
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

M
A
S
T

E
R

T
H

E
S
IS
2D Grammar Extension

of the CMP Mathematical

Formulae

On-line Recognition System

Eva Gallardo Pérez

qqperez@cmp.felk.cvut.cz

CTU–CMP–2009–03

January 21, 2009

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/hlavac/GallardoPerez-TR-2009-03.pdf

Thesis Advisor: Hlaváč Václav, Pr̊uša Daniel;

This research work was supported by the CVUT Media Lab
foundation, and the project CAK.

Research Reports of CMP, Czech Technical University in Prague, No. 3, 2009

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +4202 2435 7385, phone +4202 2435 7637, www: http://cmp.felk.cvut.cz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301211037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2D Grammar Extension
of the CMP Mathematical Formulae

On-line Recognition System

Eva Gallardo Pérez

January 21, 2009

I would like to thank my advisors Václav Hlaváč and Daniel Pr̊uša for providing
the motivation and the resources for this reserach to be done.

In addition, I would like to thank Michal Havlena, Michal Jancosek, Jef Vande-
meulebroucke and Marian Uhercik for their helpful suggestions for improvements
to the thesis, Akihiko Torii, Vladimir Smutny and Pavel Krsek for their willing-
ness to help me solve unexpected problems during my work and Eva Matyskova
and Radka Kopecka for being supportive colleagues.

I would like also to thank my parents, J.Eduardo Gallardo and Purificación
Pérez, my grandparents Pedro Pérez, Modesta Arcediano and my sister Raquel
Gallardo for their unwavering support during this work and in all my academic
pursuits.

Finally, I would like to express my deepest gratitude to Baptiste Breda, Felix
Dent, Florence Reith and Yanick Slikboer for all the encouragement and support
they have provided throughout this project.

Abstract

In the last years, the recognition of handwritten mathematical formulae has re-
cieved an increasing amount of attention in pattern recognition research. How-
ever, the diversity of approaches to the problem and the lack of a commercially
viable system indicate that there is still much research to be done in this area.
In this thesis, I will describe the previous work on a system for on-line hand-
written mathematical formulae recognition based on the structural construction
paradigm and two-dimensional grammars. In general, this approach can be suc-
cessfully used in the anaylysis of inputs composed of objects that exhibit rich
structural relations. An important benefit of the structural construction is in not
treating symbols segmentation and structural anaylsis as two separate processes
which allows the system to perform segmentation in the context of the whole for-
mula structure, helping to solve arising ambiguities more reliably. We explore the
opening provided by the polynomial complexity parsing algorithm and extend the
grammar by many new grammar production rules which made the system use-
ful for formulae met in the real world. We propose several grammar extensions
to support a wide range of real mathematical formulae, as well as new features
implemented in the application. Our current approach can recognize functions,
limits, derivatives, binomial coefficients, complex numbers and more.

iv

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Overview . 5
1.3 Thesis structure . 6

2 General Description of Formulae Recognition Process 7
2.1 Structural Analysis . 8
2.2 Segmentation . 8
2.3 Recognition of Segmented Symbols 9

3 State-of-the-art 11
3.1 Overview . 11
3.2 Existing Applications . 11

3.2.1 The Natural Log System 11
3.2.2 Freehand Formula Entry System 12
3.2.3 Infty Editor . 13
3.2.4 MathJournal . 13
3.2.5 MathPad . 14
3.2.6 PenCalc Project . 14
3.2.7 MathForEngine . 15

4 Notes on Our System (Previous Work) 16
4.1 Formulae Recognition Task . 16
4.2 Applied Method . 18

4.2.1 Elementary Symbols Detection 19
4.2.2 Two-dimensional Grammars 20
4.2.3 Structural Analysis. Parsing Algorithm 21

5 Mathematical Notation and Extension of 2D Grammar 23
5.1 Mathematical Notation: Characteristics and Problems 23

5.1.1 Grouping symbols . 23
5.1.2 Determining relationships among symbols 24
5.1.3 Explicit and implicit operators 24
5.1.4 Context-sensitive roles . 24

5.2 Our Approach for Extension of 2D Grammars 25
5.2.1 Two-dimensional Grammar 25
5.2.2 Implementation Details . 28
5.2.3 Graphical User Interface 29

1

6 Results 31

7 Discussion 38

8 Conclusions and Future Work 39

Bibliography 41

A Appendix: Grammar File 44

2

List of Figures

1.1 Example of a successful recognition of a mathematical formula . . 4

3.1 The Natural Log System . 12
3.2 Free Hand Formula Entry System 13
3.3 MathJournal . 14
3.4 MathPad . 15
3.5 PenCalc Project . 15

4.1 An example of an input and its output of recognition 17
4.2 Examples of some possible segmentation ambiguities 17
4.3 Examples of some cases we would like to handle 18
4.4 Candidates find for a sequence of three strokes 19
4.5 Example of a spatial constraint evaluation 21

5.1 Fundamental production types . 26
5.2 Production related to Sum extensions 28
5.3 Example of structural analysis . 29
5.4 OCR-Training . 30
5.5 Screenshot from the user application 30

6.1 Examples successfully recognized (1) 32
6.2 Examples succesfully recognized (2) 33
6.3 Examples successfully recognized (3) 34
6.4 Examples sometimes fail to be recognized 35
6.5 Strokes-Time complexity plot, (testing by ‘a − a. . .−a’) 36
6.6 Strokes-Time complexity plot . 36
6.7 Productions-Time complexity plot 37
6.8 Productions-Strokes plot. 37

3

1 Introduction

The input of mathematical expressions into computers is more difficult than the
input of plain text because special symbols are present, symbols have different
size, formulae have a rich internal structure given by mathematical conventions
and the spatial arrangement in a plane. The handwriting recognition yields a
natural, practical way of entering mathematics into a computer system.

We present a method for on-line mathematical formulae recognition that can
be successfully used in the analysis of images containing objects that exhibit
rich structural relations based on the structural construction paradigm and 2D-
grammmars. An important benefit of the structural construction is in treating
the symbol segmentation in the image and its structural analysis as a single
intertwined process. This allows the system to avoid errors usually appearing
during the segmentation phase.

This thesis contributes to the incremental work on a system for on-line math-
ematical formulae recognition. Principles of the system have been already pub-
lished as well as a pilot study supporting very basic mathematical constructs has
been implemented [18, 19]. The main goal of the thesis is to extend the application
to be able to cope with more realistic formulae, see Figure 1.1

Figure 1.1 Example of a successful recognition of a complex mathematical formula.

1.1 Motivation

The problem of recognition of handwritten expressions has long been a focus of
study in the field of pattern recognition. Research in this area has been driven
by a desire to combine the natural advantages of handwritten input, including a
simple interface, with the data processing capabilities of computers. There exists
a number of commercially successful products which are available to recognize a
user’s handwriting and use this ability to perform simple tasks such as scheduling
appointments and writing memos. However, most scientists and engineers are

4

1.2 Overview

unable to take advantage of these products for their technical work due to the
lack of effective algorithms for interpreting more complex handwritten expres-
sions, particulary equations, diagrams, graphs, and other mathematical forms.
Compared to the effort put into the recognition of printed and cursive prose, the
recognition of more complex forms has received only minor attention in pattern
recognition research. In addition, the diversity of approaches to the problem and
the lack of a commercially viable system indicate that there is still much research
work to be done in this area.

As more powerful computers with better displays and input devices become
available, demand will increase substantially for software systems which can work
with the type of handwritten data that one would find in a research notebook
or technical document. Mathematical expressions are a natural place to begin
such research since they are critical to all technical writing and there already
exists a vast amount of literature on recognizing handwritten letters and words,
major subcomponents of these expressions. Combining mathematical expression
recognition capabilities with existing algebra solving software, graphing programs,
and simulation systems would be a firtst step towards a superior user interface
for doing technical work with a computer.

1.2 Overview

Formulae contain significant structural information which is expressed as 2D spa-
tial relations. Thus, mathematical formulae recognition is an appropiate applica-
tion area for testing 2D grammars-based approach. In a mathematical expression,
characters and symbols are spatially arranged as a complex two-dimensional struc-
ture, possibly of different character and symbol sizes. This makes the recognition
process more complicated even when all the individual characters and symbols
can be recognized correctly. Moreover, to ensure that a mathematical expression
recognition system is useful in practice, its recognition speed is also an important
issue to consider. On the other hand, mathematical formulae follow quite strictly
established formalism. This formalism opens the door to use tools from the the-
ory of formal languages on both syntactic and semantic level.

Recognition of mathematical formulae can be basically divided into two groups:
off-line recognition and on-line recognition.

By off-line recognition we mean recognition of scanned formulae. In this case,
the input is a picture, a two-dimensional array of pixels. Scanned pictures typi-
cally contain printed formulae, but handwritten expression can be considered as
well. This method serves to digitize scientific documents or notes.

On the other hand, on-line recognition is being used to process handwritten
formulae entered through tablets. The input is a sequence of strokes. Elements
of the sequence are sorted by the time of creation. Each stroke is a sequence of
points written by one move of the pen. Since the pen is driven by hand, on-line
recognition focuses on handwritten formulae.

5

1 Introduction

In this thesis, we deal with on-line formulae recognition. There are many con-
tributions concerning this topic, several mehtods have been designed or adopted
for the formulae recognition, a nice survey can be found in [8].

Most of the known methods for mathematical formulae recognition, like a typ-
ical system of pattern recognition, follow a two-phase procedure:

1. Symbol recognition phase: Detection of individual symbols by image segmenta-
tion and labeling symbols using pattern recognition techniques.

2. Structural parsing phase: Structural analysis of relations among labeled sym-
bols.

1.3 Thesis structure

In this thesis, I focus on examination of a general formulae recognition process
and used methods, which are implemented in real interface applications, and in
the structural analysis aspect of mathematical expression recognition.

Firstly, a general description of formulae recognition process is given in Chap-
ter 2. Afterwards some related known works of others where an application for
formulae recognition is available are listed and described in Chapter 3. Main
ideas behind our method are briefly summarized in Chapter 4. Some of the gen-
eral problems that have to be overcome during the structural analysis stage are
discussed in Chapter 5. Used grammar and grammar productions for parsing real
mathematical formulae are also described in Chapter 5. Finally, I present and
discuss experimental results, as for example Figure 1.1, which are then followed
by some concluding remarks (Chapter 6, 7, 8).

6

2 General Description of Formulae
Recognition Process

Formulae recognition typically consists of two major stages: symbol recognition

and structural analysis.

The symbol recognition stage is precessed by segmentation. The goal of the
segmentation is to divide black pixels of the input picture (off-line recognition),
respectively strokes (on-line recognition) into groups, where elements of a group
form exactly one character. It is typically done by comparing coordinates of the
elements and grouping the nearest ones together. Character recognition is done
for these groups. If the results of character recognition indicate that a grouping of
elements was not correct, the grouping can be modified and the character recog-
nition done again (so, more iterations ‘group elements, recognize characters’ can
be possibly done during the symbol recognition stage). There are also methods
that perform the segmentation and character recognition simultaneously.

The output of the first stage consists of detected symbols and also their coordi-
nates and sizes (i.e. each occurrence of a symbol is assigned by the size and coor-
dinates of the bounding rectangle, coordinates of some important feature points
of the symbol, etc.). For each segmented symbol, more than one possibility which
characters it matches best can be computed (each possibility being assigned by
probability or penalty). Such data are the input for the structural analysis that
tries to find out relationships among the symbols and builds a derivation tree rep-
resenting the structure of the input expression. To achieve this, several grammar
formalisms have been developed or adopted. They include formalisms resembling
extensions of two-dimensional context-free grammars. Graph grammars appear
also quite often.

A grammar oriented approach is connected with a usage of some parser, but not
all methods of the structural analysis are based on parsing. Some authors have
developed systems, where rules for building a derivation tree are procedurally
coded.

Both stages, parsing and character recognition, are completely separated and
independent. The approach proposed by M.I. Schlesinger in [20] is unique. It
performs the stages simultaneously by one process. A similar approach has also
been studied in [4]. It seems, there are not many other systems based on this idea
mentioned in the literature.

7

2 General Description of Formulae Recognition Process

2.1 Structural Analysis

As has been already mentioned, most of the methods for the structural analysis of
mathematical formulae are grammar based. Here are two examples of grammars
used in some systems:

In [14], so called geometric grammar are considered. These grammars allow
to define the following relationships among the symbols: up/down (one symbol
is under another one), left/right, in/out (convenient to describe e.g. the square
root symbol having an operand inside it), upper-right/lower-right (e.g. to describe
‘power of’ relationship).

The second example comes from the system described in [17], where parsing is
based on graph grammars. Assuming the segmentation and recognition of symbols
have been done, a graph for the recognized symbols is constructed. Nodes of the
graph correspond to the symbols. Two symbols are connected by an evaluated
edge if the two symbols can be in some direct relationship in the formula (e.g.
one symbol is a subscript of the other). This decided by comparing coordinates
of the symbols. Edges are evaluated by this type of the relationship. Nodes are
labelled by the symbol, they correspond to.

Structure of an expression is described using the graph grammar. This grammar
is context sensitive. Rules of the grammar transform a subgraph into a single
node. These nodes are labelled by nonterminals. The parsing is performed by a
bottom-up approach. Nodes of the created graph are being reduced till there is
only one node (labelled by the initial symbol of the grammar).

A different, non-grammar based, method for structural analysis was proposed
in [7]. In this case, a network (graph) is constructed. Nodes represent detected
symbols. They are linked by several edges with labels and costs representing
possible relations of the pair of symbols. The network can have multiple edges
between two nodes. They represent the ambiguity of the decision of he relation
between the symbols. Edges are calculated based on the distance between the
symbols and their position. The result of the recognition corresponds to the
spanning tree with minimum cost.

2.2 Segmentation

A survey of character segmentation methods is given in [2]. The methods used
for the off-line recognition can be divided into the following groups:

• Classical approaches, in which segments are identified based on character-like
properties. The picture is being cut into components that most probably form
a character. Decisions how to cut are made by evaluating neighborhoods of
black pixels, shapes of connected areas these pixels form, etc.

• Recognition-based segmentations (template matching), the picture is searched
for components that match known characters.

• Methods, in which words (formulae) are being recognized as a whole. In this
case, the segmentation and character recognition are merged into one process.

8

2.3 Recognition of Segmented Symbols

The third group of methods is mostly represented by Hidden Markov Models

(HMMs). These models were succesfully applied in the area of speech recognition
and thus adopted by some authors to be used in Optical Character Recognition

(OCR) systems for which they provide the advantage of a simultaneous segmen-
tation and character recognition. An example can be found in [9]. HMM is a
statistical model. It requires training data to be trained on. Moreover, suitable
features need to be extracted from the input pictures before they are processed
by HMMs.

In general, the segmentation is easier in the case of on-line recognition (in con-
trast to off-line recognition) since the pixels are already divided into components
(strokes). It is sufficently to group only strokes that should form a character
together. The algorithm finding the minimum spanning tree appears in the lit-
erature to solve this task. (An example can be found in [14]). The segmentation
is done as follows. Each stroke is assigned by a coordinate corresponding to the
center of the stroke. A graph is constructed: for each stroke, there is a node repre-
senting it and each two strokes are connected by an edge evaluated by the distance
between strokes’ centers. Minimum spanning tree is found in the graph. During
the segmentation, only strokes neighboring in the spanning tree are considered to
be possibly parts of one character.

2.3 Recognition of Segmented Symbols

Methods for character recognition can be categorized as follows:

• Template matching
• Structural methods
• Statistical methods
• Neural network based methods

The first method compares an input image respectively a group of strokes to
be recognized to templates representing particular symbols. Using some metric,
the distance between the input and a template is measured and the template
matching best is found.

Structural approaches look for a presence of selected features in the input.
The considered features are like the number of corners, loops, etc. Result of the
recognition is calculated based on the detected features. A decision tree can be
build to help in this process. Structural approaches are rare, there are only few
systems based on such ideas.

Statistical and neural network based methods seem to be more common than
the previous two methods. They are suitable for recognition of printed as well
as handwritten characters. Both methods are very similar and share mostly all
stages of the recognition process. The difference between them is in usage of a
statistical, respectively neural classifier. In general, the methods can be described
as follows:

• Classifier is trained on a set {ti, ci}i=1,...,n, where ti are input pictures respec-
tively groups of strokes, each of them containing a symbol belonging to class
ci.

9

2 General Description of Formulae Recognition Process

• Trained classifier takes an input x and finds a class c the input fits best.

Usually, some important features are extracted from an input and they are passed
to the classifier instead of the whole input. Input pictures for off-line recognito
can be of different size, they also contain a huge number of pixels, these are the
reasons why feature extraction is needed.

Choosing a good type of features to extract seems to be an important part
determining the quality of the method. Requirements on the features can be
summarized as follows:

• The number of features should not depend on the size of the input.
• Visually similar inputs should lead to similar features.
• The features should be capable of discriminating among the given classes of

pictures.

One of the advantages of the statistical, respectively neural based methods, is
that the feature extraction as well as the training process are independent on
particular characters. This is not true in the case of template matching, respec-
tively structural methods, where a template, respectively a set of rules, needs to
be designed for each symbol.

10

3 State-of-the-art

3.1 Overview

Interest in developing pen-computing applications has been growing significantly
during the last years, due to, among other factors, the introduction of devices such
as Personal Digital Assistants (PDAs) or Tablet PCs. The main characteristic of
such devices is that they use the stylus as input tool, being a ‘natural’ substitute
for keyboard and mouse.

The data generated by users wirting with a stylus on an electronic device is
known as digital ink, and the process of writing is called on-line handwriting.
The minimal unit which forms digital ink are strokes, which are sequences of
pints generated between pen-up and pen-down events, at regular time intervals.

The main objective in pen-computing is not only handling digital ink ‘as is’
but also its conversion into another data structure that can be automatically
processed by computers.

Character recognition, as the most common type of a symbol recognition prob-
lem, has been an active research area for more than three decades [15, 25]. Struc-
tural analysis of two-dimensional patterns also has a long history [16].

3.2 Existing Applications

There is a variety of systems based on handwriting developed at research insti-
tutions. We could mention these as recent work on user interfaces for on-line
handwriting:

3.2.1 The Natural Log System

The Natural Log system is a user-dependent system developed by Matsakis [14,
13], (see Figure 3.1).

To classify on-line symbols, he constructs a high-dimensional normal distribu-
tion, which describes the population of each class. A symbol label corresponds
to the class that has the maximum probability. Low probability values are used
to reject symbols which can represent potential errors in the handwriting. The
procedure to recognize a given mathematical expression begins by finding an op-
timal grouping of the written strokes into isolated symbols. The final grouping
of strokes is determined by evaluating all possible groupings and taking the one
which minimizes a sum-cost function. This function is the sum of the log likeli-
hood of the classifier output of each symbol in the current partition. To make the
optimization of the cost function manageable, its evaluation is constrained by the

11

3 State-of-the-art

minimum spanning tree of strokes, considering the centers of strokes’ bounding
boxes as nodes of a completely connected weighted graph. Different combinations
of subtrees of the minimum spanning tree are evaluated and the optimal one is
taken as the final segmentation result.

The structural analysis in this system consists of locating a ‘key’ symbol usually
an explicit mathematical operator. Once the key symbols are located, the parse
algorithm proceeds to find their corresponding operands, and partial subexpres-
sions are formed. The procedure is applied recursively until no more key symbols
are found. The algorithm is extended to support parsing of superscripts, e.g. to
non-explicit operators, but no support for subindexes is offered.

Figure 3.1 The Natural Log System.

3.2.2 Freehand Formula Entry System

The FFES is a pen-based equation editor developed by Smithies and Norvins [21,
1].

The classification of symbols is done by using the nearest-neighbor method.
The developers use confidence information supplied by the classifier to group
strokes. Their method proceeds by generating all possible combinations of a
fixed number of strokes (by default they take a maximum of four strokes), which
potentially can constitute a single symbol. Once a single symbol is classified,
the confidence level of a combination corresponds to the lowest output of the
classifier. Finally, the group with the highest confidence is taken and the first
symbol in the group is returned and considered a correctly recognized character.
The procedure is repeated, once again, when a fixed number of input strokes is
reached. For the structural analysis, they first used a method based on graph
rewriting, Zanibbi [27] modified the program to use a structural analysis method
developed by him, (see Figure 3.2).

12

3.2 Existing Applications

Figure 3.2 Free Hand Formula Entry System.

3.2.3 Infty Editor

Infty Editor [23, 22] is a system specialized for creating mathematical documents,
which contains a real-time recognition system for mathematical expressions.

The recognition system combines segmentation and recognition of characters
to remedy difficulties in structural analysis due to irregular symbol position and
size. The rewriting puts symbols into extendable symbols and non-extendable
ones. The former can be extended to form other symbols by adding more strokes,
while the latter cannot. For example, F can be extended into E. When a stroke is
classified as non-extendable, the classification result is rewritten by the computer
in the drawing area using a predefined prototype. If a stroke is classified as an
extendable character, the system waits for the next strokes. The classification
result is written automatically if a predetermined time interval has elapsed or the
expected number of strokes is reached.

3.2.4 MathJournal

Wenzel and Dillner [26] describe another system, MathJournal. The interface is
very similar to Microsoft’s Journal program which is included in the operating
system, (see Figure 3.3). The recognition capabilities of this program are simi-
lar to the ones of MathJournal. It operates as a normal pocket calculator, the
operations are done after recognizing a handwritten arithmetical expression.

MathJournal uses the recognizer integrated in the operating system for the
classification of isolated handwritten characters. Although it is possible to rec-
ognize special mathematical symbols and constants, they are limited to the ones
recognized by the Microsoft API.

Relevant aspects of this system are its ‘solution engines’. They process the
recognized expressions in numeric, graphic, or symbolic formats. Diagrams, such
as function tables, are processed and plotted by using curly braces and arrows

13

3 State-of-the-art

as gestures. Similar gestures are used for the solution of equation systems or for
plotting functions.

Figure 3.3 MathJournal.

3.2.5 MathPad

MathPad [12] is a system for the creation and exploration of mathematical sketches.
The main objective in this user interface is to facilitate the user-editor interaction
using sketches.

A set of gestures is used to interact with the recognition and processing engine
included in the system. The basic interaction is the drawing of a lasso gesture fol-
lowed by a tap. This action requests the system to recognize the selected strokes.
It is used also for the association of variables and stroke grouping. Drawing the
equals sign followed by a tap or by the minus sign allows the solution of equations
or factorization of expressions. Other gestures are used for deletion of ink, asso-
ciation of recognized expressions, and angle association, (see Figure 3.4, show the
different gestures used in MathPad).

The system is writer-dependent to guarantee a more accurate symbol recog-
nition. Handwriting is recognized using hybrid recognizer. First, a dynamic
classifier which calculates the similarity with prototypes is combined with a sta-
tistical classifier, to obtain information to use once again dynamic programming
for the fine classification.

3.2.6 PenCalc Project

PenCalc is a handwriting-based calculator program that can recognize handwrit-
ten mathematical expressions and perform calculations accordingly [3]. Recogni-
tion is limited to simple mathematical expressions, (see Figure 3.5).

14

3.2 Existing Applications

Figure 3.4 MathPad.

Figure 3.5 PenCalc Project.

3.2.7 MathForEngine

MathFor is a set of Java libraries recognizing mathematical notation from digital-
ink documents [24].

15

4 Notes on Our System
(Previous Work)

The presented method for on-line mathematical formulae recognition is based on
the structural construction paradigm and two-dimensional grammar as presented
in [20]. We use a kind of 2D grammar to express spatial relations among elemen-
tary mathematical symbols, and a parsing that ensures we obtain a syntactically
correct 2D structure. The segmentation and resolution of ambiguities that can
arise during symbol recognition are fully driven by the parsing algorithm. This
is one of the main achievements and the main difference compared to other ex-
isting methods. Our elementary symbol detection phase searches for each group
of strokes which can form an elementary symbol (we use OCR based on elastic
matching). It is done without any knowledge of the formula structure. The result
is a set of elementary symbol candidates where particular candidates can share
any number of strokes. The structural analysis phase takes these candidates and
decides which of them really represent a symbol in the written formula and deter-
mines mathematical relations among them. Parsing is polynomial in the number
of strokes and thus makes it possible to have a responsive implementation. Details
on the method are described in [19].

So far, the system supported only few simple mathematical constructs as: bi-
nary operations, power to operator, squares, fractions and subscripts. Moreover,
most of them were only supported in a limited way. In this thesis, I report
the grammar extensions we made to support a wide range of real mathematical
formulae, as well as new features implemented in the application. Our current ap-
proach can recognize functions, limits, derivatives, binomial coefficients, complex
numbers and more, see Chapter 6.

4.1 Formulae Recognition Task

The task of the formulae recognition is to produce a tree over elementary symbols
that represents the formula structure in the input sequence of strokes. An example
is shown in Figure 4.1.

Requirements for the used method are to be able to deal with the following
situations:

• Symbols touching vertically or horizontally.

• Symbols split into several components.

• Ambiguities.

• Misplaced symbols.

16

4.1 Formulae Recognition Task

Formulae

Power Fraction

a
1 2

2 b

-

+

Figure 4.1 An example of an input and its output of recognition.

2

I
,

2
T

√
3,

V 3

8

V − 3
,

8√
−3

Figure 4.2 Examples of some possible segmentation ambiguities. The pair under each
hand-written formula describes an expected interpretation followed by an incorrect
interpretation.

These cases can make the symbol segmentation hard, as it is demonstrated in
Figure 4.2. There are two recognition results bellow each image, the first one
obtained after the correct segmentation, while the second one after an incorrect
segmentation (the segmented symbols does not form a valid formulae in this
case). Figure 4.3 shows another examples causing difficulties for the recognition.
Case (a), illustrates a formula with touching. Case (b) split symbols. Case (c)
illustrates a fraction line and a minus sign represented by the same symbol, the

17

4 Notes on Our System (Previous Work)

meaning is being given by the context. And finally, case (d) shows and additional
symbol C included into the formula by a mistake. We requiere our method to
exclude such a misplaced symbol and recognize the formula composed of the other
symbols.

(a) (b)

(c) (d)

Figure 4.3 Examples of some cases we would like to handle.

4.2 Applied Method

The main ideas taken from the structural construction, which are followed in
the used approach, can be expressed in the following way: perform ‘rough seg-
mentation’ of the input sequence of strokes. For each possible elementary symbol
(terminal), find all occurrences of it and, based on the terminal occurences, let the
structural analysis decide, the structure of which formula fits the input sequence
of strokes best and how does the symbol segmentation looks like. Terminals are
detected using an OCR tool and a suitable strategy that chooses rectangular areas
of the input for evaluation. For example, up to five terminals can be detected in
the first formula in Figure 4.2 variables T and I, number 2 and a fraction line that
can be interpreted as a minus sign as well. Each of the occurrences is assigned
by a penalty (computed by the OCR tool) determining quality of the recongized
symbol. The terminals, represented by their boundind boxes, labels and penal-
ties, are processed by a grammar-based structural analysis. During a bottom-up
parsing process, bigger rectangular areas labeled by grammar non-terminals are
being derived, each derived area being assigned by a penalty again.

The used software consists of two independent layers. The first layer performs
the terminals detection, while the second one is responsible for the structural anal-

ysis. The used structural analysis is driven by a 2D grammar defining suported
mathematical formulae. The parsing algorithm is of a general nature and it can

18

4.2 Applied Method

1
2

3

symbol variable V number 6 fraction line minus sign square root
strokes 1 3 2 2 1, 2

Figure 4.4 Candidates find for a sequence of three strokes.

be used to recognize another types of structures but mathematical formulae if
supported by a proper grammar.

4.2.1 Elementary Symbols Detection

A stroke is a finite sequence s = ((x1, y1), . . . , (xk, yk)) where each xi, yi ∈ R.

Informally, a stroke is a sequence of points in a plane. Strokes data are usually
produced by tablets. Except coordinates, it is also possible to obtain information
on a pen pressure and time of creation, however, we do not use this in our method.
A sequence of strokes S = (s1, . . . , sn) forms an input to the recognition process.

The purpose of the elementary symbols detection phase is to detect candidates
for the formula elementary symbols. To suppress the large number of possibilities,
a strategy has been implemented where only some groups of strokes are evaluated
by an OCR tool for on-line character recognition. The strategy is based on the
assumptions that one stroke cannot be a part of two or more different symbols
and that a symbol is formed of at most 4 strokes. Moreover, we choose only
groups of neighboring strokes.

The used OCR tool is a modified existing application, freely available at [6]. It is
based on a simple extraction of features from the input sequence of strokes, which
allows to recognize symbols varying in size. The k-nearest neighbor classifier is
implemented to classify the extracted vectors.

We use labeled groups of strokes to represent results returned by the OCR tool:
V is the set of all symbol names learned by the tool, l corresponds the recognized
symbol, p expresses a reliability of the recognition (a lower value implies a bigger
similarity to learned patterns) and M is a record storing information on the
symbol’s base line, logical center and bounding box (its size and coordinates).

A labeled group of strokes over S and a set of labels V is a tuple (S ′, l, p, M)
where S ′ ⊆ S, l ∈ V , p ∈ R

+ is a penalty, M is a metrics record.

For each S ′, the tool returns up to 5 best matches. Furthermore, no result
where the penalty exceeds a global threshold constant is returned. Finally, we
can define a set of candidates C(S) containing all elements (S ′, li, pi, Mi) returned
by the OCR tool when it runs for each S ′ ∈ C1(S). A candidates example is
represented in Figure 4.4.

19

4 Notes on Our System (Previous Work)

4.2.2 Two-dimensional Grammars

A 2D co-ordinal grammar is a tuple G = (VT , VN , A0,P), where
• VT is a finite set of terminal symbols (terminals)
• VN is a finite set of non-terminal symbols (non-terminals)
• A0 ∈ VN is the starting non-terminal symbol (axiom)
• P is a finite set of 2D productions

Given a set of candidates C(S) and a 2D co-ordinal grammar (modelling math-
ematical constructs in this case), the task of the structural analysis is to incre-
mentally derive new labeled groups of strokes over S and VT ∪ VN . The result
is chosen among those derived elements (S ′, N, p, M) where N = A0. Details on
this will be given in Section 4.2.3. Informally, the goal is to minimize p and also
the number of points in S \ S ′.

I describe the form of productions in P and rules of how they are used to derive
new elements. There are two types of productions:
1. (N → l)
2. (N → A ⊕ B, σ, π, µ)
where
• N ∈ VN , l ∈ VT and A, B ∈ VT ∪ (VN \ {A0})
• σ : is a spatial constraint function

• π : is a penalty function

• µ : is a metrics record composition function

Let
R1 = (S1, l1, p1, M1) R2 = (S2, l2, p2, M2)

be labeled groups of strokes. A production of the first type is just a simple
renaming. If there is (N → l1) ∈ P, it is possible to derive (S1, N, p1, M1) from
R1. A production of the second type is used to derive a union of two elements:
(N → A ⊕ B, σ, π, µ) ∈ P can be applied on R1, R2 if

S1 ∩ S2 = ∅ ∧ l1 = A ∧ l2 = B ∧ σ(R1, R2) = true

The following labeled group of strokes is derived

R = (S1 ∪ S2, N, p1 + p2 + π(R1, R2), µ(M1, M2))

I give some details on σ and π we use in used implementation. Let box(S ′)
denote bounding box of a sequence of strokes S ′. For R1 and R2, production’s
spatial constraint evaluates mutual position of box(S1) and box(S2). First, a
rectangle C is computed which of size and position is relative to box(S1). And
second, it is checked whether some specific point of box(S2) (called a reference

point), determined based on M2, is contained in C. This is showed in Figure 4.5
which shows an example of R1 and R2. The reference point, denoted by F , is
required to be located in C.

A constraint can be quite general, we do not require the bounding boxes to
touch each other, they can overlap or even more, one bounding box can be in-
cluded in the other one, as it is used to model the spacial relations between square
roots and their arguments.

20

4.2 Applied Method

R

F

1
R2

C

Figure 4.5 Example of a spatial constraint evaluation. On the right, there is a
zoomed reference point F and constraining rectangle C. Related production is
(BinaryOperation → ExpressionFollowedByBinaryOperator ⊕ Expression, σ, π, µ).

π(S1, S2) is computed based on the distance between F and the center of C.
Let (f1, f2), resp. (c1, c2) be coordinates of F , resp. the center of C. Then

π(S1, S2) = w1 · |f1 − c1| + w2 · |f2 − c2|

where w1, w2 ∈ R are production dependent weight constants.
µ(M1, M2) computes a metrics record of the derived mathematical structure in

terms of M1 and M2.

4.2.3 Structural Analysis. Parsing Algorithm

This section describes the parsing algorithm used by the structural analysis phase:
Let G = (VT , VN , A0,P) be a 2D co-ordinal grammar and S = (s1, . . . , sn) an

input sequence of strokes.
1. Initialize a list L by all labeled groups of strokes found by the terminals detec-

tion phase, i.e. append all elements in C(S) to L.
2. For each (S ′, l, p, M) ∈ L and each (N → l) ∈ P, append (S ′, N, p, M) to L.
3. Iterate through elements in L, repeat the following procedure till the end of L

is reached.
Let R1 = (S1, l1, p1, M1) be the current element in L. For each production
(N → A ⊕ B, σ, π, µ) ∈ P where l1 = A, and each

R2 = (S2, l2, p2, M2)

such that
σ(R1, R2) = true ∧ S1 ∩ S2 = ∅ (4.1)

Let p = p1 + p2 + π(S1, S2). Check if L contains an element

R = (S1 ∪ S2, N, p, M)

for some p and M .
3.1 If R is found and p < p, append (S1 ∪ S2, N, p, µ(M1, M2)) to L and

remove R from L, otherwise do nothing.
3.2 If there is no R, append (S1 ∪ S2, N, p, µ(M1, M2)) to L.

21

4 Notes on Our System (Previous Work)

Handle analogously the case l1 = B.
4. Compute a list L1 such that

L1 =

(S ′, A0, p +
∑

s∈S\S′

|s|, M) | (S ′, A0, p, M) ∈ L

Among elements in L1, find that one with the lowest penalty and return it as
the result.
To have the description readable, I have omitted implementation specific details

speeding-up the algorithm:
To search for R2 in step 3 effectively, we use a data structure storing points

in a plane, supporting to query for all points located inside a given rectangle.
About the orthogonal range searching is spoken in [5]. A query is processed in
time O(log n), where n is the number of stored points.

In the implementation, we have extended the condition (1) in step 3 to be
more restrictive. In addition to (1), when the applied production does not model
a relation where box(S1) can be located inside box(S2) (like e.g. a square root
argument can), or vice versa, it is required that there is not any stroke s ∈
S \{S1 ∪ S2} which of all points are located inside box(S1∪S2). This requirement
substantially reduces the number of derived labeled groups of strokes, on the other
hand, it still preserves the correctness of the structural analysis.

During the algorithm, whenever a new labeled group of strokes is appended
to L, information on the production and groups of strokes used to derive it is
recorded. This helps to construct the resulting derivation tree.

22

5 Mathematical Notation and
Extension of 2D Grammar

There are several typical ambiguities in mathematical notation which have to
be taken care of. Following paragraphs give a survey of them together with our
proposed approach leading to correct recognition.

5.1 Mathematical Notation: Characteristics and

Problems

Mathematical notation is a kind of two-dimensional notation which helps mathe-
maticians to communicate and visualize concepts and ideas. Although the nota-
tion is a language used in many areas of science, no formal definition in terms of
syntax and semantics as a two-dimensional language exists.

In a mathematical expression, characters and symbols can be spatially arranged
as a complex two-dimensional structure, possibly of different character and symbol
sizes. All the characters and symbols, when grouped properly, form an internal
hierarchical structure. However, proper grouping of symbols in a mathematical
expression is not trivial. Firstly, there are two types of symbols. One type
includes all basic symbols and the other includes binding, fence and operator
symbols. Each type of symbols has its own grouping criteria. Secondly, there
are also two types of operators, namely, explicit and implicit operators. Explicit
operators are represented by operator symbols while implicit operators by spatial
operators. Thirdly, some symbols may represent different meanings in different
contexts. These properties together make their recognition process very difficult
even when all the individual characters and symbols can be recognized correctly.

5.1.1 Grouping symbols

Obviously every symbol has its own individual meaning. However, in a mathemat-
ical expression, sometimes there is a need for grouping some adjoining symbols
together to represent another meaning. For example, the digits 2, 6 and 3 have
their own meaning as digits, but if they are of the same size and lie in the same
line, they can represent the integer value 263. By varying size and location they
can also represent 263 or 263. Similarly, we can group some letters to represent
function names, like ‘log’ or ‘cos’. The following are some general rules:

1. Digits together usually form a unit when they are of the same size, adjacent to
each other, and written on the same horizontal line.

23

5 Mathematical Notation and Extension of 2D Grammar

2. Some letters together may form a unit. Before considering a group of letters as
a concatenation of variables representing their multiplicative product, we have
to first check whether they together form a function name.

3. Symbols other than letters and digits should be considered as separate units.

5.1.2 Determining relationships among symbols

The presence of some symbols in a mathematical expression may invoke some
special grouping methods. The following are three types of such symbols:

1. Some fence symbols, such as parentheses, group the enclosed units into one
single unit. For example, (a + b) is a unit which holds the sum of a and b.

2. Some binding symbols, like fraction line,
√

and
∑

dominate their neighbor-
ing expressions. For example, in

∑10
i=1 i, the subexpressions 10, i = 1, and i

are bound to the symbol
∑

which together give meaning to the expression as
the sum of 1, 2, . . . , 10. However, deciding proper relationships among bind-
ing symbols and their neighboring subexpressions becomes non-trivial in some

nested expressions, like:
∑10

i=1
i

a+b
and

P

10

i=1
i

a+b

3. The ideas of operator precedence and operator dominance can also be used
for grouping units. For example, in a + b

c
, the meaning becomes (a+b)

c
if

dominates + in this case.

5.1.3 Explicit and implicit operators

Explicit operators are operator symbols. When consecutive operator symbols ex-
ist in an expression, we can apply operator precedence rules to group the symbols
into units. However, when those operator symbols are not lined up, we have to
use the concept of operator dominance. For example, in a + b

c
, the meaning is

a + b
c

due to the fact that the operator + dominates , when and + share

the same baseline. However, in a+b
c

, the meaning becomes (a+b)
c

since domi-
nates +, because + is above in this case. In some mathematical expressions,
there are also implicit operators. Implicit operators (also called spatial operators)
determine the relationships between symbols simply by their relative positions.
For example, in a−2, −2 is the superscript representing the inverse square of a.
However, in a−2, −2 is the subscript of a representing only a variable name, and
moreover a − 2 can be also be used to represent the subtraction of a and 2.

5.1.4 Context-sensitive roles

Some symbols in mathematical expressions may play different roles in different
context. Here are some examples:

1. A dot in an expression can be a decimal point or a multiplication operator
depending on the position of the dot and its neighboring symbols.

2. A horizontal line may be a fraction line or a minus sign depending on the length
of the line and whether there are symbols above and below the line.

24

5.2 Our Approach for Extension of 2D Grammars

3. The same group of characters can sometimes have different meanings in different
contexts. For example, dx is a part of the integral notation in

∫

x2dx but it
represents the multiplication of d and x in dx + py.

In addition, mathematical notation is not completely standardized and many
dialects are used by scientists. Some authors try to describe mathematical no-
tation [10] for solving problems of typesetting and for automatic processing of
mathematical notation [11]. However, similar to natural languages, it is nearly
impossible to design a universal grammar to cover all the dialects. As a result,
almost all systems are based on a subset of the mathematical notation only. Ad-
ditionally, irregular handwriting aggravates the ambiguities described before and
makes it harder to group symbols and to distinguish relations among them. It
results in layout problems affecting the recognition of the whole expression.

Our goal is to develop a grammar which would be used to recognize without
difficulties, in real time and with a suitable user’s interface complex mathematical
expressions like

6
∑

m=−6
m6=0

lim
n→∞

∫ en

0

(cos(xn) − xn
m) dx. (5.1)

Figure 1.1 shows this formula written by hand as an input to the system and the
related recognition result in a printed form.

5.2 Our Approach for Extension of 2D Grammars

The fact that the subject of recognition is a mathematical formula is not used
in any special way to aid in its recognition. Indeed, the parsing algorithm would
work well for any handwritten inputs exhibiting some implicit structure. A good
example could be musical scores or electronic circuits. However, if a syntactic
or semantic meaning is to be given to symbols, knowledge of the structure of
mathematics must be incorporated into the recognition algorithm. Inspiration
for this task may be drawn from typesetting languages, since they were designed
with the specific intent of formalizing the relationships that appear on printed
pages. Additionally, having a structure based on a typesetting language makes it
easier to generate output for existing typesetters.

5.2.1 Two-dimensional Grammar

In this section we give details on how to use 2D grammars formally defined in
Section 4.2.2. Many of the ambiguities commented in Section 5.1 can be avoided
by ensuring that the input is be parsed using a two-dimensional grammar. In
this grammar, each basic mathematical construct is modelled by a production
type reflecting spatial relationship among construct’s components. The types can
be combined with one another to produce more complex formulae. The spatial
relationship between any two ‘bounding boxes’ of symbols is classified as one of
6 qualitative types: in/out, up/down, left/right, upper left/lower right, upper
right/lower left, or identical.

25

5 Mathematical Notation and Extension of 2D Grammar

The context of a symbol can be then used to determine which character it
represents. For example, the characters − and ‘conjugate sign’ both use the same
symbol. However, within the framework of this grammar, a ‘conjugate sign’ needs
to have a simple character below it, while a − may not. These two characters
can then be easily distinguished in an expression such as

∑n

i=1 (xi − x). Some
characters can be easily confused with others of the same grammar type such as
the characters O and 0. In this case, the grammar is unable to disambiguate the
interpretation since they are both simple characters.

We will illustrate the mechanism behind our grammar productions through
some examples.

General schemes of our fundamental production types are shown in Figure 5.1.

A N⇒ A B N⇒

(a) (b)

A

B
N⇒ A

B
N⇒

(c) (d)

A
B

N⇒ A
B

N⇒

(e) (f)

Figure 5.1 Fundamental production types.

(a) N −→ A
To redefine terminals or non-terminals.
example: ‘ x ’,

Variable -> [x]

Term -> Variable

Expr -> Term

Formulae -> Expr

(b) N −→ A|B
To define left/right relationship (A B).
example: ‘ x, y, z ’,

SeqTerms -> Seq|Term

Seq -> Term|CommaD

Seq -> Seq|Seq

26

5.2 Our Approach for Extension of 2D Grammars

(c) N −→ A
B

To define up/down relationship.
example: ‘ x

y
’,

Fract -> Expr/LowerFract*

LowerFract -> Line*/Expr

(d) N −→ A%B
To define in/out relationship.
example: ‘

√
x ’,

Sqart -> SqrtSign%Expr

(e) N −→ A ˆB
To define superscript relationship.
example: ‘ xy ’,
Power -> Term^Expr

(f) N −→ A B
To define subscript relationship.
example: ‘ xy ’,
Subscript -> Variable_Variable

To represent our two-dimensional grammar in a text file, we use the following
format and notations:

1. Terminals are in square brackets and non-terminals without brackets.
2. New relations between terminals are redefined by ‘->’.

3. The productions follow one after another, as a list, without any termination
sign.

4. The first line contains the name of the initial non-terminal, in our case, it is
‘Formulae’.

5. Sign ‘*’ is used to indicate the expression dominance in top/bottom relation-
ships (i.e. to set the baseline of a fraction).

6. It is possible to add line comments, each comment is preceded by ‘//’.

Using the given 6 types of productions, we can express all common cases of con-
structs that appear in mathematical formulae. Combining these general forms
in the right way and creating new grammar productions leads to grammar ex-
tensions that help us to recognize more mathematical constructs. For example,
we have extended Sum to be able to recognize a sequence of sums or sums with
several conditions, see Figure 5.2.

Sum->SumExpr|Expr

Sum->SumSimple|Expr

Sum->SumSign|Expr

Sum->SeqSum

SumExpr->Expr/LowerSumPart*

LowerSumPart->SumSign*/Formulae

SumSimple->SumSign*/Formulae

SeqSum->SeqSumExpr|Expr

SeqSum->SeqSumSimple|Expr

SeqSum->SeqSumSign|Expr

27

5 Mathematical Notation and Extension of 2D Grammar

SeqSumExpr->SumExpr|SeqSumExpr

SeqSumExpr->SumExpr|SumExpr

SeqSumSimple->SumSimple|SeqSumSimple

SeqSumSimple->SumSimple|SumSimple

SeqSumSign->SumSign|SeqSumSign

SeqSumSign->SumSign|SumSign

Figure 5.2 Productions related to Sum extensions.

We make use of precedence productions together with the sign dominance [*]
to group the symbols into units.
The parsing is done with a bottom-up approach. We can demonstrate this on an
example. Let us consider formula 2∗x+1. Assuming that all elementary symbols
are successfully detected by OCR tool, the parsing proceeds as follows: [∗] and
[x] are combined into ∗x as a new subgroup, further, this subgroup is extended
to 2 ∗ x. Then, [+], [1] are combined into +1, and finally, both these groups form
2 ∗ x + 1. See the right-hand part of Figure 5.3 for an illustration of the parsing
process in the diagram tree.

The presence of brackets, fraction lines, square root signs and other similar
mathematical constructs helps us to group units of symbols to larger units as a
result of their relationships. For example, in

lim
n→∞

1 + n

limn→∞ 1 is recognized as a Limit and grouped together with +n in a Binary-

Operation.
On the other hand, in

lim
n→∞

(1 + n)

1 + n is recognized as a unit grouped from an Expr and LimExpr, Limit.

5.2.2 Implementation Details

The application is implemented in Java, using NetBeans IDE. Grammar definition
is stored in one text file having .gram extension. We have also implemented
support in NetBeans that identifies files of this extension and provides basic

28

5.2 Our Approach for Extension of 2D Grammars

Figure 5.3 Example of structural analysis.

syntax coloring for them in editor. With this coloring support, we have developed
a more natural programming style of productions creation. Our grammar is highly
comprehensible by any interpret and very efficient from the implementation point
of view. The productions are extremely simple as is apparent from the previous
snippet of the grammar file.

As for the OCR part, we should emphasize that our system is not limited to a
single user. Instead of being invariant to different users’ writing styles, we have
developed a user adaptive system. By simply selecting the user, the training
data to this particular user is applied. This data is collected using a digitalizing
tablet or a mouse in a custom application called OCR Training (see Figure 5.4).
It contains a dictionary of supported elementary symbols. A user writes up to
8 etalons per each of the symbols and produces OCR data file which can be
identified and used by the recognition application.

5.2.3 Graphical User Interface

We have developed a comfortable graphical interface. The user can select his
personal handwriting style and write mathematical formulae on a grid or plain
screen. The system collects the strokes data from a mouse, an electronic-pen, or
a tablet, sends the data to the Formulae Recognizer engine, and finally displays
results in two forms. Firstly, there is a detailed derivation tree, and secondly, the
result is visualized as an image of the recognized expression, typeset in a printed
form.

The user interface allow to browse formulae images, run the recongition on them
and display results. Except the results, the interface also provides information
helping to undersand and tune the process of structural analysis. The system
also allows to enter and evaluate queries on the mentioned derivation trees - the

29

5 Mathematical Notation and Extension of 2D Grammar

Figure 5.4 OCR-Training.

user can query for derived groups of strokes labelled by a specific non-terminal,
penalties of related derivations, etc. This helps us to understand and tune the
process of the structural analysis. A screenshot of the application is shown in
Figure 5.5.

Figure 5.5 Screenshot from the user application.

30

6 Results

We have developed a grammar for our software that recognizes difficult expres-
sions as we proposed in Expression 5.1. It is possible to recognize functions, limits,
derivatives, vectors, complex numbers, binomial coefficients, etc. Figures 6.1, 6.2
and 6.3 show a list of examples which are successfully recognized.

On the other hand, Figure 6.4 contains some examples which sometimes fail
to be recognized. Occasional incorrect formulae recognition is due to erroneous
grouping, (see (a)) or interpretation of ambiguously placed boxes, (see (b)) or
incorrect segmentation caused by overlaps, (see (c)) or misplaced symbols, (see
(d)). Recognition is still limited to a mathematical statement written in a single
line as the input, (see (e)).

In terms of time complexity, the speed of the recognition depends on the number
of input strokes, ranging from 0.5 seconds for easy formulae up to 6 seconds for
complex ones, (see Figure 6.1(d) as an example of complex expression in number
of strokes and see Figure 6.2(h) as an easy one). The time complexity of parsing is
polynomial. This is demostrated in Figure 6.5 and in Figure 6.6. First one shows
the times for testing formulas of the form ‘a−a−a−a. . .−a’ and the second one
shows the times for different complex formulas. Compared to general exponencial
time complexity, the expected time is lower because the algorithm does not process
all possibilities, only evaluates some groups of strokes. An increase of the number
of productions, i.e. an increase of strokes, (see Figure 6.8), leads to increase of
the time of recognition, as shown in Figure 6.7. However there are exception.
Some expressions with less productions take more time to be recognized beacouse
of time spent on grouping symbols or determining relationships.

Comparing to the original pilot study, there is an increase in time, however, this
increase is approximately proportional to the increase in the number of grammar
productions. This is consistent with expectations. To achieve a really responsive
system, it would require to make the recognition faster (about 10 times). We plan
to rewrite our application in C++, this should result in such an improvement.

31

6 Results

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.1 Several examples of formulae that are successfully recognized.

32

(g)

(h)

(i)

(j)

(k)

(l)

Figure 6.2 Several examples of formulae that are successfully recognized.
33

6 Results

(m)

(n)

(o)

(p)

(q)

(r)

Figure 6.3 Several examples of formulae that are successfully recognized.

34

(a)

(b)

(c)

(d)

Figure 6.4 Examples of formulae which sometimes fail to be recognized.

35

6 Results

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

strokes

tim
e

Figure 6.5 Strokes-Time complexity. Testing formulas of the form ‘a−a−a−a. . .−a’.

5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

strokes

tim
e

Figure 6.6 Strokes-Time complexity for different complex formulas.

36

0 20 40 60 80 100 120 140 160 180
0.5

1

1.5

2

2.5

3

3.5

productions

tim
e

Figure 6.7 Productions-Time complexity for different complex formulas.

0 20 40 60 80 100 120 140 160 180
5

10

15

20

25

30

35

40

45

50

productions

st
ro

ke
s

Figure 6.8 Productions-Strokes for different complex formulas.

37

7 Discussion

If we check our system for the common problems of mathematical notation com-
mented in Section 5.1 we see that all those rules are reflected in the grammar.

To represent a product we require to draw a multiplicative sign, [∗], e.g. cos x∗
cos y like in Figure 6.1(b). It helps to group symbols to form function names
(when possible) rather than a multiplicative product of particular variables. This
representation also avoids confusion among groups of characters with different
meanings like, for example,

∫

x2dx and d ∗ x + p ∗ y (see Figure 6.2(l)). On the
other hand, we are able to recognize a concatenation of variables around π as an
expression of a multiplicative product without the need to write ∗, which reduces
the writing, e.g. cos(2πft), (see Figures 6.2(j), 6.3(m)).

In addition, our requirements on the proposed method (to be able to deal touch-
ing symbols, symbols split into several components, ambiguities, and misplaced
symbols) have been managed (see Figures 6.1(f), 6.3(r)).

However, from time to time, there are problems to recognize ‘ln’ as a function,
since it is confused as subscript ln, (see Figures 6.2(g), 6.4(b)). This problem can
be solved by adjusting internal penalties for deriving the subscript variant. We
are working on it.

With our set of productions, our current system is able to recognize common
forms like fractions, radicals, binary operations, summations, integrals super and
superscripts, functions, binomial coefficients, limits, vectors, complex numbers,
i.e. a wide range of mathematical expressions, (see Chapter 6). Although the set of
recognized symbols is still limited, most of the input formulae can be successfully
recognized. Another limitation is that the system assumes the that expression to
be parsed is a single line mathematical statement. So, if the user decides to draw
two lines of mathematics, the system will attempt to find a subexpression in one
of the lines best fits the input, however meaningless it may be.

38

8 Conclusions and Future Work

I have contributed to the problematic of the on-line mathematical formulae recog-
nition by an extension of the application to be able to cope with more realistic
formulae.

Parsing complex expressions is the area of interest of many researchers and
there is a variety of systems that can interpret simple expressions. We proposed
and demonstrated a system which incorporates the use of symbol baselines into
the parsing algorithm allowing us to interpret even complex expressions.

In this thesis, I have showed that the method of structural construction can be
applied for on-line mathematical formulae recognition. It helps to solve many seg-
mentation problems that occur in handwritten formulae. The main contribution
to the area of formulae recognition by the system are the following achievements:
• Elementary symbols detection of a sequence of strokes is done during structural

analysis (then, no error corrections are needed). We take advantage of the rich
formula structure which allows this approach. It is sufficient to evalutate groups
of strokes.

• Structural analysis is robut. It is penalty oriented and searches for the for-
mula structure that best matches the input sequence of strokes. It can deal
with symbols touching, symbols split into several components and including
ambiguities.

• The designed 2D co-ordinal grammar allows to recognize usual mathematical
symbols and constructs. It is powerful enough to express the formulae structure.
It can be also effectively parsed (thanks to constraints defined via rectangles
and the usage of data strucutres for orthogonal range searching).

Moreover, the symbol recognition algorithm is naturally sensitive to variations in
writing, our system achieves to solve it with a user adaptative system, adjusting
symbol models to particular users.

The conclusions on time complexity are based on experimental results. There is
not an exact formula since it depend on many factors, including the number of the
symbols detected. Part of the computational time is due to parsing and depends
more on the formula complexity than on the implementation. The expected time
is based on a polynomial complexity parsing instead of general exponential time.
It is lower because the algorithm does not process all the possibilities but only
evaluates some groups of strokes. There is an increase in time, however, this
increase is approximately proportional to the increase in the number of grammar
productions.

Single line formula detection, which is the most immediate limitation of the
current approach, could be extended to the detection of multiple lines in our fu-

39

8 Conclusions and Future Work

ture work. The future plans are also to solve the incorrect formulae recognition
due to erroneous grouping, or interpretation of ambiguously placed boxes, or in-
correct segmentation caused by overlaps, improveing or replacing the OCR tool
to achieve a higer OCR correctness rate, and find possibilties of how to learn and
tune constraints assigned to productions automatically (so far they have been
set manually). In addition, our future plans include improvements on the user
interface to fit more as a comercial system and rewrite into C++ what would
bring speed up.

The grammar itself could still be improved (extended) in order to recognize
more mathematical formulae pushing the application towards its real use by end-
users, e.g. mathematicians and physicists. However, I could conclude, that we
have implemented a truly useful and efficient system recognizing mathematical
handwriting formulae and have shown its performance on several examples in-
cluding those, that could not be recognized by the previous version of the system.

(The application is available at http://cmp.felk.cvut.cz/ qqperez/GallardoPerez-
TR-2009-03/OnLineExprs-Application.)

40

Bibliography

[1] Dorothea Blostein. The freehand formula entry system.
http://research.cs.queensu.ca/drl//ffes/, 2004.

[2] Richard G. Casey and Eric Lecolinet. A survey of methods and strategies
in character segmentation. IEEE Transactions on Pattern Analysis and Ma-

chine Inteligence., 18(7):690–706, 1996.

[3] K.F. Chan. Pencalc.
http://www.cse.ust.hk/pencalc/, 1999.

[4] Philip A. Chou and Gary E. Kopec. A stochastic attribute grammar model
of document production and its use in document image decoding. In First

International Workshop on Principles of Document Processing, pages 66–73,
1995.

[5] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
second edition, 2000.

[6] Christian Ensel. Pvmerlin, text and contact editor.
http://www.nm.ifi.lmu.de/ ensel/privat/pvmerlin, 2004.

[7] Yuko Eto and Masakazu Suzuki. Mathematical formula recognition using
virtual link network. International Conference on Document Analysis and

Recognition, 0:0762, 2001.

[8] Kam fai Chan and Dit yan Yeung. Mathematical expression recognition: a
survey. International Journal on Document Analysis and Recognition, 3:3–
15, 2000.

[9] Vojtech Franc and Václav Hlavác. License plate character segmentation usint
hidden markov chains. In Walter G. Kropatch, Robert Sablatnig, and Allan
Handbury, editors, DAGM 2005: Proceedings of the 27th DAGM Symposium,
volume 1 of LNCS, pages 385–392, Berlin, Germany, 2005. Springer-Verlag.

[10] Nicholas J. Higham. Handbook of writing for the mathematical sciences.
Society for Industrial and Applied Mathematics, 1st edition, 1993.

[11] Donald E. Knuth. Mathematical typography. j-BAMSN, 1:337–372, 1979.

[12] Joseph LaViola. Mathpad2.
http://www.cs.brown.edu/ jjl/mathpad/, 2003.

41

Bibliography

[13] Nicholas Matasakis. The natural log system.
http://www.ai.mit.edu/projects/natural-log/overview, 2003.

[14] Nicholas Matsakis. Recognition of handwritten mathematical expressions.
Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, May
1999.

[15] Shunji Mori, Ching Y. Suen, and Kazuhiko Yamamoto. Historical review
of ocr research and development. Document image analysis, pages 244–273,
1995.

[16] R. Narasimhan. Labeling schemata and synctactic descriptions of pictures.
Information and Control, 7(2):151–179, 1964.

[17] Loic Pottier. Mathematical formula recognition using graph grammar. In In

Proceedings of the SPIE, pages 44–52, 1998.

[18] Daniel Pr̊uša and Václav Hlaváč. Mathematical formulae recognition using
2d grammars. In Proceedings of the 9th International Conference on Docu-

ment Analysis and Recognition, volume II, pages 849–853, Curitiba, Brazil,
2007.

[19] Daniel Pr̊uša and Václav Hlaváč. Structural construction for on-line mathe-
matical formulae recognition. In CIARP, pages 317–324, 2008.

[20] Michail I. Schlesinger and Václav Hlaváč. Ten lectures on statistical and

structural pattern recognition, volume 24 of Computational Imaging and Vi-

sion. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

[21] Steve Smithies, Kevin Novins, and James Arvo. A handwriting-based equa-
tion editor. In Graphics Interface, pages 84–91, 1999.

[22] Masakazu Suzuki. Infty project.
http://www.inftyproject.org/en/index.html, 2003.

[23] Masakazu Suzuki, Fumikazu Tamari, Ryoji Fukuda, Seiichi Uchida, and
Toshihiro Kanahori. Infty: an integrated ocr system for mathematical doc-
uments. In DocEng ’03: Proceedings of the 2003 ACM symposium on Docu-

ment engineering, pages 95–104, New York, NY, USA, 2003. ACM.

[24] Ernesto Tapia. Mathfor.
http://mathfor.mi.fu-berlin.de/, 2002.

[25] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in online
handwriting recognition. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 12(8):787–808, 1990.

[26] xThink Corporation. Interactive journal for math.
http://www.xthink.com/mathjournal.html, 2003.

42

Bibliography

[27] Richard Zanibbi, Dorothea Blostein, and James R. Cordy. Recognizing math-
ematical expressions using tree transformation. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 24(11):1455–1467, 2002.

43

A Appendix:
Grammar File

Formulae

Formulae->Expr

Formulae->Equality

Formulae->Inequality

Formulae->Nequality

Expr->Term

Expr->SimpleSeqFormulaes

Expr->SeqFormulaes

Expr->BinaryOperation

Expr->Brackets()

Expr->Brackets()sqare

Expr->Brackets{}

Expr->Brackets<>

Expr->Fract

Expr->Power

Expr->Sqrt

Expr->PowerSqrt

Expr->PowerInverse

Expr->PowerDerivative

Expr->Sum

Expr->Prod

Expr->Integral

Expr->Function

Expr->PowerFunction

Expr->BinomialCoeff

Expr->PowerBinomialCoeff

Expr->Factorial

Expr->Limit

Expr->PiExpr

Expr->NegativeExpr

Expr->PositiveExpr

Expr->ComplexExpr

Expr->ComplexExprSimple

Expr->ConjugateExpr

Expr->DoubleExpr

44

Expr->ScalarProd

Expr->VectorialProd

Expr->AbsoluteValue

Expr->AbsoluteSqare

Expr->Module

Expr->ModuleSqare

Expr->Optimize

Term->Number

Term->Variable

Term->Subscript

Term->Vector

Term->Etc

Term->Infinity

SimpleSeqFormulaes->SimpleSeq|Formulae

SimpleSeq->Formulae_CommaD

SeqFormulaes->Seq|Formulae

Seq->Formulae_CommaD

Seq->Seq|Seq

Argument->Term

Argument->Brackets

Argument->Fract

Argument->Power

Argument->Sqrt

Argument->PiExpr

BinaryOperation->Expr|OpExpr

OpExpr->BinaryOperator|Expr

Brackets->Brackets()

Brackets->Brackets()sqare

Brackets->Brackets{}

Brackets()->Left(|Br()Expr

Br()Expr->Formulae|Right)

Brackets()sqare->Left(sqare|Br()sqareExpr

Br()sqareExpr->Formulae|Right)sqare

Brackets{}->Left{|Br{}Expr

Br{}Expr->Formulae|Right}

Brackets<>->Left<|Br<>Expr

Br<>Expr->SimpleSeqFormulaes|Right>

Fract->Expr/LowerFract*

LowerFract->Line*/Expr

45

A Appendix: Grammar File

Sqrt->SqrtSign%Expr

Power->Term^Expr

Power->Brackets^Expr

PowerInverse->Term^InverseSign

PowerInverse->Brackets^InverseSign

PowerSqrt->Expr|Sqrt

PowerDerivative->Term^DerivativeSign

PowerDerivative->Brackets^DerivativeSign

PowerFunction->Power|Brackets

PowerFunction->PowerFunctionPart|Argument

PowerFunctionPart->NamedFunctionName^Expr

PowerFunction->PowerInverse|Brackets

PowerFunctionPart->NamedFunctionName^InverseSign

PowerFunction->PowerDerivative|Brackets

PowerFunctionPart->NamedFunctionName^DerivativeSign

PowerBinomialCoeff->BinomialCoeff^Expr

NegativeExpr->[-]|Expr

PositiveExpr->[+]|Expr

ConjugateExpr->ConjugateSign/Expr*

ComplexExpr->RealPart|ImaginaryPart

RealPart->Term|BinaryOperator

ImaginaryPart->ComplexExprSimple

ComplexExprSimple->ComplexSign|Expr

ComplexExprSimple->Expr|ComplexSign

DoubleExpr->BinaryOperatorDouble|Expr

BinomialCoeff->Left(|BrBiExpr

BrBiExpr->BiExpr|Right)

BiExpr->Expr/Expr

Factorial->Expr|[!]

Sum->SumExpr|Expr

Sum->SumSimple|Expr

Sum->SumSign|Expr

Sum->SeqSum

SumExpr->Expr/LowerSumPart*

LowerSumPart->SumSign*/Expr

LowerSumPart->SumSign*/Equality

LowerSumPart->SumSign*/Inequality

46

LowerSumPart->SumSign*/Equalities&Inequalities

Equalities&Inequalities->Equalities

Equalities&Inequalities->Inequalities

Equalities&Inequalities->Nequalities

Equalities&Inequalities->Equality*/Nequality

Equalities&Inequalities->Nequality*/Equality

Equalities&Inequalities->Nequality*/Inequality

Equalities&Inequalities->Inequality*/Nequality

Equalities&Inequalities->Inequality*/Equality

Equalities&Inequalities->Equality*/Inequality

Equalities&Inequalities->Equality*/Equalities&Inequalities

Equalities&Inequalities->Inequality*/Equalities&Inequalities

Equalities&Inequalities->Nequality*/Equalites&Inequalities

Equalities&Inequalities->Equalites&Inequalities*/Equality

Equalities&Inequalities->Equalities&Inequalities*/Inequality

Equalities&Inequalities->Equalites&Inequalities*/Nequality

Equalities->Equality*/Equality

Equalities->Equalities*/Equality

Nequalities->Nequality*/Nequality

Nequalities->Nequalities*/Nequality

Inequalities->Inequality*/Inequality

Inequalities->Inequalities*/Inequality

Equalities&Inequalities->Equalites&Inequalities*/Equalites&Inequalities

SumSimple->SumSign*/Expr

SumSimple->SumSign*/Inequality

SumSimple->SumSign*/Equalities&Inequalities

SeqSum->SeqSumExpr|Expr

SeqSum->SeqSumSimple|Expr

SeqSum->SeqSumSign|Expr

SeqSumExpr->SeqSumExpr|SumExpr

SeqSumExpr->SumExpr|SumExpr

SeqSumSimple->SeqSumSimple|SumSimple

SeqSumSimple->SumSimple|SumSimple

SeqSumSign->SeqSumSign|SumSign

SeqSumSign->SumSign|SumSign

Prod->ProdExpr|Expr

Prod->ProdSimple|Expr

ProdExpr->Expr/LowerProdPart*

LowerProdPart->ProductSign*/Equality

LowerProdPart->ProductSign*/Inequality

ProdSimple->ProductSign*/Variable

ProdSimple->ProductSign*/Inequality

ProdSimple->ProductSign*/Equalities&Inequalities

Integral->IntPart|IntExpr

47

A Appendix: Grammar File

Integral->IntSign|IntExpr

Integral->SeqIntegral

IntPart->Expr/LowerIntPart*

IntPart->IntSign*/Expr

LowerIntPart->IntSign*/Expr

IntExpr->Expr|IntSuffix

IntExpr->IntSuffix

SeqIntegral->SeqIntPart|SeqIntExpr

SeqIntegral->SeqIntSign|SeqIntExpr

SeqIntPart->SeqIntPart|IntPart

SeqIntPart->IntPart|IntPart

SeqIntPart->Expr/LowerSeqIntPart*

LowerSeqIntPart->SeqIntSign*/Expr

SeqIntPart->SeqIntSign*/Expr

SeqIntExpr->SeqIntExpr|IntExpr

SeqIntExpr->IntExpr|IntExpr

SeqIntExpr->Expr|SeqIntSuffix

SeqIntExpr->SeqIntSuffix

SeqIntSuffix->SeqIntSuffix|IntSuffix

SeqIntSuffix->IntSuffix|IntSuffix

SeqIntSign->SeqIntSign|IntSign

SeqIntSign->IntSign|IntSign

SeqIntSign->2IntSign

SeqIntSign->3IntSign

IntSuffix->[d]|Variable

Limit->LimExpr|Expr

LimExpr->LimSign*/TendTo

LimExpr->LimSign

TendTo->Expr|TendToPart

TendToPart->Arrow|Expr

Exp->[e]^Expr

Exp->[e]

Function->Variable|Brackets

Function->Subscript|Brackets

Function->NamedFunction

Equality->Expr|EqualsPart

EqualsPart->Equals|Formulae

Nequality->Expr|NequalsPart

NequalsPart->Nequals|Formulae

Inequality->Expr|InequalsPart

48

InequalsPart->Inequals|Formulae

Inequals->GreaterSign

Inequals->LowerSign

Inequals->GreaterOrEqualSign

Inequals->LowerOrEqualSign

Inequals->GreaterSign|GreaterSign

Inequals->LowerSign|LowerSign

Vector->Arrow/Variable*

Vector->Arrow/Subscript*

Vector->UnitaryVector

UnitaryVector->UnitaryVectorSign/Variable*

UnitaryVector->UnitaryVectorSign/Subscript*

ScalarProd->Vector|ScalarProdExpr

ScalarProdexpr->ScalarOperator|Vector

ScalarProd->Brackets<>

VectorialProd->Vector|VectorialProdExpr

VectorialProdExpr->VectorialOperator|Vector

ScalarOperator->[Sop]

VectorialOperator->[Vop]

Subscript->Variable_Number

Subscript->Variable_Variable

Subscript->Variable_DoubleTerm

Subscript->Variable_Subscript

Subscript->Variable_BinaryOperation

Subscript->Variable_Brackets

Subscript->Variable_NegativeSubscript

NegativeSubscript->[-]|Number

NegativeSubscript->[-]|Variable

NegativeSubscript->[-]|DoubleTerm

NegativeSubscript->[-]|Subscript

NegativeSubscript->[-]|Brackets()

DoubleTerm->Variable|Variable

DoubleTerm->Variable|Number

DoubleTerm->Number|Variable

AbsoluteValue->absSign|AbsoluteExpr

AbsoluteExpr->Expr|[pole]

AbsoluteSqare->AbsoluteValue^[2]

absSign->[pole]

Module->modSign|ModuleExpr

ModuleExpr->Expr|modSign

modSign->[pole]|[pole]

ModuleSqare->Module^[2]

49

A Appendix: Grammar File

Optimize->minExpr|Expr

minExpr->min*/Expr

minExpr->argmin*/Expr

minExpr->min

minExpr->argmin

Optimize->MaxExpr|Expr

MaxExpr->Max*/Expr

MaxExpr->argmax*/Expr

MaxExpr->Max

MaxExpr->argmax

LogBase->Log_Number

LogBase->Log

NamedFunction->NamedFunctionName|Argument

NamedFunction->Exp

NamedFunctionName->Cos

NamedFunctionName->Sin

NamedFunctionName->Tan

NamedFunctionName->arcos

NamedFunctionName->arsin

NamedFunctionName->artag

NamedFunctionName->Cosh

NamedFunctionName->Cot

NamedFunctionName->Coth

NamedFunctionName->Ln

NamedFunctionName->LogBase

NamedFunctionName->Err

NamedFunctionName->arg

NamedFunctionName->min

NamedFunctionName->Max

NamedFunctionName->argmin

NamedFunctionName->argmax

NamedFunctionName->mod

NamedFunctionName->abs

NamedFunctionName->det

Cos->[c]|Str_os

Str_os->[o]|[s]

Sin->[s]|Str_in

Str_in->[i]|[n]

Tan->[t]|Str_an

Str_an->[a]|[n]

arccos->Str_arc|Cos

arcsin->Str_arc|Sin

50

arctan->Str_arc|Tan

Str_arc->[a]|Str_rc

Str_rc->[r]|[c]

Ln->[l]|[n]

Log->[l]|Str_og

Str_og->[o]|[g]

Err->[e]|Str_rr

Str_rr->[r]|[r]

arg->[a]|Str_rg

Str_rg->[r]|[g]

min->[m]|Str_in

Max->[M]|Str_ax

Str_ax->[a]|[x]

argmin->arg|min

argmax->arg|Max

mod->[m]|Str_od

Str_od->[o]|[d]

abs->[a]|Str_bs

Str_rg->[b]|[s]

det->[d]|Str_et

Str_et->[e]|[t]

Lim->[l]|Str_im

Str_im->[i]|[m]

BinaryOperator->[+]

BinaryOperator->[-]

BinaryOperator->[*]

BinaryOperatorDouble->[+]/[-]

BinaryOperatorDouble->[-]/[+]

InverseSign->[-]|[1]

ComplexSign->[i]

ComplexSign->[j]

ConjugateSign->Line

DerivativeSign->CommaU

DerivativeSign->2CommasU

UnitaryVectorSign->[mod1]

Arrow->[->]

Line->[line]

Line->[-]

Equals->[=]

Nequals->[no=]

GreaterSign->[>]

51

A Appendix: Grammar File

GreaterOrEqualSign->[>=]

LowerSign->[<]

LowerOrEqualSign->[<=]

SumSign->[sum]

ProductSign->[prod]

IntSign->[int]

SqrtSign->[sqrt]

LimSign->[lim]

LimSign->Lim

Left(->[(]

Right)->[)]

Left(sqare->[(sqare]

Right)sqare->[)sqare]

Left{->[{]

Right}->[}]

Left<->[<]

Right>->[>]

PiExpr->Pi

PiExpr->Number|Pi

PiExpr->Variable|Pi

PiExpr->Pi|Variable

PiExpr->PiExpr|Variable

PiExpr->Pi|Subscript

PiExpr->PiExpr|Subscript

PiExpr->Pi|Brackets

PiExpr->PiExpr|Brackets

Pi->[pi]

Infinity->[infty]

Number->Digit

Number->Digit|Number

Number->DecimalNumber

DecimalNumber->DecimalExpr|Number

DecimalExpr->Number_Dot

DecimalExpr->Number^CommaU

CommaU->[’]

2CommasU->["]

CommaD->[,]

Dot->[.]

Etc->Dots|Dot

Dots->Dot|Dot

52

Digit->[0]

Digit->[1]

Digit->[2]

Digit->[3]

Digit->[4]

Digit->[5]

Digit->[6]

Digit->[7]

Digit->[8]

Digit->[9]

Variable->[a]

Variable->[b]

Variable->[c]

Variable->[d]

Variable->[e]

Variable->[f]

Variable->[g]

Variable->[h]

Variable->[i]

Variable->[j]

Variable->[k]

Variable->[l]

Variable->[m]

Variable->[n]

Variable->[o]

Variable->[p]

Variable->[q]

Variable->[r]

Variable->[s]

Variable->[t]

Variable->[u]

Variable->[v]

Variable->[w]

Variable->[x]

Variable->[y]

Variable->[z]

Variable->[A]

Variable->[B]

Variable->[D]

Variable->[E]

Variable->[F]

Variable->[G]

Variable->[H]

Variable->[I]

53

A Appendix: Grammar File

Variable->[J]

Variable->[K]

Variable->[M]

Variable->[N]

Variable->[P]

Variable->[Q]

Variable->[R]

Variable->[T]

Variable->[U]

Variable->[V]

Variable->[W]

Variable->[X]

Variable->[Y]

54

	Introduction
	Motivation
	Overview
	Thesis structure

	General Description of Formulae Recognition Process
	Structural Analysis
	Segmentation
	Recognition of Segmented Symbols

	State-of-the-art
	Overview
	Existing Applications
	The Natural Log System
	Freehand Formula Entry System
	Infty Editor
	MathJournal
	MathPad
	PenCalc Project
	MathForEngine

	Notes on Our System (Previous Work)
	Formulae Recognition Task
	Applied Method
	Elementary Symbols Detection
	Two-dimensional Grammars
	Structural Analysis. Parsing Algorithm

	Mathematical Notation and Extension of 2D Grammar
	Mathematical Notation: Characteristics and Problems
	Grouping symbols
	Determining relationships among symbols
	Explicit and implicit operators
	Context-sensitive roles

	Our Approach for Extension of 2D Grammars
	Two-dimensional Grammar
	Implementation Details
	Graphical User Interface

	Results
	Discussion
	Conclusions and Future Work
	Bibliography
	Appendix: Grammar File

