
QLOOP

Linux driver to mount QCOW2 virtual disks

Francesc Zacarias Ribot

francesc.zacarias@est.fib.upc.edu

Facultat d’Informatica de Barcelona

June 23, 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons

https://core.ac.uk/display/301211072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Goals . 10

2 State of the Art 13

2.1 FUSE . 13

2.2 libguestfs . 13

2.3 qemu-nbd . 15

2.4 Convert to raw format . 17

3 Background 19

3.1 Block Devices . 19

3.1.1 Brief introduction to Linux device drivers 19

3.1.2 Block device access . 20

3.2 The Loop Module . 29

3.3 Introduction to QEMU and KVM 33

3.3.1 QEMU - Quick Emulator 33

3.3.2 KVM - Kernel-based Virtual Machine 34

3.4 QCOW2 File Format . 34

3.4.1 Addressing . 35

3.4.2 Snapshots . 36

3.4.3 Header . 37

4 Implementation 39

4.1 Structures . 39

4.2 Functions . 40

3

4 CONTENTS

4.3 Work flow . 41

5 Performance Tests 43

6 Time and cost analysis 47

6.1 Time . 47

6.2 Costs . 50

7 Future Work 51

7.1 Performance . 51

7.2 More Features . 52

7.3 Other formats . 52

7.4 Upstream Merge . 52

8 Conclusions 55

A Compiling qloop 59

B Usage Example 61

C Tools 63

C.1 qcow2info . 63

C.2 qcow2test . 63

C.3 printqtables . 64

C.4 printclusters . 64

List of Figures

2.1 FUSE architecture . 14

2.2 libguestfs architecture . 15

2.3 NBD architecture . 16

3.1 Block device operation . 20

3.2 QCOW2 cluster addressing . 36

3.3 QCOW2 Header . 38

5.1 Performance results . 44

6.1 Tasks performed during 2009 . 48

6.2 Tasks performed during 2010 . 49

6.3 Time Distribution by task . 50

5

6 LIST OF FIGURES

List of Tables

3.1 Some system calls handled by the VFS 20

3.2 Fields of the bio structure . 21

3.3 Fields of the bio vec structure 22

3.4 Fields of the request descriptor 23

3.5 Fields of the request queue descriptor 24

3.6 Fields of the block device descriptor 27

3.7 Fields of the gendisk object . 28

3.8 List of disk device methods (struct block device operations) 29

3.9 Fields of struct loop device 30

3.10 Fields of struct loop func table 31

7

8 LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Virtual machines have become a common tool in many information-technology
based companies. All the hardware of these virtual systems (or guests) is defined
by software (the virtualizer running on the host), except for the permanent
storage or hard disks. These drives store data and the OS of the guest, effectively
saving the state of the entire virtual system. They define what the guest can
and cannot do. They are represented as regular files in the host system.

Having to manage a few virtual machines everyday at work, I realized
the importance of being capable of modifying these files. Create a new guest,
reconfigure an existing one or perform basic maintenance operations such as
backups are common tasks which are not easy to carry out because there is no
obvious way to modify these files directly, even though they are just regular files
lying on your system.

There are many successful virtualizers in use today, and each of them
defines its own format for their disks files. I’m most familiar with qemu and
kvm, a pair of free-software projects. An emulator and a virtualizer, respectively.
While at their core they implement radically different approaches for the guest’s
CPU execution, both rely on the same end-user application and therefore use
the same format for disk files.

I chose to base my project on qemu and kvm software because:

• I’ve used it extensively, so I know a lot about it (from a user point of view,
though).

• Because of the previous point, I’m interested in developing a tool to im-
prove the everyday use of the software I employ.

• It’s free-software, so I have access to plenty of documentation and the
whole code without any constraints.

The format employed by both qemu and kvm is called QCOW2 and sup-

9

10 CHAPTER 1. INTRODUCTION

ports a large number of features such as compression, encryption and snapshots.
Also, it is common for these kind of files to only take up as much space as it’s in
use. That is, a disk file representing a virtual disk of 500GB with only 100MB
in use will take up 100MB approx, a bit more due to overhead (headers and
control structures). This an important feature of virtual disks and support is a
must.

While there are a few tools to modify QCOW2 files, these are cumber-
some, slow or incredibly wasteful in time and computer resources. The goal
of this project is to create a tool which allows easy and fast interaction with
these files. Such functionality cannot impose changes to the file structure: there
should be no difference between editing the disk file through the virtualizer or
doing it through this project’s software.

1.2 Goals

Develop a module for Linux which creates a new block device from a QCOW2
file. This block device would allow basic read and write operations and translate
them to appropriate modifications to the QCOW2 file. The main advantage of
this approach is that any application that operates with block devices (such as
disk partitioners, low-level file-system tools and even software RAID) will work
seamlessly with virtual disks.

Development is based on the loop module: an existing driver in Linux
which creates a block device from a regular file. This module does a 1:1 con-
version. So, the resulting block device’s offset addresses match exactly with the
file’s. This basic functionality can be modified to fit the interests of this project,
which involve:

• Reading the header of the QCOW2 file during set up.

• Read and maintain the multiple control structures living inside the QCOW2
file.

• Due to the way QCOW2 files are laid out, data is kept in the order that is
written, and not in the logical position in the disk (offset 0 of the virtual
disk does not mean offset 0 on its file), so a proper translation must be
performed on every access.

• Translation is performed with a set of tables spread out through the disk.
These must be traversed for every access to ensure consistence.

Thanks to the inheritance from the loop module, the basic interface for
disk read/write operations is already taken care of. Because of this, and as a
homage, the module will be called qloop. Also, the command line tools used for
loop devices can be used for this new module, since the interface is the same.

The new module should achieve a reasonably good performance. Other-
wise said, working with this device should not entail a major penalty in com-
parison to working with a regular file or with the basic loop module. Finally,

1.2. GOALS 11

advanced features such as snapshots, compression and encryption are intention-
ally left out due to time constraints. Still, the design employed for the module
should lay out the foundations to eventually support these features without
doing major changes to existing code.

12 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

A brief research was made at the beginning of this project to find other existing
tools that provide the same functionality. While there are a few applications
that try to solve the problem of accessing a virtual disk file, none meet all
the requirements explained on the previous section. Below lies a list of the
alternatives found, with a description of their design and their advantages and
disadvantages respective to the solution chosen by this project.

2.1 FUSE

FUSE (acronym for Filesystem in USErspace) is a library and a kernel module
which allows non-privileged users to create their own file systems without edit-
ing the kernel code [6]. This system works by developing an executable linked
against libfuse. Upon mounting the file-system with a special application in-
cluded in the FUSE package (fusermount), it really works as if a new traditional
file-system has been created. When an application issues a file operation (open,
read, write...) upon a file in this new file-system, the kernel (through the FUSE
module) queries the libfuse-linked executable. This way, the executable is the
actual implementation of the file-system.

This method allows to create new file-systems, that is to set the contents
of a directory tree (the mount point) and the meaning of the operations on them.
It is possible to read and write QCOW2 files this way. Unfortunately, FUSE
is not a appropriate solution because we need low-level access to the contents
of the virtual disk. Simple administration tasks such as creating partitions or
running fsck require this kind of access that FUSE can’t provide.

2.2 libguestfs

libguestfs is a very young project (it started barely a year ago) developed by
Red Hat Inc. It is a library for accessing and modifying virtual machine (VM)
disk images. Upon invocation, this library launches a QEMU instance as a

13

14 CHAPTER 2. STATE OF THE ART

Figure 2.1: FUSE architecture

child process. This instance runs a Linux kernel, a collection of tools to access
block devices and a daemon process used to receive the library’s requests [7]. It
has bindings for a wide collection programming languages and includes a few
commands to be used in shell scripts.

This original approach has the advantage that libguestfs gains the same
features as QEMU, without having to add a single line of code to the kernel
or QEMU projects. Because of this, all virtual disk operations are kept in
userspace. So, if a future version of QEMU were to include support for a new
virtual disk format, libguestfs will not need many changes to support it too,
since the low-level handling is performed by QEMU itself.

On the other hand, it presents a lot of disadvantages. Every time a virtual
disk is opened, a new QEMU instance must be launched. Even if it is running
a specially crafted OS, it still is a very resource consuming operation, both
on CPU time and system memory. The API is incredibly big and confusing,
because instead of allowing low-access to the virtual disk, it tries to replace
the functionality of a big collection of userspace tools such as LVM2, e2fsprogs
and even the coreutils package (chmod, cp, rm...), just to name a few. Finally,
its contrived design makes it very hard to install. Not only you must compile
the library and its necessary bindings, but also build the QEMU image and its
contents, and keep everything compatible with your current OS. If libguestfs
has not been packaged for your Linux distribution, setting it up will take too
much time and effort. Since this project is maintained by Red Hat Inc., it is
mainly developed on Fedora and it is the only distribution that includes it in
its repositories. A package for Debian and Ubuntu is available on the project’s
main site.

2.3. QEMU-NBD 15

/ \

| main program |

| |

| | child process / appliance

| | __________________________

| | / qemu \

+-------------------+ RPC | +-----------------+ |

| libguestfs <--------------------> guestfsd | |

| | | +-----------------+ |

___________________/ | | Linux kernel | |

| +--^--------------+ |

_________|________________/

|

_______v______

/ \

| Device or |

| disk image |

______________/

Figure 2.2: libguestfs architecture

2.3 qemu-nbd

On version 0.10 of QEMU, a new tool was added: qemu-nbd [9]. This application
relies on the network block device (NBD) infrastructure to work and it is the
official answer of the QEMU developers to the need of managing virtual disk
files, since this is included with the QEMU package.

The network block device is a system which allows to access a block device
remotely as if it was local. This is achieved with a couple of command-line tools
and a kernel module, which is part of the Linux Kernel since version 2.1.101 [8].
The server system, where the block device is physically connected, must run the
nbd-server program to make such device available for clients. Then, the client
system runs nbd-client to create a new block device (let’s call it /dev/nbd0)
which represents the same device as in the server. For this to work, the client
must be running a Linux kernel with the nbd module loaded. From now on, any
operation executed on /dev/nbd0 on the client will perform exactly the same
as if it was run locally on the server on the original device. Note that this is not
the same as distributed file-systems such as NFS or CIFS. These file-systems
share high-level representation of data (files and directories) while NBD shares
a raw block device (low-level). With NBD, it is possible for the client to run
fsck on the shared device, edit its partitions or make it part of a RAID.

qemu-nbd is a replacement of nbd-server. Instead of picking a block
device to be shared through the network, a virtual disk file is opened and its
contents decoded on-the-fly so that clients ”see” a regular block device. Ad-
vantages of this approach are the re-utilization of existing infrastructure, using
QEMU to do the low-level access and keeping all the operations in user-space
(except creating the NBD device in the client, which requires a kernel module).

16 CHAPTER 2. STATE OF THE ART

Figure 2.3: NBD architecture

2.4. CONVERT TO RAW FORMAT 17

On the other hand, this design has serious flaws. It is noticeably slow.
Moreover, the client and the server cannot be the same host because a deadlock
will occur. There cannot be any type of concurrent write access to the block
device. That is, after a NBD link has been established between two systems, the
server cannot write the device, nor can any other client because there is a high
chance of data corruption. These shortcomings are not specific of qemu-nbd,
but due to the way NBD itself is designed.

2.4 Convert to raw format

This method consists in converting the QCOW2 file into a common disk image
or raw file. This raw file is a 1:1 copy of a disk, where all the disk contents are
written sequentially (byte x at offset n on the disk is equal to byte y at offset
n on the file). Raw files can be accessed as a block device with the help of the
loop module. After all modifications have been done, it is possible to convert
back the image into QCOW2 format and using it as a virtual disk with QEMU.

This approach relies on the loop device, which is part of the Linux kernel
and qemu-img, a tool shipped with QEMU and responsible for disk files creation,
translation and other useful operations. Also, read and write operations over a
raw file through loop are fast, and allow low-level access to the device.

The main disadvantage is the need to convert the entire disk to raw
format. This is a very resource intensive operation, both for CPU time and disk
space. QCOW2 files only take up as much space as it is in use because clusters
are only written as they are needed. But raw format is a 1:1 copy of a disk,
so this advantage disappears because unused clusters must be represented as a
stream of zeroes.

18 CHAPTER 2. STATE OF THE ART

Chapter 3

Background

3.1 Block Devices

3.1.1 Brief introduction to Linux device drivers

A device driver is a set of data structures and functions that allow the kernel to
control a real or virtual device through a common interface. This is one of the
pillars of Operating Systems design and the means of the kernel to access the
diverse hardware available. In Linux, there are three kinds of devices depending
on the characteristics of the underlying device.

• Character devices: access like a stream of bytes.

• Block devices: access data in chunks. Designed for slow, mass-storage
media.

• Network devices: designed for network devices (as its name implies). This
drivers do not follow the file paradigm and fall out of the scope of this
paper.

Character and Block devices are represented on the file-system (usually under
the /dev directory) as device files, available to user processes to interact with
them. Device files are not identified by their names, but by a couple of numbers:
major and minor. Major numbers indicate the type of device (a hard disk or
a sound card) while the minor specifies multiple devices for the same major.
For instance, on a computer with many hard disks each of them will have the
corresponding device file. All of them will share the same major number since
it is the same kind of device, but different minor numbers.

Device drivers in Linux are usually implemented as pluggable modules: a
file containing the compiled driver code that can be loaded and unloaded at will.
This makes a more efficient use of system memory because only the required
drivers are loaded at a time. Also helps development by making it a lot easier
and more convenient.

19

20 CHAPTER 3. BACKGROUND

Figure 3.1: Block device operation

3.1.2 Block device access

Traditionally mass-storage media, such as magnetic drives, are slow. Aggressive
buffering and careful access scheduling is required to enhance performance. Also,
they are strongly related to file-systems. The generic block and VFS (Virtual
File System) layers try to abstract these issues and provide a generic interface
to ensure efficient access to this kind of media.

The VFS layer (Virtual File System) is a common interface for file-system
operations. It imposes the common file model to all the file-systems available
for Linux, implements operations shared by all of them (such as closing a file),
and communicates with the disk cache to enhance performance. Most requests
to block devices are generated here. Then, the Mapping layer is in charge to
determine the physical location of the data and the associated file-system and
physical blocks.

Table 3.1: Some system calls handled by the VFS

System call name Description
mount() umount() umount2() Mount/unmount filesystems

3.1. BLOCK DEVICES 21

sysfs() Get filesystem information
statfs() statfs64() ustat() Get filesystem statistics
chroot() pivot root() Change root directory
chdir() fchdir() getcwd() Manipulate current directory
mkdir() rmdir() Create and destroy directories
getdents() readdir() link()

unlink() rename()

Manipulate directory entries

readlink() symlink() Manipulate soft links
chown() Modify file owner
chmod() utime() Modify file attributes
stat() access() Read file status
open() close() creat() umask() Open, close, and create files
dup() dup2() fcntl() Manipulate file descriptors
select() poll() Wait for events on a set of file de-

scriptors
truncate() Change file size
lseek() Change file pointer
read() write() readv()

writev()

Carry out file I/O operations

io setup() io submit() io-

cancel()

Asynchronous I/O (allows multiple
outstanding read and write requests)

pread64() pwrite64() Seek file and access it
mmap() mmap2() munmap()

madvise()

Handle file memory mapping

fsync() sync() Synchronize file data
flock() Manipulate file lock
setxattr() getxattr()

listxattr()

Manipulate file extended attributes

Each I/O operation is represented by the bio structure. It contains all the
data required by the generic block layer to perform an operation on a disk, such
as the destination device, the type of operation (READ of WRITE), pointer to
memory areas with the data to be read or written, index of the disk sectors to
read (or write), etc. bios are created at the generic block layer.

Table 3.2: Fields of the bio structure

Type Field Description
sector t bi sector First sector on disk of block I/O oper-

ation
struct bio* bi next Link to the next bio in the request

queue
struct

block-

device*

bi bdev Pointer to block device descriptor

unsigned

long

bi flags Bio status flags

22 CHAPTER 3. BACKGROUND

unsigned

long

bi rw I/O operation flags

unsigned

short

bi vcnt Number of segments in the bio’s bio-
vec array

unsigned

short

bi idx Current index in the bio’s bio vec ar-
ray of segments

unsigned

short

bi phys-

segments

Number of physical segments of the
bio after merging

unsigned

short

bi hw-

segments

Number of hardware segments after
merging

unsigned int bi size Bytes (yet) to be transferred
unsigned int bi hw front-

size

Used by the hardware segment merge
algorithm

unsigned int bi hw back-

size

Used by the hardware segment merge
algorithm

unsigned int bi max vecs Maximum allowed number of seg-
ments in the bio’s bio vec array

struct bio-

vec*

bi io vec Pointer to the bio’s bio vec array of
segments

bio end io t* bi end io Method invoked at the end of bio’s
I/O operation operation

atomic t bi cnt Reference counter for the bio
void* bi private Pointer used by the generic block layer

and the I/O completion method of the
block device driver

bio-

destructor-

t*

bi-

destructor

Destructor method (usually bio-

destructor()) invoked when the bio
is being freed

Table 3.3: Fields of the bio vec structure

Type Field Description
struct page* bv page Pointer to the page descriptor of the

segment’s page frame
unsigned int bv len Length of the segment in bytes
unsigned int bv offset Offset of the segment’s data in the

page frame

Once a bio structure has been created, the kernel invokes the generic -
make request() function, which is the main entry point of the block layer. This
function validates the bio in question, gets the request queue associated with
the block device, and finally calls the make request fn() method of the request
queue.

This last function is the entry point of the I/O Scheduler. This kernel
component works with request descriptors, which are basically collections of
related bios (physically close to each other on the disk surface). Its main purpose
is to optimize disk operations, by merging and ordering these request objects

3.1. BLOCK DEVICES 23

on the request queue. There is a request queue per block device and as implied
by its name, it stores requests to be processed by the device driver.

Table 3.4: Fields of the request descriptor

Type Field Description
struct list-

head

queuelist Pointers for request queue list

unsigned

long

flags Flags of the request

sector t sector Number of the next sector to be trans-
ferred

unsigned

long

nr sectors Number of sectors yet to be trans-
ferred in the whole request

unsigned int current nr-

sectors

Number of sectors in the current seg-
ment of the current bio yet to be trans-
ferred

sector t hard sector Number of the next sector to be trans-
ferred

unsigned

long

hard nr-

sectors

Number of sector yet to be transferred
in the whole request (updated by the
generic block layer)

unsigned int hard cur-

sectors

Number of sectors in the current seg-
ment of the current bio yet to be trans-
ferred (updated by the generic block
layer)

struct bio* bio First bio in the request that has not
been completely transferred

struct bio* biotail Last bio in the request list
void* elevator-

private

Pointer to private data for the I/O
scheduler

int rq status Request status: essentially, either RQ-
ACTIVE or RQ INACTIVE

struct

gendisk*

rq disk The descriptor of the disk referenced
by the request

int errors Counter for the number of I/O errors
that ocurred on the current transfer

unsigned

long

start time Request’s starting time (in jiffies)

unsigned

short

nr phys-

segments

Number of physical segments of the re-
quest

unsigned

short

nr hw-

segments

Number of hardware segments of the
request

int tag Tag associated with the request (only
for hardware devices supporting mul-
tiple outstanding data transfers)

char* buffer Pointer to the memory buffer of the
current data transfer (NULL if the
buffer is high memory)

24 CHAPTER 3. BACKGROUND

int ref count Reference counter for the request
request-

queue t*

q Pointer to the descriptor of the request
queue containing the request

struct

request list

rl Pointer to request list data struc-
ture

struct

completion*

waiting Completion for waiting for the end of
the data transfers

void* special Pointer to data used when the request
includes a ”special” command to the
hardware device

unsigned int cmd len Length of the commands in the cmd
field

unsigned

char[]

cmd Buffer containing the pre-built com-
mands prepared by the request
queue’s prep rq fn method

unsigned int data len Usually, the length of data in the
buffer pointed to by the data field

void* data Pointer used by the device driver to
keep track of the data to be trans-
ferred

unsigned int sense len Length of buffer pointed to by the
sense field (0 if the sense field is
NULL)

void* sense Pointer to buffer used for output of
sense commands

unsigned int timeout Request’s time-out
struct

request-

pm state*

pm Pointer to a data structure used for
power-management commands

Table 3.5: Fields of the request queue descriptor

Type Field Description
struct list-

head

queue head List of pending requests

struct

request*

last merge Pointer to descriptor of the request in
the queue to be considered first for
possible merging

elevator t* elevator Pointer to the elevator object
struct

request list

rq Data structure used for allocation of
request descriptors

request fn-

proc*

request fn Method that implements the entry
point of the strategry routine of the
driver

merge-

request fn*

back merge fn Method to check whether it is possible
to merge a bio to the last request in
the queue

3.1. BLOCK DEVICES 25

merge-

request fn*

front merge-

fn

Method to check whether it is possible
to merge a bio to the first request in
the queue

merge-

request fn*

merge-

requests fn

Method to attempt merging two adja-
cent requests in the queue

merge-

request fn*

make-

request fn

Method invoked when a new request
has to be inserted in the queue

prep rq fn* prep rq fn Method to build the commands to be
sent to the hardware device to process
this request

unlug fn* unplug fn Method to unplug the block device
merge bvec-

fn*

merge bvec fn Method that returns the number of
bytes that can be inserted into an ex-
isting bio when adding a new segment
(usually undefined)

activity fn* activity fn Method invoked when a request is
added to a queue (usually undefined)

issue flush-

fn*

issue flush-

fn

Method invoked when a request queue
is flushed (the queue is emptied by
processing all requests in a row)

struct

timer list

unplug timer Dynamic timer used to perform device
plugging

int unplug-

thresh

If the number of pending requests in
the queue exceeds this values, the de-
vice is immediately unplugged (de-
fault is 4)

unsigned

long

unplug delay Time delay before device unplugging
(default is 3 ms)

struct work-

struct

unplug work Work queue used to unplug the device

struct

backing-

dev info

backing dev-

info

Stores information about the I/O data
flow traffic for the underlying hard-
ware block device

void* queuedata Pointer to private data of the block
device driver

void* activity-

data

Private data used by the activity fn

method
unsigned

long

bounce pfn Page frame number above which
buffer bouncing must be used

int bounce gfp Memory allocation flags for bounce
buffers

unsigned

long

queue flags Set of flags describing the queue status

spinlock t* queue lock Pointer to request queue lock
struct

kobject

kobj Embedded kobject for the request
queue

unsigned

long

nr requests Maximum number of requests in the
queue

26 CHAPTER 3. BACKGROUND

unsigned int nr-

congestion-

on

Queue is considered congested if the
number of pending requests rises
above this threshold

unsigned int nr-

congestion-

off

Queue is considered not congested if
the number of pending requests falls
below this threshold

unsigned int nr batching Maximum number (usually 32) of
pending requests that can be submit-
ted (even when the queue is full) by a
special ”batcher” process

unsigned

short

max sectors Maximum number of sectors handled
by a single request (tunable)

unsigned

short

max hw-

sectors

Maximum number of sectors handled
by a single request (hardware con-
straint)

unsigned

short

max phys-

segments

Maximum number of physical seg-
ments handled by a single request

unsigned

short

max hw-

segments

Maximum number of hardware seg-
ments handled by a single request (the
maximum number of distinct mem-
ory areas in a scatter-gather DMA
opeartion)

unsigned

short

hardsect-

size

Size in bytes of a sector

unsigned int max segment-

size

Maximum size of a physical segment
(in bytes)

unsigned

long

seg-

boundary-

mask

Memory boundary mask for segments
merging

unsigned int dma-

alignment

Alignment bitmap for initial address
and length of DMA buffers (default
511)

struct blk-

queue tag*

queue tags Bitmap of free/busy tags (used for
tagged requests)

atomic t refcnt Reference counter of the queue
unsigned int in flight Number of pending requests in the

queue
unsigned int sg timeout User-defined command time-out (used

only by SCSI generic devices)
unsigned int sg reserved-

size

Essentially unused

struct list-

head

drain list Head of a list of requests temporarily
delayed until the I/O scheduler is dy-
namically replaced

Upon receiving a bio, it tries to merge it with an existing request or
allocates a new one for it. Another functionality of the I/O Scheduler is to plug
or unplug (activate or deactivate, respectively) the request queue. A plugged

3.1. BLOCK DEVICES 27

request queue can receive more requests, but they will not be processed until
the queue is unplugged again. The reasoning behind this intended delay is to
enhance disk performance. Magnetic storage media is very slow performing
seeking operations. By processing multiple requests together in a sequential
order (in a linear way from the inner track to the outer one or vice versa),
the number of disk head movements is greatly reduced, improving performance.
There are as many ways to order requests as factors to take into account. Thus,
there are various I/O scheduler algorithms, also known as elevators. Just as
process schedulers they are complex and their constants and heuristics are the
result of extensive benchmarking and testing.

At the bottom of the block device operation lies the block device driver
and the gendisk structure which represent disks or partitions. A common block
device is represented by a block device descriptor, defined on a module. Upon
initialization, this module registers a unique identifier for each device (the major
number and minor numbers), an interrupt handler, a set of operations, one or
more gendisk structures and a request queue for each of them. Together with
the request queue is defined a strategy routine (the request fn() method),
which is invoked by the I/O Scheduler to start the processing of bio structures.
This routine is in charge of performing the actual read and write operations on
the device. A common approach for a strategy routine would be:

• obtain the first bio on the request queue

• set up the device’s DMA controller to perform the operation described in
the bio

• return, while the hardware takes care of the transaction in the background

Upon completion, the DMA controller will issue an interrupt and the interrupt
handler will be activated automatically. It should check if there are requests
pending on the request queue and call the strategy routine again to process
them. This loop will continue until the request queue becomes empty.

Table 3.6: Fields of the block device descriptor

Type Field Description
dev t bd dev Major and minor number of the block

device
struct

inode*

bd inode Pointer to the inode of the file associ-
ated with the block device in the bdev
filesystem

int bd openers Counter of how many times the block
device has been opened

struct

semaphore

bd sem Semaphore protecting the opening
and closing of the block device

struct

semaphore

bd mount sem Semaphore used to forbid new mounts
on the block device

struct list-

head

bd inodes Head of a list of inodes of opened block
device files for this block device

28 CHAPTER 3. BACKGROUND

void* bd holder Current holder of block device descrip-
tor

int bd holders Counter for multiple settings of the
bd holder field

struct

block-

device*

bd contains If block device is a partition, it points
to the block device descriptor of the
whole disk; otherwise, it points to this
block device descriptor

unsigned bd block size Block size
struct hd-

struct*

bd part Pointer to partition descriptor (NULL
if this block device is not a partition)

unsigned bd part count Counter of how many times partitions
included in this block device have been
opened

int bd-

invalidated

Flag set when the partition table on
this block device needs to be read

struct

gendisk*

bd disk Pointer to gendisk structure of the
disk underlying this block device

sturct list-

head*

bd list Pointers for block device descriptor
list

struct

backing-

dev info*

bd inode-

backing dev-

info

Pointer to a specialized backing dev-

info descriptor for this block device
(usually NULL)

unsigned

long

bd private Pointer to private data of the block
device holder

Table 3.7: Fields of the gendisk object

Type Field Description
int major Major number of the disk
int first minor First minor number associated with

the disk
int minors Range of minor numbers associated

with the disk
char[32] disk name Conventional name of the disk (usu-

ally, the canonical name of the corre-
sponding device file)

struct hd-

struct**

part Array of partition descriptors for the
disk

struct

block-

device-

operations*

fops Pointer to a table of block device
methods

struct

request-

queue*

queue Pointer to the request queue of the
disk

void* private data Private data of the block device driver

3.2. THE LOOP MODULE 29

sector t capacity Size of the storage area of the disk (in
number of sectors)

int flags Flags describing the kind of disk
char[64] devfs name Device filename in the (now depre-

cated) devfs special filesystem
int number No longer used
struct

device*

driverfs dev Pointer to the device object of the
disk’s hardware device

struct

kobject

kobj Embedded kobject

struct

timer rand-

state*

random Pointer to a data structure that
records the timing of the disk’s inter-
rupts; used by the kernel built-in ran-
dom number generator

int policy Set to 1 if the disk is read-only, 0 oth-
erwise

atomic t sync io Counter of sectors written to disk,
used only for RAID

unsigned

long

stamp Timestamp used to determine disk
queue usage statistics

unsigned

long

stamp idle Same as above

int in flight Number of ongoing I/O operations
struct disk-

stats*

dkstats Statistics about per-CPU disk usage

Table 3.8: List of disk device methods (struct block device-

operations)

Method Triggers
open Opening the block device file
release Closing the last reference to a block device file
ioctl Issuing an ioctl() system call on the block de-

vice file (uses the big kernel lock)
compat ioctl Issuing an ioctl() system call on the block de-

vice file (does not use the big kernel lock)
media changed Checking whether the removable media has been

changed (e.g., floppy disk)
revalidate disk Checking whether the block device holds valid

data

3.2 The Loop Module

The loop module is a block device driver that allows to access a file as if it
was a block device. The module creates a certain number of block devices
(/dev/loop0, /dev/loop1...) which can be configured later on through ioctl()

30 CHAPTER 3. BACKGROUND

syscalls to associate any of them with a file. A common use of this module is
to mount and access the contents of a disk image (a sector-by-sector copy of a
real disk into a file) as if it was the original device.

This module also supports data transformation by allowing to register
”transfer functions” that will be applied to every bio processed by any of its
block devices. This permits to encrypt and decrypt data on-the-fly. This func-
tionality is employed by the cryptoloop module, having loop module as a depen-
dency, to access and mount encrypted disk images with a variety of algorithms.
To convert a file into a block device, the loop module follows the model explained
on the previous section, but with some variations. Since there is no hardware,
there is no DMA controller and no interrupt handler to set up. Instead, it
defines a kernel thread (a kernel function which can run on the background),
that converts bio structures into common read and write operations over the
file associated with the loop device. The make request fn() method of the
loop device’s request queue is defined to get the bio passed as a parameter and
enqueue it into a bio list structure (basically a linked list of bios). The kernel
thread periodically processes this list and commits the bios to disk. This way,
the I/O Scheduler and elevators are skipped. After all, since loop is not a real
device it no sense to perform I/O scheduling. Once bios have been converted to
VFS operations, they will be converted again into bios and eventually scheduled
on the underlying device’s request queue.

Table 3.9: Fields of struct loop device

Type Field Description
int lo number ID of the loop device
int lo refcnt Number of times the device has been

opened but not closed (yet)
loff t lo offset Offset of the associated file where the

loop device should begin
loff t lo sizelimit Maximum size of the loop device
int lo flags Flags
int* transfer Transfer function to apply to incoming

bios
char[] lo file name Name of the loop device
char[] lo crypt name Name of the transfer function to apply
char[] lo encrypt-

key

Encryption key to apply (required for
encryption transfer functions)

int lo encrypt-

key size

Size of the encryption key (32 charac-
ters max)

struct loop-

func table*

lo-

encryption

List of override functions to apply to
this loop device.

u32[] lo init Unused
uid t lo key owner User ID of the process that initialized

the key
int* ioctl ioctl() function to apply to this

loop device (if the parameter does not
match with any of the loop’s expected
values)

3.2. THE LOOP MODULE 31

struct file* lo backing-

file

File associated with this loop device

struct

block-

device*

lo device Block device created by this loop in-
stance

unsigned lo blocksize Block size of the lo backing file un-
derlying block device

void* key data Unused (used by cryptoloop)
gfp t old gfp mask Original gfp (get free pages) mask of

the backing file
spinlock t lo lock Spin lock that protects the lo bio-

list and lo state fields

struct bio-

list

lo bio list List of bios received and pending to be
processed

int lo state Indicates the state of the loop device.
struct mutex lo ctl mutex Mutual exclusion semaphore protect-

ing the entire loop scructure
struct task-

struct*

lo thread Kernel thread for this loop device

wait queue-

head t

lo event Wait queue for this loop device and
lo thread

struct

request-

queue

lo queue Request queue associated with this
loop device

struct

gendisk

lo disk gendisk for this loop device

struct list-

head

lo list Linked list that connects all loop de-
vices

Table 3.10: Fields of struct loop func table

Type Field Description
int number Identifier of this transfer function

structure
int* transfer Transfer function to apply to every

data transaction
int* init Initialization function
int* release Termination function
int* ioctl ioctl function extension
struct

module*

owner Pointer to the module that owns this
structure

When the loop module is loaded, it allocates a certain number of loop
structures (8 by default, although it can be set as a module parameter) and ini-
tializes some of its fields, such as the request queue, gendisk and mutex structs.
Each loop is identified by a number, from 0 to 7 in the default case. All loop
structures are linked together by the lo list field. This is done to ease some

32 CHAPTER 3. BACKGROUND

tasks by the module that affect all loop structs (basically initialization and
termination).

Now the device is ready to receive ioctl syscalls to continue with the set
up. Each ioctl argument accepted is associated with a function of the module’s
code. There is a userspace tool called losetup to issue these calls easily for end
users. This application is included in the util-linux-ng, a set of tools to perform
task highly related with the kernel, such as mount or mkswap and others to
configure certain devices or modules such as loop. Most of these ioctls revolve
around exchanging information with the userspace process (losetup in this case)
with loop get status() and loop set status() functions and their variations. They
are used by losetup to ascertain the current status of a loop device and setting
a few parameters such as the encryption key and transfer function, offset of the
backing file where the loop device should begin and its length. These last two
options allow to create a block device from a segment instead of a entire file.

The most important call is loop set fd(), which finally associates the loop
device with an existing file and creates a kernel thread to process bios. From this
point on the device is ready to act as a block device on any incoming request.
Depending on the type of request and the features available in the backing file’s
filesystem and if a transfer function is set, there are a few functions available to
convert read and write bios into corresponding VFS operations.

do lo send aops() Asynchronous write operation by calling pagecache write begin()
and pagecache write end().

do lo send write() Synchronous write operation by invoking the write() func-
tion associated with the backing file. Only applied if the backing file’s
filesystem does not support asynchronous writes.

do lo send direct write() Like do lo send write() but does not apply trans-
fer function. Used when there is no transfer function defined.

do lo receive() Read operation, performed with the kernel’s splice syscalls.
This system allows to copy data from file to file without having to copy
data into kernel-space and thus improves performance.

The function loop clr fd() does to opposite of loop set fd() and releases
a file from a loop device, returning the latter to its original state. A new ioctl
processing function can be defined through the transfer function system or by
creating a new module that depends on loop and sets the lo ioctl field. The
function pointed by this field will be executed if loop module’s default ioctl
function receives an unknown parameter.

The loop device’s current status is stored in the field lo state, which can
take three values:

Lo unbound The default state, means that this loop device is not associated
with a file.

Lo bound The opposite of the previous state - this loop instance is associated
with a file.

3.3. INTRODUCTION TO QEMU AND KVM 33

Lo rundown The loop device is in the process of disassociating with a file. As
the process completes, it will reach the Lo unbound state again. This is
done to stop allowing any more bios to enter the bio list, but letting the
kernel thread to finish processing all pending bios currently on the list.

Transfer functions are applied on every data operation, be it read or write,
on the device. The loop module provides a couple of exported functions (that
is, they can be invoked from other modules) to add and remove these transfer
functions: loop register transfer() and loop unregister transfer() respectively.
There are few extra functions besides the transfer function itself. They are
all grouped by the loop func table structure. A pointer to this structure is the
parameter passed to loop register transfer(). The loop func table.init() func-
tion is run from loop set status() in case there is a transfer function associated
to the loop device and its point is to perform any initialization necessary by
the transfer function to do its job properly. loop func table.release() does the
opposite and cleans up after the loop is disassociated with its backing file. Fi-
nally loop func table.ioctl() is set to lo ioctl to extend the loop module’s ioctl()
function as explained previously. The cryptoloop module uses this ”transfer
function” facility to extend loop and add a variety of encryption algorithms.

3.3 Introduction to QEMU and KVM

3.3.1 QEMU - Quick Emulator

An emulator is a program that provides an emulation of the functionality of a
certain system or CPU architecture on a different system. QEMU is a popular
processor emulator [1]. It allows to run software compiled for other architectures
on a binary incompatible system by translating blocks of binary code. This
method makes porting the emulator to make it run on many systems and adding
support for new architectures easier, and at the same time achieving a reasonable
performance when running non-native applications [3].

Currently QEMU supports many architectures with varying levels of sup-
port. It also emulates other pieces of hardware such as network and video cards
and even a BIOS to allow emulating an entire computer, which allows to run
other Operating Systems as if they were a common process on a system, or
otherwise said - as guests.

This software provides a couple of levels of emulation support, called User
Mode Emulation and Full System Emulation. The former executes a single
process specified by the user as if it were on another architecture (or even
running a program which was compiled for another incompatible system) while
the latter emulates a whole computer system, with its own devices and BIOS.

To achieve Full System Emulation, QEMU needs to provide permanent
storage - a feature taken for granted on basically any modern computer sys-
tem. Hard disks are represented by a file on the host system as a disk image.
Information can be stored on this file in many ways, so there are many image
formats, from the naive raw image (a sequential copy of every data on a disk) to
more advanced solutions such as QCOW2 file format. QEMU support multiple

34 CHAPTER 3. BACKGROUND

formats for reading and writing disk images, but its official and better supported
format is QCOW2.

3.3.2 KVM - Kernel-based Virtual Machine

Virtualization is a technique that abstracts the system’s hardware to applica-
tions. In this virtual machine environment, software runs in a complete simu-
lation of the underlying hardware. This way, it is possible to run applications
or even complete operating systems as processes. The application that controls
simulation is called virtualizer or hypervisor. Main differences with emulation
are that it doesn’t simulate a hardware different from your own and that its
focus is performance.

KVM is a character device driver for Linux that gives access to the virtu-
alization extensions found on modern x86 CPUs [2]. Usually represented by the
device file /dev/kvm, it currently supports Intel and AMD models. The KVM
developers also provide a client application that employs this character device
(and consequently, the kernel) as a hypervisor. This client application is a mod-
ified version of QEMU that uses the KVM driver instead of binary translation.
This client application is also called kvm, which causes certain confusion.

The original patches to add hardware-assisted virtualization to QEMU
have been added officially to the QEMU project, so now any recent version of
QEMU can employ the kvm driver. While KVM is a relatively young project
[10] it is very active and continues to add new functionality to QEMU on their
own client, that eventually reaches upstream. Note that the QEMU developers
add other features of they own so both projects synchronize their code base
from time to time. An example of features added by the KVM project is the
VirtIO framework, which enhances performance for I/O operations by providing
special network and disk controller kernel modules.

Because the KVM project is highly tied to QEMU, it employs the same
solution for permanent storage - files as hard disks. And just like QEMU, the
default format for the files is QCOW2.

3.4 QCOW2 File Format

QCOW2 is the file format designed by the QEMU developers specifically for
their project [4] as a means to represent permanent storage, and it is the second
revision of the original QCOW format (also known as QEMU v1). QCOW2 files
are created with the qemu-img tool, included in QEMU and KVM packages.
While QEMU supports many other formats for disk files, this one has the most
features and support.

Some of these features are:

• Copy-on-write support, where the QCOW2 file only represents the changes
made to another disk image.

• Snapshot support, where the image can contain multiple snapshots of the

3.4. QCOW2 FILE FORMAT 35

image’s history.

• Data compression with zlib.

• Data encryption with AES.

A QCOW2 file is divided in clusters of a fixed size. This size must be
a power of two and multiple of 512, between 512 and 65536. It is specified
at file creation time. Every data or control structure has the size of one or
more clusters. Also, all metadata stored in the file (such as the header or the
addressing tables) is in big endian format. A typical layout for a QCOW2 file
is:

• The header.

• The L1 table.

• The refcount table, again boundary aligned.

• One or more refcount blocks.

• Snapshot headers, the first boundary aligned and the following headers
aligned on 8 byte boundaries.

• L2 tables, each one occupying a single cluster.

• Data clusters.

3.4.1 Addressing

In order to find a cluster corresponding to a given address, it is necessary to
traverse two tables, in a similar way to the paging mechanisms of modern Op-
erating Systems. The first table is called L1 table. It is an array of 8-byte file
offsets. The addresses contained in the L1 table (in big endian) point to L2
tables. While there is only one L1 table, there can be many L2 tables, and
each of them take up exactly one cluster. L2 tables contain 8-byte file offsets in
big endian format too, but they point to data clusters. That is, clusters than
contain actual disk sectors.

To reach a certain data offset in a QCOW2 file, it is necessary to divide the
offset in three sections: l1 table index, l2 table index and cluster offset.
The size of each field depends on the QCOW2 image size and cluster size. The
number of bits of cluster offset is the number of bits necessary to address
a cluster, that is the binary logarithm of the cluster size. From now on, we
will call this number cluster bits. The number of bits of the l2 table index

section is cluster bits - 3, which we will call l2 bits. Because a L2 table is
an array of 8 byte elements, this number is a index of such table. Since a L2
table has the same size as a cluster, to index it as a table of 8 bytes offsets we
need exactly 3 bits less than cluster bits. Finally, the remaining top bits are
l1 table index. The size of the L1 table in bytes is determined at creation
time of the QCOW2 file and follows the formula:

l1 size = round up

(

disk size

2(cluster bits+l2 bits)
× 8

)

36 CHAPTER 3. BACKGROUND

Figure 3.2: QCOW2 cluster addressing

Where ”round up” means rounding up to a multiple of cluster size.

Now, the actual algorithm to reach a certain disk offset inside a QCOW2
file follows these steps:

1. Read the header to find the location of the L1 table.

2. Use the first part of the offset (l1 table index) to index the L1 table as
an array of 64 bit entries.

3. Obtain the L2 table address using the offset obtained from the L1 table.

4. Use the second section of the offset (l2 table index) to index the L2
table as an array of 64 bit entries.

5. Obtain the cluster address using the offset in the L2 table.

6. Use the last section of the offset (cluster offset) as an offset within the
cluster itself.

Finally, all QCOW2 offsets stored on L1/L2 tables have a couple of bits
with a special meaning. The highest order bit is set if there is more than one
copy of the cluster pointed. Otherwise said, the bit is set if there is at least one
snapshot with a different version of the cluster. The second highest order bit is
set in case that the cluster is compressed.

3.4.2 Snapshots

A snapshot is the state of a system at a particular point in time. In the case of
QCOW2, a snapshot is the state of the disk (and all the data contained in it).

3.4. QCOW2 FILE FORMAT 37

So a snapshot could be considered like a previous version of the data stored in
the disk, frozen in time.

To support snapshots efficiently, QCOW2 files only store the clusters that
differ from the current state. That is, clusters that are equal on the snapshot
and in the current version are only stored once, while the rest are stored as
many times as necessary (as many as snapshots are defined on the disk). Which
version of a cluster will be accessed depends on if we are working with the
current version of the disk or a snapshot.

To keep track of the versions of each cluster, QCOW2 files have a couple
of structures: the refcount table (for ”reference count”) and refcount blocks.
The former is an array of 8-byte offsets that point to refcount blocks. The
latter is an array of 2-byte counters, which indicate the number of copies of the
corresponding cluster. As with every other structure in QCOW2, they have a
size of one cluster or a multiple, in the case of the refcount table.

While refcount blocks can be found on any position on the file, the coun-
ters they contain are stored in sequential order. That is, the first element of
the first refcount block indicates the number of copies of the first cluster of the
QCOW2 file, which is the header. The second element of the same block stores
the number of references of the second cluster of file, and so on. When the
QCOW2 file grows to fill this refcount block, a new one will be appended to the
file and its offset will the added refcount table.

3.4.3 Header

As every other structure in QCOW2 files, the header takes up a whole cluster
too, even though its size is pretty small in comparison to the average cluster
size. The header is stored at the beginning of the file in big endian format:

• The first 4 bytes contain the characters ’Q’, ’F’, ’I’ followed by 0xfb.
These four bytes are a ”magic number”, chosen arbitrarily by the author
of QCOW2 to identify this kind of files.

• The next 4 bytes contain the format version used by the file. Currently,
there has been two versions of the format, version 1 and version 2. We
are discussing the latter here.

• The backing file offset field gives the offset from the beginning of the
file to a string containing the path to a file; backing file size gives the
length of this string, which is not a NULL-terminated. If this image is a
copy-on-write image, then this will be the path to the original file. More
on that below.

• The cluster bits field describes how to map an image offset address
to a location within the file; it determines the number of lower bits of
the offset address are used as an index within a cluster. Since L2 tables
occupy a single cluster and contain 8 byte entries, the next most significant
cluster bits, minus three bits, are used as an index into the L2 table.

38 CHAPTER 3. BACKGROUND

typedef struct QCowHeader {

uint32_t magic;

uint32_t version;

uint64_t backing_file_offset;

uint32_t backing_file_size;

uint32_t cluster_bits;

uint64_t size; /* in bytes */

uint32_t crypt_method;

uint32_t l1_size;

uint64_t l1_table_offset;

uint64_t refcount_table_offset;

uint32_t refcount_table_clusters;

uint32_t nb_snapshots;

uint64_t snapshots_offset;

} QCowHeader;

Figure 3.3: QCOW2 Header

• The next 8 bytes contain the size, in bytes, of the block device represented
by the image.

• The crypt method field is 0 if no encryption has been used, and 1 if AES
encryption has been used.

• The l1 size field gives the number of 8 byte entries available in the L1
table and l1 table offset gives the offset within the file of the start of
the table.

• Similarly, refcount table offset gives the offset to the start of the ref-
count table, but refcount table clusters describes the size of the ref-
count table.

• nb snapshots gives the number of snapshots contained in the image and
snapshots offset gives the offset of the QCowSnapshotHeader headers,
one for each snapshot.

Chapter 4

Implementation

Basically, the qloop module is based on Linux’s loop module but with a few
modifications to support QCOW2 disks, hence it’s name (QCOW2-loop was
too long). As explained previously, the loop module converts a file into a block
device, transforming the block device’s read and write operations into file-based
operations. Also, it supports data transformation functions which are applied
on-the-fly on every access operations.

Unfortunately, these facilities are not enough to manipulate QCOW2 files.
This file format is not a sequential representation of a disk, so an address trans-
lation mechanism is required. In addition, QCOW2 files have ”holes”: every
cluster of the disk which has not been written yet does not have a representa-
tion in the QCOW2 file. And there are a few control structures or metadata
that have to be maintained, such as L1/L2 tables, reference counting... While
snapshots are not supported in the current version of qloop, reference counting
tables are part of the specification, and exist in any QCOW2 file even if snap-
shots are not in use. So they must be maintained to keep compatibility with
the QCOW2 specification and thus with the rest of applications that employ
this file format.

qloop module is divided in two files: qloop.h and qloop.c. These two files
are mostly copies of the loop module source (loop.h and loop.c, which are part
of the Linux kernel). All the changes made to these two files to create qloop
are explained in detail in this section. Since loop module does not provide all
the facilities needed, it was not possible to simply create a new module that
depended on loop (such as the cryptoloop module). Also, their implementation
would made loop incompatible with previous versions. So I chose to copy the
two kernel files and develop qloop as if it were a new unrelated module, even if
90% of the code is identical to the original loop.

4.1 Structures

It was not necessary to perform big changes on the original loop structures.
Just adding the QCowHeader structure (as shown on the previous chapter) and

39

40 CHAPTER 4. IMPLEMENTATION

a read-write semaphore to the loop device structure was enough. QCowHeader
is necessary to store all the essential information about the file, while the pur-
pose of the semaphore is to protect the disk when updating control structures.
Employing a read-write semaphore is more efficient since it will only block access
while a write operation is being performed.

As a side note, it was necessary to define a new major number for the
qloop device files created by this module. Otherwise, it would not have been
possible to load both qloop and loop modules at the same time due to colli-
sion on device file creation. The major number selected to identify qloop was
selected from a range allocated for experimental use as stated on the kernel
documentation (Documentation/devices.txt).

4.2 Functions

These are the new functions added to loop module to support QCOW2 files:

• static int read qcow2(struct file *f, u8 *buffer, int size, loff t

*offset) This function is a simple wrapper to the read function associ-
ated to file f. It takes care of setting the right environment. The main
reason to create this is to avoid code repetition, since simple reads on the
QCOW2 file are quite common.

• static int write qcow2(struct file *f, u8 *buffer, int size, loff t

*offset) Similar to the previous function, but calls write instead.

• static loff t get qcow2 offset(struct file *f, uint64 t *address)

Reads an offset address from a QCOW2 file, generally from an L1/L2 or
refcount table. It calls read qcow2() and performs a couple of operations
on the obtained value, such as endianness conversion.

• static int set qcow2 offset(struct file *f, uint64 t address, uint64 t

value) Similar to get qcow2 offset(), this function writes a offset ad-
dress to a QCOW2 file in the expected format.

• static int append cluster(struct QCowHeader *qp, struct file *f,

uint64 t *cluster offset) Append a string of zeros to the end of the
file. The size of the string is exactly the size of a cluster. The zeros are
added by calling write qcow2() with PAGE SIZE as size parameter. This
operation is enclosed in a loop and will be repeated as many times as
necessary to reach the size of a cluster.

• static int set refcount offset(struct file *f, uint64 t *address,

uint16 t value) Similar to set qcow2 offset(), but simplifies the pro-
cess of writing a reference count (2-byte number) in a refcount block.

• static int get refcount offset(struct QCowHeader *qp, struct file

*f, uint64 t *address) Finds the refcount value for a cluster and re-
turns its offset in the file. The address parameter is used to read the
address of the cluster from which it is desired to get a refcount. Then

4.3. WORK FLOW 41

it parses the refcount table to obtain the necessary refcount block’s ad-
dress, from which the final offset is obtained and returned on the address
parameter.

• static int get qcow2 address(struct QCowHeader *qp, struct file

*f, uint64 t *address, int type) Converts a disk address into the
equivalent position in a QCOW2 file. This function performs the address
translation by parsing the L1 and L2 tables. The type field specifies if
the intended operation on address is read or write. The difference lies in
what to do if the final offset has not ever been accessed. If the operation
is write, a new cluster is appended to the file and its offset added to the
relevant L2 table. The final offset is returned on the address parameter.

• static int set qcowheader(struct loop device *lo, struct file *file)

Reads the file’s header, converts its values to the right endianness and ini-
tializes all the values of the QCowHeader structure in the loop device

object.

4.3 Work flow

Apart from adding a few structures and functions, there are other changes to
the loop module code. Some are small and self-explained such as:

• Initializing the new structures, such as the read-write semaphore or the
QCowHeader. The latter has to be initialized at loop set fd() since at
that point is where the association between a QCOW2 file and a qloop
instance takes place.

• Obtaining the drive size from the value stored on the QCOW2 header,
instead of the backing file size.

On the other hand, other changes are deeper. They require further explanation
and are easier to understand after learning the entire process performed by
qloop.

The loop kernel thread starts processing the bio structures by calling
do bio filebacked(). This function checks whether the bio belongs to a read
or write operation and calls the right function to process it: lo receive() for
reads and lo send() for writes.

The function lo receive() will call, for each bvec defined in the bio, the
function do lo receive(). The changes for for qloop start here. This function
will first call get qcow2 address() to translate the read address intended by
the bio into the right offset in the QCOW2 file.

This operation is protected by the read-write semaphore. Since get qcow2 address()

parses the L1/L2 tables, a change in these structures by a write operation
while the function is still working could lead to obtaining a wrong value and
eventually to data corruption. By using a read-write semaphore we enhance
the performance of concurrent operations, since multiple read commands can
be run simultaneously without problems. Unfortunately, a write operation

42 CHAPTER 4. IMPLEMENTATION

will stop any other operation (be it read or write) from being processed un-
til get qcow2 address() returns to avoid data inconsistency.

If the translated file offset exists, the read operation continues as in the
original loop by invoking the splice functionality [11] to copy data between
buffers (from the file’s contents to the output buffer that will be returned to user-
space). In case the file offset does not exist, that means that the corresponding
disk cluster has never been written before and thus is empty. By filling the
output buffer with zeros we simulate a read operation from an empty cluster.

All these operations performed in the bvec structure are enclosed in a
loop. The length of the data to read must be checked to ensure that we don’t
cross a cluster boundary. If the bvec operation is big enough or has a certain
offset, it could span more than one cluster. In such a case, since a QCOW2 file
is not sequential, it would be necessary to repeat the address translation for the
data beyond the cluster border. This operations will be repeated as many times
as necessary to complete the read operation. No assumptions have been made
on bvec or page size.

If the bio to process intends to write data to disk, do bio filebacked()

will call lo send(). Originally, this function selected the most suitable write
operation, depending on factors such as support of asynchronous operation being
enabled, or the need to apply a transformation function on the data to transfer.
qloop does not use any kind of transformation functions, and asynchronous
operation is disabled, so lo send() basically just loops over the bvec structures
defined in the bio and passing them to do lo send direct write().

The reason to disable asynchronous writing lies in the fact that metadata
changes in qloop are performed by invoking the synchronous write method on the
backing file. It’s not possible to know if metadata modification will be necessary
until the write operation is in course. That is, until an address translation is
performed on the bio’s destination address and verified if the corresponding
cluster in the QCOW2 file exists or not. Trying to predict this would require
parsing all the bvec structs once before starting the actual data copy, which will
process them again. Such implementation would be a lot less efficient. Also,
synchronous and asynchronous operations cannot be mixed since both try to
acquire the semaphore allocated in the file’s inode structure, which would lead
to a deadlock.

qloop write is performed by do lo send direct write(). This function,
in a similar way to do lo receive(), calls get qcow2 address() and copies
data to the destination address, always taking into account that the length of
the data does not cross a cluster boundary. Again, in such a case the function
must obtain the QCOW2 file address and resume copying at the new location.
The main difference here is that get qcow2 address() is called in write mode
(the type parameter is set to 1), which enforces it to create and append new
clusters to the file to make it grow, be it data clusters or metadata (L2 tables
and refcount blocks) and update previously existing values (L1 table and ref-
count table). As explained before, the invocation of get qcow2 address() is
protected by the qloop instance’s read-write semaphore.

Chapter 5

Performance Tests

Performance tests have been carried out by running fio, a benchmark for IO
devices, on a laptop with this configuration:

CPU Intel Core2Duo P8400 @ 2.26GHz

Memory 4GB DDR2

Storage 500GB SATA2 5400rpm Hard Disk

Operating System Debian 6.0 (testing branch)

Kernel 2.6.32

Architecture x86 64

fio 1.38

The advantage of using fio over other benchmark applications is that it can work
with devices directly, instead on files and directories like most of its alternatives.
While a test with files could have been possible, it would have added the over-
head of a file-system to the results. Also, it introduces the problem of choosing
a file-system to perform the tests with, or even repeating them with various
file-systems to check the difference. fio allows me to skip all these troubles and
work directly with the device itself.

The tests show the performance of qloop module with a QCOW2 file vs
loop module with a raw file (a disk image). To speed up test duration, the size
of the disk has been set to 5GB. All test have been performed 10 times and
their results have been averaged.

A secondary computer was necessary to perform write performance tests
with NBD to ensure that there would be no deadlocks. This second host has a
similar configuration to the one described earlier and both are connected by a
Gigabit Ethernet network.

I planned to include one of qloop’s alternatives on the tests: libguestfs,
but it was not possible. libguestfs’s interface is too restricted and does not allow
raw access to the contents of the file, necessary for fio.

43

44 CHAPTER 5. PERFORMANCE TESTS

Figure 5.1: Performance results

The tests performed try to show how qloop behaves under different situ-
ations. Empty QCOW2 file means that the test was done with a new QCOW2
file that has never been accessed. qemu-img, the program that creates these
files, sets up the header, L1 table, refcount table and a refcount block on new
files. This means that nearly every write operation will cause a new cluster to be
appended to the file and surely a modification of the tables will take place. On
the other hard, a Full QCOW2 file has all clusters already allocated and all the
metadata structures are complete, so while address translation is still necessary,
it will not be required to update them anymore. On read operations, an empty
file will always perform a lot faster on qloop since as soon as the module verifies
that the destination cluster does not exist, it will just return zeros instead of
reading any byte from disk. This notion of full and empty files do not apply
to loop and raw files because images always have the same size, no matter the
contents (”empty” sectors are long strings of zeros). So reading or writing are
not affected by these circumstances.

All the tests consist on performing many sequential read or write oper-
ations of 4KB each until the entire disk has been processed. The results show
us that qloop is 50% slower than loop on most situations, but still achieves 50
MB/s, which is a lot more than its alternatives and a respectable speed. Also,
the numbers tell us that qloop performance is not much affected by the file
being full or empty. Otherwise said, appending clusters or updating metadata
structures are not expensive tasks. So, the only reason why qloop is 50% slower
than loop is because of address translation. If any attempt to optimize qloop is
to be made, that is the part of the process where the effort must be put.

45

NBD’s results are very poor. The fastest write throughput I could obtain
was 1.5MB/s. Facing this results, I cannot help but wonder how could the
QEMU developers consider this as a valid solution for accessing QCOW2 files,
even if in a sporadic fashion.

46 CHAPTER 5. PERFORMANCE TESTS

Chapter 6

Time and cost analysis

This section describes the resources spent to develop qloop.

6.1 Time

Time was without a doubt the most needed resource. Most of this time was
employed to learn the many technologies involved, such as: the QCOW2 specifi-
cation, reading its implementation on KVM and QEMU source code, mastering
the C language, find out how to develop a kernel module, understand the loop
module’s inner workings and specially the kernel’s IO subsystem. This fact is
reflected on the project’s paper: the longest part is the chapter dedicated to
explain the technologies behind qloop.

qloop’s development spans for little more than a year, while my original
expectations were half that time. A period so large just to develop a few lines
of code may appear as very unproductive at first sight, but I should note that
qloop required deep understanding of very complicated environments, such as
the Linux IO subsystem or advanced knowledge of C programming, and learning
does take a long time. Also, it should be taken into account that I was no
expert on any of the technologies involved and had to learn while attending a
full-time job. Having much more hours per day to dedicate to the project or
previous experience on kernel development would have certainly cut the time
spent to a fraction. The project can be divided into 3 types of tasks: learning,
development and documentation. Learning consists on researching the software
involved, basically reading books, documentation and source code. Also includes
the development of small applications to help me grasp the understanding on
some subject. Development tasks consist on writing code and testing it. Finally,
documentation tasks are committed to write the project’s documentation, such
as typing the initial report and this paper or prepare the project’s defense.

47

48 CHAPTER 6. TIME AND COST ANALYSIS

Figure 6.1: Tasks performed during 2009

6.1. TIME 49

Figure 6.2: Tasks performed during 2010

50 CHAPTER 6. TIME AND COST ANALYSIS

Figure 6.3: Time Distribution by task

6.2 Costs

The project has been developed in its entirety with FOSS (Free Open Source
Software), so all the software is free of charge and free to use. This choice was
not made on purpose: all the software related with the technologies involved
in qloop (Linux, QEMU, etc) happen to be Free Software. Still, the biggest
advantage is the invaluable fact that all the source code is available for review.
Without this privilege, the development would have been impossible.

About hardware, this project does not require anything beyond an aver-
age computer that can run Linux. So the project’s cost is determined by the
price of the time spent on learning and development. qloop took 420 days to
complete. Averaging 4 hours of work/day and 15e/hour, plus the hardware
price:

Price = (420days× 4hours/day × 15e/hour) + 300e = 25500e

Chapter 7

Future Work

The objectives set by this project have been met: qloop is an easy to use and
fast method to read and write QCOW2 files as if they were real disks. Still,
there are many ways to improve it.

7.1 Performance

While qloop’s performance is acceptable, there is a noticeable gap between qloop
and loop. Since the biggest difference between the two is the address translation
mechanism, it is obvious that optimizations should concentrate on this process.

The most direct and effective approach consists in adding a cache for
addresses in a similar way to that employed by modern CPUs or paging mecha-
nisms on operating systems. This improvement introduces many variables, such
as the size of the cache, should it be associative or direct, or if it could exploit
spatial locality (if a cluster is accessed, chances are that the next one will be
accessed soon).

There is also the possibility of adding data caching. The reference im-
plementation on QCOW2 (that which is included on QEMU/KVM) loads the
entire L1 table in memory for faster access and address translation. Also, it
loads clusters currently being accessed. This is done to improve access on com-
pressed and encrypted clusters. There are many chances that a recently-accessed
cluster will be accessed again (temporal locality). While the operative system
provides a data caching system for block devices, it does not take into account
the transformations performed by QCOW2’s ”transfer functions”.

Unfortunately, tuning all these parameters requires extensive testing on
different workloads, which demands a huge amount of time and thus could not
be done in time for the project.

51

52 CHAPTER 7. FUTURE WORK

7.2 More Features

qloop currently only supports basic read and write functionality. Another logical
improvement for the project would be adding support for all the features present
in the QCOW2 specification such as:

• cluster compression

• cluster encryption

• snapshots

• Copy-on-Write image

Now that the code foundations are solid, it is possible to consider the addition of
more advanced features to eventually support the QCOW2 format completely.

7.3 Other formats

There are many other virtual disk formats employed by a variety of emulator
or virtualizer applications. Generally, each vendor designs their own format but
all of them have a similar set of features. Also, many of these are supported by
QEMU, so there is a free implementation available for reference. Here is a list
of formats supported by QEMU with the name of their native software/vendor.

• qcow (previous QEMU format, QCOW1)

• vmdk (VMWare)

• vdi (Virtualbox)

• cow (User Mode Linux)

• hdd (Parallels)

In my opinion, the best path to implement them would be modifying qloop to
convert it in a common infrastructure and create multiple modules depending
on it, each one supporting a different format, to avoid code repetition. On
the other hand, if one or more formats proved to be very different to the rest,
those could be developed in a module by themselves (without depending on the
”generic qloop”).

7.4 Upstream Merge

As the Linux developers say, the best place for Linux-related code to be is in the
kernel itself [12]. That is, do not develop a module or any other functionality
by yourself: try to merge it with the rest of the kernel so that others can help
you maintain it and improve it. This way everyone benefits. I agree with this

7.4. UPSTREAM MERGE 53

point of view so I think it is good to try to get qloop accepted into the Linux
code distribution (also called mainline or upstream).

Unfortunately, I really doubt that qloop would be accepted at its current
state. Sharing 90% or more of code with loop is a good reason that kernel
developers will raise against the merge. So code should be adapted to meet
the Linux coding standards before any attempt for merging is to be made.
Also it would be good to design a patch for loop that would add support for
address translation, making qloop smaller and dependent on loop (such as the
cryptoloop module) and solving the code repetition problem.

54 CHAPTER 7. FUTURE WORK

Chapter 8

Conclusions

The qloop module was designed to solve a certain problem: provide easy and
fast access to a virtual disk file in QCOW2 format. The method implemented to
convert a file into a block device has proved to be fast enough, it is easy to setup
and once ready, it can be accessed as a normal block device, which means that
all tools available for block devices will work on QCOW2 files too. It could be
improved, both on performance and features. But the speed achieved is enough
for me and I don’t use the advanced features (compression, encryption...). To
sum up, qloop fits my needs, or as said in the development world, it ”scratches
my itch”.

On the other hand, it could be argued that the hardest part is done. And
after reaching so far, why not advance a bit further? While the current version
does what I need, there are some enhancements that are really interesting. But
if I were to continue with qloop development, the first step would be pushing
for mainline acceptance. There is no point on adding features now if eventually
I have to rewrite everything to comply with the kernel’s coding standards. Also
the idea of joining such a big community of great developers is really exciting.
The amount of code I have done is enough to provide a basic functionality that
will work for others and catch their attention, and is proof that it is not that
hard to add QCOW2 support to the kernel. So even if some code rewrite was
necessary, I think the possibility of having this module being part of Linux is
not far-fetched at all.

Another interesting conclusion I reached is that all rules have exceptions.
While at first it would not look like a great idea to rewrite already existing and
fine code, sometimes it is worth it. All the alternatives to qloop implemented
contrived methods to provide access to QCOW2 files, always to avoid having
to rewrite QCOW2 related code and trying to employ QEMU’s existing im-
plementation. In the end, it turns out that rewriting was not as traumatic as
expected and provided much better results that all the alternatives in usability,
performance and flexibility.

To wrap up, it was a lot of hard work to develop this much, spanning for
more than a year. But it was certainly worth it. I have learned so much about
operating systems, C development and project management than I thought it

55

56 CHAPTER 8. CONCLUSIONS

was possible. Now I can only hope that this project is as useful to others as it
has been to me.

Bibliography

[1] QEMU official site
http://wiki.qemu.org/Main Page

[2] KVM official site
http://www.linux-kvm.org/page/Main Page

[3] Fabrice Bellard
QEMU, a Fast and Portable Dynamic Translator
http://www.usenix.org/publications/library/proceedings-

/usenix05/tech/freenix/bellard.html

USENIX 2005 Annual Technical Conference, FREENIX Track

[4] Mark McLoughlin
The QCOW2 Image Format
http://www.gnome.org/ markmc/qcow-image-format.html

[5] QEMU Frequently Asked Questions
http://qemu-buch.de/cgi-bin/moin.cgi/FrequentlyAskedQuestions

[6] FUSE official site
http://fuse.sourceforge.net/

[7] libguestfs API and architecture
http://libguestfs.org/guestfs.3.html#architecture

[8] Network Block Device official site
http://nbd.sourceforge.net/

[9] NBD server for QEMU images (thread in qemu devel mailing list)
http://thread.gmane.org/gmane.comp.emulators.qemu/14907

[10] KVM’s first commit to LKML
http://lkml.org/lkml/2006/10/19/146

[11] Splice explanation from Linus Torvalds
http://kerneltrap.org/node/6505

[12] Jonathan Corbet
How to participate in the Linux community
http://ldn.linuxfoundation.org/book/1-a-guide-kernel-development-process

57

58 BIBLIOGRAPHY

[13] Daniel P. Bovet and Marco Cesati
Understanding the Linux Kernel
O’Reilly, 3rd edition, 2005

[14] Jonathan Corbet, Alessando Rubini and Greg Kroah-Hartman
Linux Device Drivers
O’Reilly, 3rd edition, 2005

Appendix A

Compiling qloop

Compiling qloop from source is an easy and fast process, since the amount of
code to compile is pretty small and very similar to already existing kernel code.
The requisites for compilation are:

• Linux source

• GNU Compiler Collection

• GNU Make

Compiling is as simple as unpacking the qloop source and running make.

$ tar -xzf qloop.tar.gz

$ cd qloop

$ make

The code has been tested successfully on Linux 2.6.32 and 2.6.33 with
x86 and x86 64 architectures. The kernel sources installed must match the cur-
rently running kernel. Once compiled, the module can be loaded with insmod.
To communicate with the qloop module and associate it with files, we require
losetup. This tool is part of the util-linux-ng package, which is available on any
Linux distribution, and works in the same manner as the original loop device.

$ insmod qloop.ko

59

60 APPENDIX A. COMPILING QLOOP

Appendix B

Usage Example

One of the objectives when designing qloop was making it easy to use. Here is
shown an example to proof its simplicity. It is assumed that the qloop module
has been compiled and loaded successfully.

$ losetup /dev/qloop0 file.qcow2

That is all. Now, the device file /dev/qloop0 will behave like a block
device containing all the data in the disk described in file.qcow2. This will
work as long as file.qcow2 is a sane QCOW2 file that does not employ any of
its advanced features (compression, encryption or snapshots) since they are not
yet supported by qloop. Accessing a file with any of these features will lead to
unexpected results (but you can expect them to be very bad!).

It is possible to create partitions or file-systems and mount them just like a
real disk device. Access to partitions in qloop device is possible with tools such as
kpartx. This tool does not belong to the qloop package and explaining its details
is beyond the scope of this documentation, but it is pretty straightforward to
use.

$ kpartx -a /dev/qloop0

This action will create the corresponding device files for each partition
existing in the disk under the directory /dev/mapper/. Undoing this operation
is possible by executing kpartx with the -d argument.

Before unloading qloop module, it is necessary to disassociate the qloop
device files with QCOW2 files. Again, this action requires losetup.

$ losetup -d /dev/qloop0

61

62 APPENDIX B. USAGE EXAMPLE

Appendix C

Tools

To develop qloop, I created a few tools that helped me understand the format of
QCOW2 files and debug the module. They are not necessary to use qloop, but
can be useful for testing purposes. They don’t have any requirements beyond a
C compiler.

C.1 qcow2info

Extracts detailed information from a QCOW2 file. This was the first tool I
developed and thus has a lot of options to perform varied and unrelated tasks
because they were added as needed, making its use a bit complicated.

-H Display header.

-t print detailed table information (address translation).

-x Display address/offsets in hexadecimal.

-a address Treat this address and translate it to the real offset in the QCOW2
file. Default is 0.

-b bytes Dump bytes (up to 4096) to stderr starting at address.

C.2 qcow2test

This tool receives a QCOW2 and a raw file as parameters and compares the
data they contain byte by byte, printing error messages for every difference it
finds between the two.

63

64 APPENDIX C. TOOLS

C.3 printqtables

Prints L1 and L2 tables. Their content is displayed in hexadecimal format as
64bit offsets. It has 1 parameter: a QCOW2 file. It has 2 options.

-1 Display L1 table

-2 Display all L2 tables

C.4 printclusters

Reads a QCOW2 file and prints a map of its clusters. In this ”map” format
all clusters are printed sequentially in the same order as they are stored in the
file, and each cluster is represented as a character. Every character identifies the
type of cluster it represents. Legend of characters (or types of cluster) available:

H Header

1 L1 table

2 L2 table

S snapshot

T refcount table

R refcount block

D data cluster

? unknown

