STD_LOGIC_VECTOR (10 downto 0);

 CAPTURE : out STD_LOGIC;

 RST : in STD_LOGIC;

 H_DACEA : in STD_LOGIC;

 D_DACEA : in STD_LOGIC;

 R_DACEA : in STD_LOGIC;

 CMPOUT : out STD_LOGIC;

 SLIDE_SWITCH : in STD_LOGIC_VECTOR (7 downto 0);

 PUSH_SWITCH : in STD_LOGIC_VECTOR (2 downto 0);

-- TxD : out STD_LOGIC;

 LEDS : out STD_LOGIC_VECTOR (7 downto 0);

-- VGA_HS, VGA_VS, VGA_RED, VGA_GRN, VGA_BLU : out STD_LOGIC;

 OR_ADC : in STD_LOGIC;

 MAN : out STD_LOGIC;

 H0 : out STD_LOGIC;

 D0_C : out STD_LOGIC;

 DIGS : out STD_LOGIC_VECTOR (4 downto 1)

);

end MEMS_ChargeInReduce;

architecture Behavioral of MEMS_ChargeInReduce is

 type state_type is (pre_seqI, seqI, pre_seqII, seqII, manual);

 signal state_reg, state_next : state_type := seqI;

 signal CLK_50MHz : STD_LOGIC;

 signal CLK_100MHz : STD_LOGIC;

 signal CLK_100MHzI : STD_LOGIC;

 signal CLK_LF : STD_LOGIC;

 signal CLK_DIV : STD_LOGIC_VECTOR(23 downto 0) := (OTHERS => '0');

 signal CLK_DACEAI : STD_LOGIC;

 signal H_POS : STD_LOGIC; -- it's a delayed HOLD signal

 signal DATA_ADC_SIGNED, SAHP_OUT, SUBS_OUT, AVGS_OUT, SUBS2_OUT, MAX, MIN : STD_LOGIC_VECTOR (10 downto 0) :=

(others=>'0');

 signal capSeqI, capSeqII : STD_LOGIC_VECTOR (10 downto 0) := (others=>'0');

 signal AVGS_OUT_disp : STD_LOGIC_VECTOR (10 downto 0) := (others=>'0');

 signal AVGS_OUT_dispII : STD_LOGIC_VECTOR (15 downto 0) := (others=>'0');

 signal BEGINCAP_MAX, BEGINCAP_MAX_DLY : STD_LOGIC;

 signal DISPLAY_DATA_SSD : std_logic_VECTOR(15 downto 0);

 signal DOTS : STD_LOGIC_VECTOR (3 downto 0);

 signal SLIDE_FILT : STD_LOGIC_VECTOR (7 DOWNTO 0) := (OTHERS => '0');

 signal PUSH_FILT : STD_LOGIC_VECTOR (3 DOWNTO 0) := (OTHERS => '0');

 signal SELECTOR : std_logic_vector(1 downto 0) := (OTHERS => '0');

 signal COMP : STD_LOGIC;

 signal L_DUTY : STD_LOGIC;

 signal H_DUTY : STD_LOGIC;

 signal PRE_CLK_DACEA : STD_LOGIC;

 signal LOCK, nLOCK, nLOCK_DLY : STD_LOGIC;

 signal secCount : STD_LOGIC_VECTOR (26 DOWNTO 0) := (others=>'0');

 61

 signal secTime : STD_LOGIC_VECTOR (3 DOWNTO 0) := "0001"; -- variable, indicate a each sequence period,

 -- approximate in 1 second unit

 constant AVGS : NATURAL RANGE 0 to 8 := 5; --it is a power of 2,

 --indicate how many samlpes was taken to avarage process (in this case 2^2=4)

 signal avgCount : STD_LOGIC_VECTOR (AVGS DOWNTO 0) := (others=>'0');

 --not (AVGS-1 DOWNTO 0) because last bit (MSB) avgCout(AVGS) - can indicate when

 -- averaging module collect all 2^avgs samples to process

 signal stopStoraging : STD_LOGIC := '0';

 signal dataInterval : NATURAL RANGE 0 to 512 := 10;

 signal DIGS_int : STD_LOGIC_VECTOR (4 DOWNTO 1) := (others=>'0');

 signal dutyCycle : NATURAL range 1 to 1023 := 10; --

 signal patternPeriod : NATURAL range 1 to 1023 := 250; -- 125 => period = 10us with CLK_IF = 12.5MHz

 signal MY_CLK_DACEA : STD_LOGIC;

 constant PREHOLD_TIME : NATURAL RANGE 0 TO 255 := 2; --the time which we add at the beginig of H_DACEA to delay

 constant HPOS_TIME : NATURAL RANGE 0 TO 255 := 70; --the time which we add at the end of H_DACEA to delay

 constant SSFACTOR : NATURAL RANGE 2 to 5 := 3;

 constant MAXLOCK : NATURAL RANGE 1 to 131000 := 15000;

 constant GRACE : NATURAL RANGE 1 to 8191 := 200/(2**SSFACTOR);

 signal HALFPERIOD : NATURAL RANGE 1 to 8191 := 216/(2**SSFACTOR);

 signal HPadjSpeedUp : NATURAL RANGE 1 to 2047 := 1;

 signal adjSpeedUp : NATURAL RANGE 1 to 63 := 1;

 constant LOW_DCP : STD_LOGIC_VECTOR(1023 downto 0) := (0=>'1', 1=>'1', 2=>'1', OTHERS=>'0');

 constant HIGH_DCP : STD_LOGIC_VECTOR(255 downto 0) := (0=>'0', 1=>'0', 2=>'0', 3=>'0', 4=>'0', 5=>'0', 6=>'0',

7=>'0',

 8=>'0', 9=>'0', 10=>'0', 11=>'0', 12=>'0', 13=>'0', 14=>'0',

15=>'0',

 16=>'0', 17=>'0', 18=>'0', 19=>'0', 20=>'0', 21=>'0', 22=>'0',

23=>'0',

 OTHERS=>'1');

begin

--==

-- DCM instantiate

--==

 DCM1 : DCM

 generic map (

 CLKDV_DIVIDE => 10.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

 -- 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0

 CLKFX_DIVIDE => 2**(SSFACTOR), -- Can be any integer from 1 to 32

 CLKFX_MULTIPLY => 2, -- Can be any integer from 1 to 32

 CLKIN_DIVIDE_BY_2 => FALSE, -- TRUE/FALSE to enable CLKIN divide by two feature

 CLKIN_PERIOD => 20.0, -- Specify period of input clock

 CLKOUT_PHASE_SHIFT => "NONE", -- Specify phase shift of NONE, FIXED or VARIABLE

 CLK_FEEDBACK => "2X", -- Specify clock feedback of NONE, 1X or 2X

 DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS", -- SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or

 -- an integer from 0 to 15

 DFS_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for frequency synthesis

 DLL_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for DLL

 DUTY_CYCLE_CORRECTION => TRUE, -- Duty cycle correction, TRUE or FALSE

 FACTORY_JF => X"C080", -- FACTORY JF Values

 PHASE_SHIFT => 0, -- Amount of fixed phase shift from -255 to 255

 STARTUP_WAIT => FALSE) -- Delay configuration DONE until DCM LOCK, TRUE/FALSE

 port map (

 CLK0 => CLK_50MHz, -- 0 degree DCM CLK ouptput

 CLK2X => CLK_100MHzI, -- 2X DCM CLK output

 CLKFX => CLK_LF, -- DCM CLK synthesis out (M/D)

 CLKFB => CLK_100MHz, -- DCM clock feedback

 CLKIN => CLK_IN -- Clock input (from IBUFG, BUFG or DCM)

);

 BUF1: BUFG port map (I => CLK_100MHzI, O => CLK_100MHz);

--==

-- Digital_Signal_Procesing components instantion

--==

--------------- Delayed of the HOLD (H_DACEA) signal -------------

HLDP : entity work.delayed_stim(Behavioral)

 generic map (predelay=>PREHOLD_TIME, postdelay=>HPOS_TIME, preventive=>'1')

 port map (

 clk => CLK_100MHz,

 inp => H_DACEA,

 outp => H_POS

);

------------------- Sample and Hold for ADC data --------------------

SAHP : entity work.sampleandhold(Behavioral)

 generic map (n=>11)

 port map (

 clk => CLK_100MHz,

 hold => H_POS,

 din => DATA_ADC_SIGNED,

 dout => SAHP_OUT

);

------------------- Generic subsampler v2 --------------------

SUBS : entity work.subsampler_v2(Behavioral)

 generic map (n=>11, s=>SSFACTOR)

 port map (

 clk => CLK_100MHz,

 clk_out => CLK_LF,

 din => SAHP_OUT,

 dout => SUBS_OUT

);

--------------- Averaging the SUBS_OUT samples -----------------

AVG : entity work.averaging(Behavioral)

 generic map (avgs=>AVGS, n=>11)

 port map (

 clk => CLK_LF,

 din => SUBS_OUT,

 dout => AVGS_OUT

);

--==

 62

-- Output pattern generator - the MEMS actuator pulse clock exactly (CLK_DACEA)

--==

--------------------- main pattern ---------------------

OUTP : entity work.OUT_PATTERN(Behavioral)

 generic map (maxlock=>MAXLOCK, grace=>GRACE)

 port map (

 clk => CLK_LF,

 comp => COMP,

 halfperiod => HALFPERIOD,

 lock => LOCK,

 out_pattern => PRE_CLK_DACEA

);

--------------------- MY pattern ---------------------

MyP : entity work.MY_PATTERN(Behavioral)

 port map (

 clk => CLK_LF,

 dutyCycle => dutyCycle,

 patternPeriod => patternPeriod,

 out_pattern => MY_CLK_DACEA

);

--------------------- LOW duty pattern ---------------------

LDCY : entity work.cyclicpattern(structural)

 generic map (n=>LOW_DCP'LENGTH)

 port map (

 clk => CLK_LF,

 reset => RST,

 dada => LOW_DCP,

 b => L_DUTY

);

--------------------- HIGH duty pattern ---------------------

HDCY : entity work.cyclicpattern(structural)

 generic map (n=>HIGH_DCP'LENGTH)

 port map (

 clk => CLK_LF,

 reset => RST,

 dada => HIGH_DCP,

 b => H_DUTY

);

--==

-- 7-segment LED display component instantion

--==

DISP : entity work.Display(Behavioral)

 port map (

 value => DISPLAY_DATA_SSD,

 dots => DOTS,

 en => "1111",

 clkin => CLK_DIV(10),

 bcd_out => BCD_OUT,

 bcd_sel => BCD_SEL

);

--==

-- processes

--==

-- General-purpose clock pre-scaler

process (CLK_LF)

 begin

 if rising_edge(CLK_LF) then

 CLK_DIV<=CLK_DIV+1;

 end if;

 end process;

 -- Seven-Segment LED Display refresh delay

 process (CLK_DIV(19)) begin

 if rising_edge(CLK_DIV(19)) then -- in freq 12.5MHz, the rising_edge on proper bits in CLK_DIV occur

after time below

 -- AVGS_OUT_disp <= AVGS_OUT; -- rising_edge on bit:(19) after 0.08s (20) after 0.17s;

(21) after 0.34s; (22) after 0.67s; (23) after 1.34s

 AVGS_OUT_dispII(7 downto 0) <= capSeqI(7 downto 0);

 AVGS_OUT_dispII(15 downto 8) <= capSeqII(7 downto 0);

 end if; -- rising_edge which means

period I count in that way: 2**(a+1)/freq

end process; -- e.g. in bit(20) 2*(20+1)/12.5MHz =

0.17s

-- Button and switch samplers

process (CLK_DIV(14))

 begin

 if rising_edge(CLK_DIV(14)) then

 SLIDE_FILT<=SLIDE_SWITCH;

 PUSH_FILT<=RST & PUSH_SWITCH;

 end if;

 end process;

-- MAX and MIN detection

process (CLK_LF)

 begin

 if rising_edge(CLK_LF) then

 if (RST='1' or PUSH_FILT(1)='1') then

 MAX<=(OTHERS=>'0');

 MIN<=(10=>'0', OTHERS=>'1');

 else

 -- if(SUBS_OUT>=MAX) then MAX<=SUBS_OUT; BEGINCAP_MAX<='1'; else BEGINCAP_MAX<='0'; end

if;

 -- if(SUBS_OUT<MIN) then MIN<=SUBS_OUT; end if;

 end if;

 end if;

 end process;

-- Select the output pattern - exactly the MEMS actuator pulse clock

-- SLIDE_SWITCH 7,6 : 00 Normal mode

-- 01 Test Mode. Apply high voltage only (CLK_DACEA is set low duty cycle)

-- 10 Test Mode. Apply low voltage only (CLK_DACEA is set high duty cycle)

-- 11 Test Mode. Disable MEMS clock (CLK_DACEA is set high).

 63

 SELECTOR<=SLIDE_FILT(7 downto 6);

 with SELECTOR select

 CLK_DACEAI<=

 PRE_CLK_DACEA when "00",

 L_DUTY when "01",

 H_DUTY when "10",

 MY_CLK_DACEA when others;

-- Mux for select which data to display depending on the switches

-- SLIDE_FILT 1,0 : 00 Displays a capacitance in both seq.: left -> capSeqII,

 right -> capSeqI

-- 01 Displays a secTime value (time between seq. switch)

 [*]

-- 10 Displays the dataInterval value

 [*]

-- 11 Displays the half period

 [*]

-- [*] - can be adjusted with BUTTON 0 and 1 in this mode

process (CLK_LF)

 begin

 if (CLK_LF='1' and CLK_LF'event) then

 case SLIDE_FILT(2 downto 0) is

 when "000" =>

 DOTS <= B"0000";

 -- DISPLAY_DATA_SSD<=ext(SUBS_OUT(10 downto 0),16);

 DISPLAY_DATA_SSD <= ext(AVGS_OUT_dispII,16);

 when "001" =>

 DOTS <= B"0000";

 -- DISPLAY_DATA_SSD<=ext(MAX,16);

 DISPLAY_DATA_SSD<=ext(secTime,16);

 when "010" =>

 DOTS <= B"0000";

 DISPLAY_DATA_SSD<=std_logic_vector(to_unsigned(dataInterval,16));

 when "011" =>

 DOTS <= B"0000";

 DISPLAY_DATA_SSD<=std_logic_vector(to_unsigned(HALFPERIOD,16));

 when "100" =>

 DOTS <= B"0000";

 DISPLAY_DATA_SSD<=std_logic_vector(to_unsigned(dutyCycle,16));

 when "101" =>

 DOTS <= B"0000";

 DISPLAY_DATA_SSD<=std_logic_vector(to_unsigned(patternPeriod,16));

 when others =>

 DOTS <= B"0000";

 DISPLAY_DATA_SSD <= X"E00E";

 end case;

 end if;

 end process;

 -- Sequence time switching adjustment

 process (CLK_DIV(22-SSFACTOR)) begin

 if rising_edge(CLK_DIV(22-SSFACTOR)) then

 if SLIDE_FILT(2 downto 0) = "001" then

 if(PUSH_FILT(0) = '1') then

 secTime <= secTime + 1;

 elsif(PUSH_FILT(1) = '1') then

 secTime <= secTime - 1;

 end if;

 end if;

 end if;

 end process;

 -- Hysteresis width adjustment

 process (CLK_DIV(21)) begin

 if rising_edge(CLK_DIV(21)) then

 if SLIDE_FILT(2 downto 0) = "010" then

 if(PUSH_FILT(0)='1') then

 dataInterval <= dataInterval + 1;

 elsif(PUSH_FILT(1)='1') then

 dataInterval <= dataInterval - 1;

 end if;

 end if;

 end if;

 end process;

 -- Half period external adjustment

 process (CLK_DIV(22-SSFACTOR)) begin

 if rising_edge(CLK_DIV(22-SSFACTOR)) then

 -- ------------------- speedUP adjustment section -------------------

 if PUSH_FILT(1 downto 0) = "00" then

 HPadjSpeedUp <= 1;

 --if buttons are released reset HPadjSpeedUp

 else

 if HPadjSpeedUp = 2046 then HPadjSpeedUp <= HPadjSpeedUp;

 else HPadjSpeedUp <= HPadjSpeedUp + 1; end if; -- if you presse '0' or '1'

push button increase the modification speed

 end if;

 -- ------------------------ patternPeriod ------------------------

 if SLIDE_FILT(2 downto 0) = "011" then --we can make changes during display

HALFPERIOD on SSD

 if(PUSH_FILT(0) = '1') then HALFPERIOD <= HALFPERIOD + HPadjSpeedUp; --press

PushButton(0) to increase duty cycle

 elsif(PUSH_FILT(1) = '1') then HALFPERIOD <= HALFPERIOD - HPadjSpeedUp;

 -- press PushButonn(1) to decrease

 end if;

 end if;

 end if;

 end process;

 -- dutyCycle and period width adjustment

 process (CLK_DIV(20)) begin

 if rising_edge(CLK_DIV(20)) then

 64

 -- ------------------- speedUP adjustment section -------------------

 if PUSH_FILT(1 downto 0) = "00" then

 adjSpeedUp <= 1;

 else

 if adjSpeedUp = 20 then adjSpeedUp <= adjSpeedUp;

 else adjSpeedUp <= adjSpeedUp + 1; end if;

 end if;

 -- -------------------------- dutyCycle --------------------------

 if SLIDE_FILT(2 downto 0) = "100" then

 if(PUSH_FILT(0)='1') then

 dutyCycle <= dutyCycle + 10;

 elsif(PUSH_FILT(1)='1') then

 dutyCycle <= dutyCycle - 10;

 end if;

 -- ------------------------ patternPeriod ------------------------

 elsif SLIDE_FILT(2 downto 0) = "101" then

 if(PUSH_FILT(0)='1') then

 patternPeriod <= patternPeriod + 125;

 elsif(PUSH_FILT(1)='1') then

 patternPeriod <= patternPeriod - 125;

 end if;

 end if;

 end if;

 end process;

--

-- state machine to control behavior, depend on sequence.

--

-- DIGS_int(4)='0' - sequence I (LO_MEMS: always GND, HI_MEMS: +15V/GND)

-- DIGS_int(4)='1' - sequence II (LO_MEMS: 3.3V/GND, HI_MEMS: -11.7V/GND)

--

-- sequence I:

-- CLK: ________----------____________

-- H: _________---------------______

-- D: _________-----------__________

-- R: ____________-----_____________

-- HI_MEMS:---------___________---------- hi = 15V, low = GND

-- LOW_MEMS:______________________________ low = GND

-- sequence II:

-- CLK: ________----------____________

-- H: _________---------------______

-- D: _________-----------__________

-- R: ____________-----_____________

-- HI_MEMS:_________-----------__________ hi = GND, low = -11.7V

-- LOW_MEMS:---------___________---------- hi = 3.3V, low = GND

-- switching beetwen sec. follow always when D_DACEA is High.

-- there is a counter which switching beetwen sec. every adjustable secTime, independently of avarage samples value.

-- after switching there is a comparison and making a decizion in which mode should stay.

-- #################################### Lower section (registers) ####################################

-- ------------------------ STATE_REG ------------------------

process (CLK_LF, RST) begin

 if RST = '1' then

 state_reg <= seqI;

 elsif rising_edge(CLK_LF) then

 if D_DACEA = '1' then

 state_reg <= state_next;

 end if;

 end if;

end process;

-- ------------------------ secCount ------------------------

process (CLK_LF, RST) begin

 if RST = '1' then

 secCount <= (others=>'0');

 elsif rising_edge(CLK_LF) then

 -- ##################### MAIN COUNTER/TIMER ####################

 if SLIDE_FILT(3) = '0' then

 -- if secCount(15 downto 12) = secTime then secCount <= secCount; --

!!!!!!!!!!!!!!!! for ModelSim !!!!!!!!!!!!!!!!

 if secCount(26 downto 23) = secTime then

 -- !!!!!!!!!!!!!!!! for synthesis !!!!!!!!!!!!!!!!

 secCount <= secCount;

 if D_DACEA = '1' then

 secCount <= (others=>'0');

 -- if D_DACEA = 1 then clearing the sequence timer,

 end if;

 -- elsif secCount = (secTime & B"000" & X"0_0000") - 1 then

 -- if (SLIDE_FILT(4) = '0') then

 -- secCount <= secCount + 1;

 -- stopStoraging <= '0';

 -- else

 -- stopStoraging <= '1';

 -- end if;

 else secCount <= secCount + 1;

 end if;

 else

 secCount <= (others=>'0');

 end if;

 end if;

end process;

-- ------------------------ avgCount ------------------------

process (CLK_LF, RST) begin

 if RST = '1' then

 avgCount <= (others=>'0');

 elsif rising_edge(CLK_LF) then

 if SLIDE_FILT(3) = '0' then

 if DIGS_int(4) = '0' then

 -- average samples counter

 if avgCount(AVGS) = '1' then avgCount <= (others=>'1'); -- can't

do one direction counter because there is variable avg.samples

 65

 else avgCount <= avgCount + 1; end if;

 -- counting up when DIGS(4) = 0

 elsif DIGS_int(4) = '1' then

 if avgCount(AVGS) = '0' then avgCount <= (others=>'0');

 else avgCount <= avgCount - 1; end if;

 -- counting down when DIGS(4) = 1

 end if;

 else

 avgCount <= (others=>'0');

 end if;

 end if;

end process;

-- #################################### Upper section (next-state logic) ####################################

process (state_reg, D_DACEA, avgCount(AVGS), secCount(26 downto 23), capSeqI, capSeqII, secTime, PUSH_FILT,

SLIDE_FILT, CLK_DIV(23 downto 17)) begin

 case state_reg is

 ------------------------------- PRE-SEQUENCE I -------------------------------

 when pre_seqI =>

 DIGS_int(4) <= '0';

 LEDS(1) <= '0';

 if avgCount(AVGS) = '1' then

 -- when I have all samples to do the average,

 if (AVGS_OUT < capSeqII - dataInterval) then -- compare

(including hysteresis)

 state_next <= seqI;

 else state_next <= seqII;

 end if;

 else state_next <= pre_seqI; end if;

 --------------------------------- SEQUENCE I ---------------------------------

 when seqI =>

 DIGS_int(4) <= '0';

 LEDS(1) <= '1';

 if SLIDE_FILT(3) = '0' then

 if secCount(26 downto 23) = secTime then

 state_next <= pre_seqII;

 else state_next <= seqI;

 end if;

 else state_next <= manual;

 end if;

 ------------------------------- PRE-SEQUENCE II -------------------------------

 when pre_seqII =>

 DIGS_int(4) <= '1';

 LEDS(1) <= '0';

 if avgCount(AVGS) = '0' then

 if (AVGS_OUT < capSeqI - dataInterval) then

 state_next <= seqII;

 else state_next <= seqI;

 end if;

 else state_next <= pre_seqII; end if;

 --------------------------------- SEQUENCE II ---------------------------------

 when seqII =>

 DIGS_int(4) <= '1';

 LEDS(1) <= '1';

 if SLIDE_FILT(3) = '0' then

 if secCount(26 downto 23) = secTime then

 state_next <= pre_seqI;

 else state_next <= seqII;

 end if;

 else state_next <= manual;

 end if;

 --------------------------------- MANUAL MODE ---------------------------------

 when manual =>

 if CLK_DIV(20) = '1' then LEDS(1) <= '1';

 else LEDS(1) <= '0'; end if;

 if PUSH_FILT(2) = '1' then DIGS_int(4) <= '1';

 else DIGS_int(4) <= '0'; end if;

 if SLIDE_FILT(3) = '0' then state_next <= seqI;

 else state_next <= manual; end if;

 end case;

end process;

-- to storage a ADC data before switch

process (CLK_LF) begin

 if rising_edge(CLK_LF) then

 if (state_reg = seqI) or (state_reg = manual and DIGS_int(4) = '0')

 then capSeqI <= AVGS_OUT;

 elsif (state_reg = seqII) or (state_reg = manual and DIGS_int(4) = '1')

 then capSeqII <= AVGS_OUT; end if;

 end if;

end process;

--==

-- assignments

--==

-- SLIDE_SWITCH 3,4: 00 - out directly from chip

-- 01 - out from differential aplifier

-- 10 - external input 3

-- 11 - external input 4

--DIGS_int(3 downto 2) <= SLIDE_FILT(4 downto 3);

CLK_ADC <= '0' when SLIDE_FILT(5 downto 4) = "00" else

 66

 CLK_LF when SLIDE_FILT(5 downto 4) = "01" else

 CLK_50MHz when SLIDE_FILT(5 downto 4) = "10" else

 CLK_100MHz;

 -- when SLIDE_FILT(5 downto 4) = "11"

DATA_ADC_SIGNED <= ext(DATA_ADC,11); --It's extantion of 10-bits ADC data to 11-bits

CMPOUT<=COMP;

DIGS_int(3 downto 1) <= "000";

--LEDS(0)<=COMP;

--LEDS(1)<=(not TxDONE) and (not SLIDE_FILT(5)); -- LED on when is transmitting

--LEDS(2)<=(not RAM_WE(0)) and SLIDE_FILT(4) ; -- LED on when ready to begin transmission

--LEDS(3)<=nLOCK_DLY;

--LEDS(0) <= DIGS_int(1);

--LEDS(1) <= DIGS_int(2);

--LEDS(2) <= DIGS_int(3);

--LEDS(3) <= DIGS_int(4);

--LEDS(7 downto 4)<=(OTHERS =>'0');

LEDS(0) <= DIGS_int(4);

-- LEDS(1) <= -- also busy;

LEDS(5 downto 2) <= secCount(24 downto 21);

LEDS(6) <= secCount(25);

LEDS(7) <= avgCount(AVGS);

FILTER_OUT<=(others=>'0'); --FILT_OUT(12 downto 2);

CAPTURE<=PUSH_FILT(0);

CLK_DACEA<=CLK_DACEAI;

DATA_ADC_SIGNED<=ext(DATA_ADC,11);

nLOCK<=not LOCK;

DIGS <= DIGS_int;

-- necessities for the correct operation

MAN <= '0';

H0 <= '0';

D0_C <= '0';

end Behavioral;

dsp.vhd
--

-- Company: Advanced Hardware Architectures (AHA) / Politechnical University of Catalonia (UPC)

-- Engineer: Daniel Fernᮤez (dfernan@eel.upc.edu), Kamil Karliński

--

-- Create Date: 11:30:44 05/29/2008

-- Design Name:

-- Module Name: delayed_stim - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- 0.1 - Code cleanup

-- Additional Comments:

--

--

--

-- Expansor of the signal duration

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity delayed_stim is

 generic (predelay : integer range 1 to 1023 := 10;

 postdelay : integer range 1 to 1023 := 10;

 preventive : bit := '0');

 Port (clk : in STD_LOGIC;

 inp : in STD_LOGIC;

 outp : out STD_LOGIC);

end delayed_stim;

architecture Behavioral of delayed_stim is

 type state is (inputhi, justrised, justfallen, rest);

 signal pr_state, nx_state : state := rest;

 signal cnt1, cnt2 : integer range 0 to 1023 := 0;

begin

 process (clk)

 begin

 if (clk='1' and clk'event) then

 pr_state<=nx_state;

 if(pr_state = justrised) then cnt2<=cnt2-1; else cnt2<=predelay-1; end if;

 if(pr_state = justfallen) then cnt1<=cnt1-1; else cnt1<= postdelay-1; end if;

 end if;

 end process;

 process(pr_state, cnt1, cnt2, inp)

 begin

mailto:dfernan@eel.upc.edu

 67

 case pr_state is

 when justrised =>

 outp<='0';

 case preventive is

 when '1' =>

 if(inp='0') then nx_state <= justfallen;

 elsif(cnt2 = 1) then nx_state <= inputhi ; else nx_state <= justrised; end if;

 when others =>

 if(cnt2 = 1) then nx_state <= inputhi ; else nx_state <= justrised; end if;

 end case;

 when inputhi =>

 outp<='1';

 if(inp='0') then nx_state <= justfallen; else nx_state <= inputhi; end if;

 when justfallen =>

 outp<='1';

 if(inp='1') then nx_state <= inputhi;

 elsif(cnt1 = 1) then nx_state <= rest;

 else nx_state <= justfallen;

 end if;

 when others =>

 outp<='0';

 if(inp='1') then nx_state <= justrised; else nx_state <= rest; end if;

 end case;

 end process;

end Behavioral;

--

-- Simple derivator

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

entity derivator is

 generic (n: INTEGER := 11);

 Port (clk : in STD_LOGIC;

 din : in STD_LOGIC_VECTOR(n-1 downto 0);

 dout : out STD_LOGIC_VECTOR(n downto 0));

end derivator;

architecture Behavioral of derivator is

 signal din_old : STD_LOGIC_VECTOR(n-1 downto 0);

begin

 process (clk)

 begin

 if (clk='1' and clk'event) then

 dout<=(sxt(din,n+1))-(sxt(din_old,n+1));

 din_old<=din;

 end if;

 end process;

end Behavioral;

--

-- Generic subsampler v2

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity subsampler_v2 is

 generic (n : integer := 11;

 s : integer := 2);

 Port (clk : in STD_LOGIC;

 clk_out : in STD_LOGIC;

 din : in STD_LOGIC_VECTOR(n-1 downto 0);

 dout : out STD_LOGIC_VECTOR(n-1 downto 0));

end subsampler_v2;

architecture Behavioral of subsampler_v2 is

 type samples IS ARRAY ((2**s)-1 DOWNTO 0) OF STD_LOGIC_VECTOR(n-1 downto 0);

 signal oldsamples, oldsamples_aux : samples;

begin

 process (clk)

 variable count : NATURAL RANGE 0 TO (2**s)-1 := 0;

 begin

 if rising_edge(clk) then

 oldsamples(count)<=din;

 if count=0 then oldsamples_aux<=oldsamples; end if;

 if(count=(2**s)-1) then count:=0; else count:=count+1; end if;

 end if;

 end process;

process (clk_out)

 variable accumulator : STD_LOGIC_VECTOR(n+s-1 downto 0) := (OTHERS => '0');

 begin

 if rising_edge(clk_out) then

 accumulator:=(OTHERS => '0');

 for i in (2**s)-1 downto 0 loop

 accumulator:=accumulator+sxt(oldsamples_aux(i),n+s);

 end loop;

 dout<=accumulator(n+s-1 downto s);

 end if;

 end process;

end Behavioral;

 68

--

-- Sample and Hold

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sampleandhold is

 generic (n : integer);

 Port (clk, hold : in STD_LOGIC;

 din : in STD_LOGIC_VECTOR(n-1 downto 0);

 dout : out STD_LOGIC_VECTOR(n-1 downto 0));

end sampleandhold;

architecture Behavioral of sampleandhold is

begin

 process (clk)

 begin

 if rising_edge(clk) then

 if hold='0' then dout<=din; end if;

 end if;

 end process;

end Behavioral;

--

-- Simple sequence generator

--

library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_unsigned.all;

 entity cyclicpattern is

 generic (n : integer);

 port (clk, reset: in std_logic;

 dada : std_logic_vector(n-1 downto 0);

 b:out std_logic);

 end cyclicpattern;

 architecture structural of cyclicpattern is

 begin

 process(clk)

 variable i: integer range 0 to dada'length-1 := 0;

 begin

 if rising_edge(clk) then

 if reset='1' then i := dada'length-1;

 else

 if i=0 then i:=dada'length-1; else i := i-1; end if;

 end if;

 b <= dada(i);

 end if;

 end process;

 end structural;

--

-- Averaging module

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity averaging is

 generic (avgs : integer;

 n : integer);

 port (

 clk : in std_logic;

 din : in STD_LOGIC_VECTOR(n-1 downto 0);

 dout : out STD_LOGIC_VECTOR(n-1 downto 0)

);

end averaging;

architecture Behavioral of averaging is

 type samples IS ARRAY ((2**avgs)-1 DOWNTO 0) OF STD_LOGIC_VECTOR(n-1 downto 0);

 signal dataSamples : samples;

begin

 process (clk)

 variable accumulator : STD_LOGIC_VECTOR(n+avgs-1 downto 0) := (OTHERS => '0');

 begin

 if rising_edge(clk) then

 -- add new sample and detele the last one (shift right)

 -- first LSB is deleted, then array is shifted right

 -- and the new sample is put in MSB place

 for index in 0 to (2**avgs)-2 loop

 dataSamples(index) <= dataSamples(index+1);

 end loop;

 dataSamples((2**avgs)-1)<=din;

 -- average all data in array

 accumulator := (others=>'0');

 for index in dataSamples'range loop

 accumulator := accumulator + ext(dataSamples(index),n+avgs);

 end loop;

 dout <= accumulator(n+avgs-1 downto avgs);

 end if;

 end process;

end Behavioral;

 69

misc.vhd

--

-- Company: Advanced Hardware Architectures (AHA) / Politechnical University of Catalonia (UPC)

-- Engineer: Daniel Fernández (dfernan@eel.upc.edu)

--

-- Create Date: 11:30:44 05/29/2008

-- Design Name:

-- Module Name: output pattern generators - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- 0.1 - RAM_STOPCONT added

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity OUT_PATTERN is

 generic (maxlock : integer;

 grace : integer);

 Port (clk : in STD_LOGIC;

 comp : in STD_LOGIC;

 halfperiod : NATURAL RANGE 1 to 8191;

 lock : out STD_LOGIC;

 out_pattern : out STD_LOGIC);

end OUT_PATTERN;

architecture Behavioral of OUT_PATTERN is

 type STATE is (dist_decreasing, dist_increasing, not_locked);

 signal PAT_PRSTATE, PAT_NXSTATE : STATE := not_locked;

 signal countlock, countdist : NATURAL RANGE 0 to 131000;

begin

 process (clk)

 begin

 if (rising_edge(clk)) then

 if(PAT_PRSTATE = dist_decreasing) then countlock<=countlock-1; else countlock<=maxlock; end if;

 if(PAT_PRSTATE = dist_increasing) then countdist<=countdist-1; else countdist<=halfperiod; end if;

 PAT_PRSTATE<=PAT_NXSTATE;

 end if;

 end process;

 process(PAT_PRSTATE, comp, countlock, countdist)

 begin

 case PAT_PRSTATE is

 when dist_decreasing =>

 out_pattern<='0';

 lock<='1';

 if countlock<(maxlock-grace) then

 if(comp='1') then PAT_NXSTATE<=dist_increasing;

 elsif countlock=1 then PAT_NXSTATE<=not_locked;

 else PAT_NXSTATE<=dist_decreasing; end if;

 else PAT_NXSTATE<=dist_decreasing;

 end if;

 when dist_increasing =>

 out_pattern<='1';

 lock<='1';

 if(countdist=1) then PAT_NXSTATE<=dist_decreasing; else PAT_NXSTATE<=dist_increasing; end if;

 when others =>

 out_pattern<='1';

 lock<='0';

 PAT_NXSTATE<=dist_increasing;

 end case;

 end process;

end Behavioral;

-- --------------------------- MY OUT PATTERN GENERATOR ---------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity MY_PATTERN is

 Port (

 clk : in std_logic; -- 12,5 MHz clock what means 80ns

period

 dutyCycle : in NATURAL range 1 to 1023;

 patternPeriod : in natural range 1 to 1023;

 out_pattern : out std_logic

);

end MY_PATTERN;

architecture Behavioral of MY_PATTERN is

 signal Counter : natural range 0 to 1023 := 0;

begin

 process (clk) begin

 if rising_edge(clk) then

 if (Counter < patternPeriod) then

 Counter <= Counter + 1;

 70

 else Counter <= 0; end if;

 end if;

 end process;

 out_pattern <= '1' when Counter < dutyCycle else '0';

end Behavioral;

Display.vhd
--

-- Company: Advanced Hardware Architectures (AHA) / Politechnical University of Catalonia (UPC)

-- Engineer: Daniel Fernández (dfernan@eel.upc.edu) / Jose Luis Casas

--

-- Create Date: 10:57:12 05/27/2008

-- Design Name:

-- Module Name: Display - Behavioral

-- Project Name:

-- Target Devices: DACEA platform

-- Tool versions:

-- Description: BCD display basic handlers

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Display is

 Port (value : in STD_LOGIC_VECTOR (15 downto 0);

 dots : in STD_LOGIC_VECTOR (3 downto 0);

 en : in STD_LOGIC_VECTOR (3 downto 0);

 clkin : in STD_LOGIC;

 bcd_out : out STD_LOGIC_VECTOR (7 downto 0);

 bcd_sel : out STD_LOGIC_VECTOR (3 downto 0));

end Display;

architecture Behavioral of Display is

 component BCDto7seg is

 port (a : in std_logic_vector(4 downto 0);

 b:out std_logic_vector(7 downto 0));

 end component;

 component muxBCD is

 port (a3,a2,a1,a0:in std_logic_vector(4 downto 0);

 s:in std_logic_vector(1 downto 0);

 b:out std_logic_vector(4 downto 0));

 end component;

 component decBCD is

 port (a : in std_logic_vector(1 downto 0);

 en : in std_logic_vector(3 downto 0);

 b : out std_logic_vector(3 downto 0));

end component;

 signal bcd_in : std_logic_vector (4 downto 0);

 signal bcd_in3, bcd_in2, bcd_in1, bcd_in0 : std_logic_vector (4 downto 0);

 signal sel : std_logic_vector (1 downto 0) := (OTHERS=>'0');

begin

 BCD : component BCDto7seg port map (bcd_in, bcd_out);

 MUX : component muxBCD port map (bcd_in3, bcd_in2, bcd_in1, bcd_in0, sel, bcd_in);

 DEC : component decBCD port map (sel, en, bcd_sel);

 bcd_in3<=(dots (3) & value(15 downto 12));

 bcd_in2<=(dots (2) & value(11 downto 8));

 bcd_in1<=(dots (1) & value(7 downto 4));

 bcd_in0<=(dots (0) & value(3 downto 0));

 process (clkin)

 begin

 if (clkin='1' and clkin'event) then

 sel<=sel+1;

 end if;

 end process;

end Behavioral;

--

-- Create Date: 10/11/2007

-- Module Name: decBCD

-- Project Name: display

-- Tool versions:

-- Author: Daniel Fernández (dfernan@eel.upc.edu)

-- Description: Decodificador 2:4.

--

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity decBCD is

 71

 port (a : in std_logic_vector(1 downto 0);

 en : in std_logic_vector(3 downto 0);

 b : out std_logic_vector(3 downto 0));

end decBCD;

architecture arhmux of decBCD is

begin

 process(en, a)

 begin

 if (a="00" and en(0)='1') then b<="1110";

 elsif (a="01" and en(1)='1') then b<="1101";

 elsif (a="10" and en(2)='1') then b<="1011";

 elsif (a="11" and en(3)='1') then b<="0111";

 else b<="1111";

 end if;

 end process;

end arhmux;

--

-- Create Date: 10/11/2007

-- Module Name:

-- Project Name: display

-- Tool versions:

-- Author: Jose Luis Casas / Daniel Fernández (dfernan@eel.upc.edu)

-- Description: Decodificador BCD a 7 segmentos

--

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity BCDto7seg is

 port (a:in std_logic_vector(4 downto 0);

 b:out std_logic_vector(7 downto 0));

end BCDto7seg;

architecture Arch_BCDto7seg of BCDto7seg is

begin

 process(a)

 begin

 if (a(3 downto 0)="0000") then b<=NOT a(4) & "1000000";--displays 0

 elsif (a(3 downto 0)="0001") then b<=NOT a(4) & "1111001";--displays 1

 elsif (a(3 downto 0)="0010") then b<=NOT a(4) & "0100100";--displays 2

 elsif (a(3 downto 0)="0011") then b<=NOT a(4) & "0110000";--displays 3

 elsif (a(3 downto 0)="0100") then b<=NOT a(4) & "0011001";--displays 4

 elsif (a(3 downto 0)="0101") then b<=NOT a(4) & "0010010";--displays 5

 elsif (a(3 downto 0)="0110") then b<=NOT a(4) & "0000010";--displays 6

 elsif (a(3 downto 0)="0111") then b<=NOT a(4) & "1011000";--displays 7

 elsif (a(3 downto 0)="1000") then b<=NOT a(4) & "0000000";--displays 8

 elsif (a(3 downto 0)="1001") then b<=NOT a(4) & "0010000";--displays 9

 elsif (a(3 downto 0)="1010") then b<=NOT a(4) & "0001000";--displays A

 elsif (a(3 downto 0)="1011") then b<=NOT a(4) & "0000011";--displays B

 elsif (a(3 downto 0)="1100") then b<=NOT a(4) & "1000110";--displays C

 elsif (a(3 downto 0)="1101") then b<=NOT a(4) & "0100001";--displays D

 elsif (a(3 downto 0)="1110") then b<=NOT a(4) & "0000110";--displays E

 elsif (a(3 downto 0)="1111") then b<=NOT a(4) & "0001110";--displays F

-- elsif ()

 end if;

 end process;

end Arch_BCDto7seg;

--

-- Create Date: 10/11/2007

-- Module Name: mux - arhmux

-- Project Name: display

-- Tool versions:

-- Author: Jose Luis Casas / Daniel Fernández (dfernan@eel.upc.edu)

-- Description: Este modulo es un multiplexor de 4:1. Tiene 2 bits de seleccion

-- de canal y 4 buses de 5 bits.

--

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity muxBCD is

 port (a3,a2,a1,a0:in std_logic_vector(4 downto 0);

 s:in std_logic_vector(1 downto 0);

 b:out std_logic_vector(4 downto 0));

end muxBCD;

architecture arhmux of muxBCD is

begin

 process(a3,a2,a1,a0,s)

 begin

 if (s="00") then b<=a0;

 elsif (s="01") then b<=a1;

 elsif (s="10") then b<=a2;

 elsif (s="11") then b<=a3;

 end if;

 end process;

end arhmux;

 72

TB_MEMS_ChargeInReduce.vhd
--

-- Company: DMCS

-- Engineer: Kamil Karlinski

--

-- Create Date: 22/04/2010

-- Design Name:

-- Module Name: TB_MEMS_ChargeInReduce - testbench

-- Description: the same as filename

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity TB_MEMS_ChargeInReduce is

end entity;

architecture testbench of TB_MEMS_ChargeInReduce is

-- clocks section

signal clk_in, ckl_100mhz, clk_lf, clk_dacea : STD_LOGIC := '0';

signal clk_div : STD_LOGIC_VECTOR(23 downto 0);

signal clk_ADC_data, clk_charge : STD_LOGIC := '0';

signal or_adc : STD_LOGIC := '0';

signal h_duty : STD_LOGIC;

signal selector : STD_LOGIC_VECTOR (1 downto 0);

signal rst,h,d,r : STD_LOGIC := '0';

signal slide, leds : STD_LOGIC_VECTOR (7 downto 0) := (others=>'0');

signal push : STD_LOGIC_VECTOR (2 downto 0) := (others=>'0');

signal digs : STD_LOGIC_VECTOR (4 downto 1) := (others=>'0');

signal secCount : STD_LOGIC_VECTOR (26 DOWNTO 0) := (others=>'0');

signal clearSecCounter : STD_LOGIC;

signal upSecCountEnter : STD_LOGIC_VECTOR (27 DOWNTO 0) := (others=>'1');

signal data_adc : STD_LOGIC_VECTOR (9 downto 0) := B"10_0000_0000"; -- = 512 in decimal

signal capSeqI, capSeqII : STD_LOGIC_VECTOR (10 downto 0);

signal charge : NATURAL range 0 to 512 := 0;

signal Charging : STD_LOGIC := '1';

signal AVGS_OUT : STD_LOGIC_VECTOR (10 downto 0) := (others=>'0');

signal secTime : STD_LOGIC_VECTOR (3 DOWNTO 0) := B"0001";

signal avgCount : STD_LOGIC_VECTOR (5 DOWNTO 0) := B"00_0000";

signal A,B : STD_LOGIC_VECTOR (10 downto 0);

signal A_higher_B, A_equal_B, A_lesser_B : STD_LOGIC;

constant hysteresis : NATURAL range 0 to 15 := 5;

signal intCLK_2ms : STD_LOGIC := '0';

signal ADC_increase : STD_LOGIC := '0';

-- signal HI_mems, LO_mems : STD_LOGIC := '0';

signal HI_mems, LO_mems : unsigned (1 downto 0) := "00";

begin

 SIM_MEMS_unit: entity work.SIM_MEMS

 port map (

 CLK_IN => clk_in,

 CLK_ADC => open,

 DATA_ADC => data_adc,

 CLK_DACEA => clk_dacea,

 BCD_OUT => open,

 BCD_SEL => open,

 FILTER_OUT => open,

 CAPTURE => open,

 RST => rst,

 H_DACEA => h,

 D_DACEA => d,

 R_DACEA => r,

 CMPOUT => open,

 SLIDE_SWITCH => slide,

 PUSH_SWITCH => push,

-- TxD => ,

 LEDS => leds,

-- VGA_HS, VGA_VS, VGA_RED, VGA_GRN, VGA_BLU : out STD_LOGIC;

 OR_ADC => or_adc,

 MAN => open,

 H0 => open,

 D0_C => open,

 DIGS => digs,

 CLK_100MHz_sim => ckl_100mhz,

 CLK_LF_sim => clk_lf,

 H_DUTY_out => h_duty,

 SELECTOR_out => selector,

 CLK_DIV_out => clk_div,

 AVGS_OUT_out => AVGS_OUT,

 secCount_out => secCount,

 secTime_out => secTime,

 avgCount_out => avgCount,

 upSecCountEnter_out => upSecCountEnter,

 capSeqI_out => capSeqI,

 capSeqII_out => capSeqII

 73

);

-- clocks definition section

clk_in <= not clk_in after 10 ns; -- frequency = 50MHz -> period = 20ns

ckl_100mhz <= not ckl_100mhz after 5 ns; -- frequency = 100MHz -> period = 10ns

clk_lf <= not clk_lf after 40 ns; -- frequency = 1/4 * 50Mhz = 12,5MHz -> period =

80ns

intCLK_2ms <= not intCLK_2ms after 3200 us; -- frequency = ??? -> period

4 ms

clk_ADC_data <= not clk_ADC_data after 5 us;

clk_charge <= not clk_charge after 5 us;

slide(7 downto 6) <= "11";

slide(5 downto 4) <= "11";

slide(3) <= '0';

-- manual mode stimulation

-- slide(2) <= '0', '1' after 1.8 ms, '0' after 4.7 ms;

-- push(2) <= '0', '1' after 2.5 ms, '0' after 3 ms, '1' after 3.5 ms, '0' after 4 ms;

-- for HI_mems and LO_mens I do a simulation with the following level:

-- logic "01" -> GND

-- logic "11" -> +15V

-- logic "10" -> +3.3V

-- logic "00" -> -11.7V

HI_mems <= "01" when d='1' else

 "11" when d='0' and digs(4)='0' else --sec. I

 "00" when d='0' and digs(4)='1'; --sec. II

LO_mems <= "01" when d='1' or (d='0' and digs(4)='0') else

 "10" when d='0' and digs(4)='1';

chipSignalGenerator : process begin

 wait until clk_dacea='1'; wait for 10 ns;

 h <= '1'; d <= '1'; wait for 30 ns;

 r <= '1';

 wait until clk_dacea='0'; wait for 10 ns;

 r <= '0'; wait for 30 ns;

 h <= '0'; d <= '0';

end process chipSignalGenerator;

-- -------------------- ADC data --------------------

ADC_data_Stimulator : process (clk_ADC_data, digs(4)) begin

 if digs(4)'event then

 if Charging = '1' then

 data_adc <= data_adc - 2*charge;

 else

 data_adc <= data_adc + 2*charge;

 end if;

 elsif rising_edge(clk_ADC_data) then

 data_adc <= data_adc + 1;

 end if;

end process;

-- -------------------- CHARGE --------------------

Charge_Stimulator : process(clk_charge) begin

 -- if rising_edge(intCLK_2ms) then

 -- charge <= 127;

 -- els

 if rising_edge(clk_charge) then

 if Charging = '1' then

 charge <= charge + 1;

 else

 charge <= charge - 1;

 end if;

 end if;

end process;

-- -------------------- chargingFlag --------------------

charging_flag_Stimulator : process(digs(4), charge) begin

 if charge = 0 then

 Charging <= '1';

 elsif digs(4)'event then

 Charging <= not Charging; -- nie może byc = 0 że po zmianie robimy zawsze

rozłodowywanie, bo jak na chwilę

 else

 -- wejdziemy w drugi tryb - żeby tylko zobaczyć to po powrocie musi być ładowanie

 Charging <= Charging;

 end if;

end process;

-- adcDataSimulator : process(d, intCLK_2ms) begin

 -- if d'event then

 -- if ADC_increase = '1' then data_adc <= data_adc + 5;

 -- else data_adc <= data_adc - 5; end if;

 -- elsif intCLK_2ms'event then

 -- if ADC_increase = '1' then data_adc <= data_adc + 20;

 -- else data_adc <= data_adc - 20; end if;

 -- end if;

-- end process adcDataSimulator;

-- ADC_increase <= not ADC_increase after 2.2 ms;

-- data_adc <= B"01_0010_1100"; -- 300 in decimal

-- -------------------------------------- part to check how comparison works ------------------

-- A <= B"000"&X"00", B"000"&X"03" after 0.3 us, B"000"&X"0F" after 0.65 us, B"000"&X"A0" after 0.9 us,

 -- B"000"&X"01" after 1 us, B"000"&X"03" after 1.2 us, B"000"&X"0D" after 1.5 us;

-- B <= B"000"&X"00", B"000"&X"09" after 0.35 us, B"000"&X"01" after 0.6 us, B"000"&X"A0" after 0.95 us,

 -- B"000"&X"06" after 1.05 us, B"000"&X"0A" after 1.25 us, B"000"&X"08" after 1.56 us;

 74

-- -- histereza daje nam to, że przełączanie nie następuja tak często.

-- temporaryCheckingProcess : process(clk_lf) begin

 -- if rising_edge(clk_lf) then

 -- if (A > B + hysteresis) then A_higher_B <= '1'; A_lesser_B <= '0'; A_equal_B <= '0';

 -- elsif (A < B - hysteresis) then A_higher_B <= '0'; A_lesser_B <= '1'; A_equal_B <= '0';

 -- else A_higher_B <= '0'; A_lesser_B <= '0'; A_equal_B <= '1';

 -- end if;

 -- end if;

-- end process;

end architecture;

sim.do
quit -sim

vdel -all -lib work

vlib work

vcom Display.vhd

vcom dsp.vhd

vcom misc.vhd

vcom SIM_MEMS.vhd

vcom TB_MEMS_ChargeInReduce.vhd

#simulate without optimization

vsim -novopt work.TB_MEMS_ChargeInReduce

onerror {resume}

quietly WaveActivateNextPane {} 0

#open the window to time analize a wave

view wave

add all items in region to wave

add wave -noupdate -format Logic /tb_mems_chargeinreduce/clk_in

add wave -noupdate -format Logic /tb_mems_chargeinreduce/ckl_100mhz

 add wave -noupdate -format Logic /tb_mems_chargeinreduce/clk_lf

add wave -noupdate -format Logic /tb_mems_chargeinreduce/clk_dacea

add wave -noupdate -format Logic /tb_mems_chargeinreduce/or_adc

 add wave -noupdate -format Logic /tb_mems_chargeinreduce/h_duty

add wave -noupdate -format Logic -radix decimal /tb_mems_chargeinreduce/clk_div

add wave -noupdate -format Logic /tb_mems_chargeinreduce/rst

add wave -noupdate -format Logic /tb_mems_chargeinreduce/h

add wave -noupdate -format Logic /tb_mems_chargeinreduce/d

add wave -noupdate -format Logic /tb_mems_chargeinreduce/r

add wave -noupdate -format Logic /tb_mems_chargeinreduce/slide

add wave -noupdate -format Logic /tb_mems_chargeinreduce/push

add wave -noupdate -format Logic /tb_mems_chargeinreduce/selector

add wave -noupdate -format Logic /tb_mems_chargeinreduce/leds

add wave -noupdate -format Logic /tb_mems_chargeinreduce/ADC_increase

 add wave -noupdate -format Analog -min 400 -max 700 -radix unsigned -height 80 /tb_mems_chargeinreduce/data_adc

 add wave -noupdate -format Analog -min 0 -max 150 -radix unsigned -height 80 /tb_mems_chargeinreduce/charge

add wave -noupdate -format Logic -radix unsigned /tb_mems_chargeinreduce/AVGS_OUT

 add wave -noupdate -format Analog -min 0 -max 3 -radix unsigned -height 40 /tb_mems_chargeinreduce/hi_mems

 add wave -noupdate -format Analog -min 0 -max 3 -radix unsigned -height 40 /tb_mems_chargeinreduce/lo_mems

add wave -noupdate -format Logic /tb_mems_chargeinreduce/digs

 add wave -noupdate -format Logic /tb_mems_chargeinreduce/digs(4)

 add wave -noupdate -format Logic /tb_mems_chargeinreduce/leds(1)

 add wave -noupdate -format Logic /tb_mems_chargeinreduce/Charging

add wave -noupdate -format Logic -radix unsigned /tb_mems_chargeinreduce/capSeqI

add wave -noupdate -format Logic -radix unsigned /tb_mems_chargeinreduce/capSeqII

add wave -noupdate -format Logic -radix unsigned /tb_mems_chargeinreduce/secCount

add wave -noupdate -format Logic -radix unsigned /tb_mems_chargeinreduce/clearSecCounter

add wave -noupdate -format Logic -radix decimal /tb_mems_chargeinreduce/secTime

 add wave -noupdate -format Logic -radix unsigned /tb_mems_chargeinreduce/avgCount

 75

add wave -noupdate -format Logic -radix unsigned /tb_mems_chargeinreduce/upSecCountEnter

#add wave -noupdate -format Logic -radix hexadecimal /tb_mems_chargeinreduce/A

#add wave -noupdate -format Logic -radix hexadecimal /tb_mems_chargeinreduce/B

#add wave -noupdate -format Logic /tb_mems_chargeinreduce/A_higher_B

#add wave -noupdate -format Logic /tb_mems_chargeinreduce/A_lesser_B

#add wave -noupdate -format Logic /tb_mems_chargeinreduce/A_equal_B

TreeUpdate [SetDefaultTree]

configure wave -namecolwidth 120

configure wave -valuecolwidth 100

configure wave -justifyvalue left

configure wave -signalnamewidth 1

configure wave -snapdistance 10

configure wave -datasetprefix 0

configure wave -rowmargin 4

configure wave -childrowmargin 2

configure wave -gridoffset 0

configure wave -gridperiod 1

configure wave -griddelta 40

configure wave -timeline 0

configure wave -timelineunits us

update

#run simulation for 1ms

for simulate in normal mode with long D_DACEA pattern set 3ms sim. time

#for low/high duty cycle in CLK_DACEA signal (test mode)

#run 1ms

#for long CLK_DACEA pattern (normal mode)

run 10ms

