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CHAPTER 1

INTRODUCTION

1.1 Motivation

The measurement of winds and processes taking place in the atmosphere is a fun-

damental requirement in both research and operational meteorology. This project is

focused on the processes taking place in the lower troposphere called the atmospheric

boundary layer (ABL). The ABL is important meteorologically in terms of assessing

of convective instability. The entrainment zone at the top of the ABL acts as a lid

on rising (and cooling) air parcels due to the temperature inversion. An external

mechanism such as geographically forced uplift, vigorous surface heating or drylines,

can break the entrainment layer, allowing the capped air parcels to rise freely. As a

result, vigorous convection will begin producing severe thunderstorms.

ABL research and studies help (i) develop and improve existing numerical weather

prediction models, (ii) understand the transfer of hear, water vapor and momentum

between the Earth and the atmosphere, (iii) refine the analytical description of tur-

bulent processes and (iv) quantify the absorption and emission in the troposphere,

which is a major factor in shaping climate on Earth. The effect of the troposphere

on wave propagation has also been studied extensively for the purposes of improving

radio communications.

The main reason for the radar development is the need of continous monitoring of

the winds and fields in the atmosphere, improving the in-situ measurements. Conven-

tional radar profiler technologies usually are able to make atmospheric measurements
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of the boundary layer, but precluding the lower part of the ABL, (around 150 meters).

The Frequency Modulated Continuous Wave, Spaced Antenna (FMCW-SA) Radar,

that is being developed in University of Massachusetts - Amherst, at the Microwave

Sensing Laboratory (MIRSL), will allow measurements of the lower part of the ABL.

The use of FMCW radars is introduced in order to improved the limitations of

pulsed radars. Pulsed radars are limited by the pulse-width and switching speed

of the transmit-receive switches because of the use of a common antennas for both

functions. The pulsed nature of the radar dictates a high transmitter power, and

consequently the need for switches that are both faster and high powered. FMCW

radar alleviate this problem by using separate antennas for transmit and receive,

also being able to be used at short ranges. The problem in dual-antenna systems is

parallax at low altitudes due to the spatially separated antenna apertures, and some

uncertainty in the actual sampling volume.

The primary objective of this thesis, is to explain the previous results and the

problems encountered on the FMCW Wind Profiler Radar, and to provide a detailed

account of the work one in order to fix remaining issues. Several problems were

encountered on the radar’s receiver. Noise and leakage were still not allowing the

radar to achieve sensitivity enough to work properly. To solve it, the receiver was

modified. This thesis, provides a detailed account of modifications including a new

audio-module, modified FPGA and tests to report conclusions.
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1.2 Summary of Chapters

Chapter 2 gives a introduction to the atmospheric boundary layer, explains its

structure and characteristics followed by clear-air backscatter theory. After that the

principles of FMCW radars are explained. An overview of the FMCW Wind Profiler is

presented, and the initial configuration and previous results of the radar are explained

and commented.

Chapter 3 explains the design of the receiver, explaining all the changes to the

radar’s receiver design. After that, an introduction to active filter theory is pre-

sented, and the design of the audio module is depicted using the theory presented

before. Through all the design stages, simulations, relationships and explanations are

provided .

In chapter 4, the audio module is tested, and the results are presented. A expla-

nation of the DDS configuration process is also given, and then a modification of the

FPGA is detailed. Finally, chapter 5 contains a brief summary of the research work

presented here, and conclusions and recommendations for future work are drawn.
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CHAPTER 2

FMCW WIND PROFILER PRINCIPLES AND
OVERVIEW

2.1 FMCW Radar Principles

2.1.1 Atmospheric Boundary Layer

The boundary layer is the lowest 1-2 km of the atmosphere, the region most

directly influenced by the exchange of momentum, heat, and water vapor at the

earth’s surface. Turbulent motions on time scales of an hour or less dominate the flow

in this region, transporting atmospheric properties both horizontally and vertically

through its depth. The mean properties of the flow in this layer, the wind speed,

temperature, and humidity experience their sharpest gradients in the first 50-100

m, appropriately called the surface layer. Turbulent exchange in this shallow layer

controls the exchange of heat, mass, and momentum at the surface and thereby the

state of the whole boundary layer. It is hardly surprising we should have a lively

curiosity about this region.

There are two main types of boundary layer. The convective boundary layer where

heat from the Earth’s surface creates possitive buoyancy flux and instabilities that

lead to turbulences, and the stably stratified nocturnal boundary layer, where negative

buoyancy flux decreases the turbulences and stable stratified conditions prevail. The

ABL can reach over 3 km during daytime while the usual height at night is between

50 m. to 300 m. Typical boundary layer structure is depicted in Figure[2.1].
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Figure 2.1: Boundary layer structure (from [5])

2.1.2 Clear Air Backscatter Theory

The backscattering from refractive index irregularities in clear air and has its

relationship on the atmospheric structure and turbulence, as determined from exper-

imental studies of angel echoes starting with Plank [1956] and Atlas [1959].

Radar backscattering from refractive index variation is able to provide helpful

information about the atmospheric structure. First radar outlines regions of increased

refractive index variability because of the enhanced backscattering. Second, the radar

backscatter contains quantitative information about the variability in the refractive

index field.

The radar backscattering from the clear air atmosphere, is caused by irregular

small-scale fluctuations in the radio refractive index produced by turbulent mixing

and dependent on the atmospheric water vapor, temperature, and pressure. The

intensity of these fluctuations can be described by the structure constant C2
n. In

1969 Ottersen [10] was the first to derive the relationship between the radar volume
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reflectivity and refractive index structure as

η(λ) ≈ 0.38C2
nλ
− 1

3 (2.1)

For a given radar λ, the radar reflectivity η of a region of refractive index fluctu-

ations is directly proportional to C2
n when the length scale of one-half of the radar

wavelength falls within the inertial subrange. The more violent the turbulent mixing

the larger the displacements, and the stronger the inhomogeneities will be. So, strong

turbulence and sharp mean gradients contribute to high C2
n values.

The radar backscatter can be originated by other sources such as Rayleigh scat-

tering for example from birds and insects the size of which should be much smaller

than the radar wavelength and is proportional to λ−4. In our application this kind of

scattering will be considered as undesired noise.

2.1.3 FMCW Radar Basics

FMCW is common technique used on radars, that avoids the limitations of pulsed

radars. It consists on the transmission of a sinusoid whose frequency changes over

time, in our case linearly. Idealy the instantaneous frequency should augment indef-

initely with time, but in order to have a realistic system the frequency will increase

until a maximum value, and will start from the initial frequency once reached that

point. So, the instantaneous frequency will have a saw tooth shape as observed in

Figure[2.2].

The backscattered signal will be delayed by tdelay = 2R
c

, where c is the speed of

light and R is the range to target as shown in Figure[2.3]. It will be also attenuated

and possibly Doppler-shifted in case the target was not stationary. The received

signal will be then mixed with a replica of the transmitted signal, a sinusoidal signal

for every target will be produced. The frequency of which is called beat frequency

6



Figure 2.2: Time versus frequency diagram(a); FM signal (b).

and depends on the range to target and the radar parameters. For stationary targets,

the relation is as follows

R =
cTp
2B

fb (2.2)

where R is the range to target, c is the speed of light, B is the chirp bandwidth and

Tp is the sweep time. Fast Fourier transform analysis is performed then in order to

convert frequency information to range. The range resolution of the system is

∆R =
c

2B
(2.3)

Parameters such as B and Tp are configurable in an FMCW radar thus providing

flexibility to adapt to the most suitable mode, without change in the peak transmit

power for a given sensitivity.

To retrieve velocities, it is possible to determine Doppler velocities comparing the

changes of phase of two consecutive pulses received. The maximum unambiguous

7



Figure 2.3: Difference on instantaneous frequencies on FMCW

velocity that can be measured is determined by the radar operating frequency and

the pulse repetition frequency as

vrmax =
λ

4
fp (2.4)

To maximize range resolution and sensitivity, both B and Tp should be as large as

possible. The value of Tp, however is constrained by the coherence time of the atmo-

spheric echo because the presented theory is based on the assumption that the target

produces constant-frequency sinusoidal echo during the sweep [12]. The maximum

range for FMCW radars is determined by the sweep time Tp and the sampling fre-

quency used in the A/D conversion. The latter gives us the maximum beat frequency

that can be detected without aliasing.

Rmax =
cTp
2B

Fbmax =
cTp
2B

fs
2

(2.5)
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2.2 System Overview

The current FMCW radar project started as an analog of the S-Band FMCW

boundary layer profiler developed in 2003 at University of Massachusetts at Amherst

[12]. The change from S-Band to UHF was proposed in order to reduce the Rayleigh

scattering from insects and birds, that appeared to dominate the observed vertical

profile of the mean reflectivity at S-Band.

The current FMCW - Wind Profiler was started in the summer 2006 by the former

students Albert Genis during 2008 and Iva Kostadinova on 2008-2009. Many changes

have been introduced to the radar, after upgrading and overcoming the different

problems that were affecting the radar through several years.

The purpose of the next sections is to explain the latter hardware configuration

of the radar, and analyze the problems and changes that either were introduced or

are being introduced to solve them.

2.2.1 Initial Hardware Configuration

The FMCW wind profiler operates in the 900MHz ISM frequency band (902 - 928

MHz), with a center frequency of 915MHz. The chirp is generated by Direct Digital

Synthesizer (AD9858) with a bandwidth up to 25MHz and linear FM modulation. So

achieving a maximum range resolution of 6m.

The default mode of operation had a PRF of 100Hz, and a duty cycle of 83.3%, that

meaning that Tp = 8.33ms. These parameters allow to detect vertical unambiguous

velocity up to ±8.25m/s, which exceeds the range of usual turbulent velocities on the

boundary layer (3-5m/s).

All the signals needed to start the radar, such as start and set up the DDS, and

synchronize and clock the sampling are generated by an FPGA Cyclone II from Altera,

designed by Iva Kostadinova and David Garrido Lopez. The parameters of the radar
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Parameter Value

Transmitter
Center frequency 915MHz
Peak Transmit power 30W
Transmitter type Solid State RF (SSRF)
Sweep bandwidth ≤25MHz
Sweep time 8.333ms
PRF 100Hz

Antennas
Type Four Parabolic dish
Gain 18dB
Polarization Linear
Front to Back Ratio 22dB

Table 2.1: Initial System specifications

such as bandwidth, PRF, Tp are configurable. Allowing to adapt to the resolution and

scenario you need, taking into account (2.3), (2.4) and (2.5) it is possible to calculate

the optimal configuration.

The transmit amplifier is a compact solid state RF power amplifier providing a

30W output. The antennas are 4’ diameter antenna parabolas, with dipole antenna

feeds, 19 degree beamwidth and 18dB of gain. The antennas have a broad beam, in

order to employ a spaced antenna technique for estimating horizontal winds. That

broad antenna beamwidth has its problems. The main problem associated with that

is the inadequate isolation between transmitter and receiver. The transmitter leakage

received is powerful enough to saturate either the front-end of the receiver or the data

acquisition board. To solve that problem a active cancellation loop was introduced,

using a vector modulator (AD8340) a replica of the of the leaked signal with opposite

phase is coupled to the receiver in order to cancel the leakage.
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Figure 2.4: Wind Profiler old configuration
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2.2.2 FMCW Radar Previous Results

After testing and deploy the FMCW radar, it turned out that there were some

noise and sensivity problems in the previous design that needed to be fixed. In this

section it will be explained in a consistent way the main issues that impede to detect

and obtain correct data from the FMCW radar, and the possible solution to them.

Audio amplifiers

The main problem with the audio amplifier used in the old design is due to the

noise it generates itself. Looking through the specifications it was found that there

were about 50µV rms of noise introduced at the input of the amplifier such as shown

in Figure[2.5].

Due to the gain of the receiver it is necessary to make an audio filter/amplifier

with low noise components. That do not increase the noise figure of our receiver that

much.

Figure 2.5: audio amplifier issue

Antennas

The isolation of our antennas is not good enough, so it was needed to attenuate

10dB in the front end of the receiver in order to not saturate the mixer. That
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attenuation has bad effects in our SNR because we attenuate signal but not noise,

because the main noise comes from the audio amplifiers. So 10dB in SNR were lost

there.

To solve this problem a new redesign of the antennas can be done. Also a shroud

fence 20cm higher than the antennas was built around them but it did not improve

the isolation significantly, a higher fence can be built so isolation will improve.

Analog Output Card

The AO card has noise of more or less the two LSB, which was being injected to

our Vector modulator. Improving the design in a way that we avoid to use the vector

modulator will improve the noise characteristics of our receiver.

Proposed Solution

The low transmit power and the low antenna gain require a receiver with low noise

and very high gain. To achieve that the receiver will be redesigned avoiding the use

of the active cancellation loop. A new audio module will be created with low noise

components such as the Linear Technology, Ultralow Noise, Low Distortion, Audio

Op Amp, LT1115 [7]. The design will be totally customized for the FMCW Wind

profiler needs. The front-end of the receiver will be customized too. Moreover, as it

will be seen on the next chapters, a new data acquisition board of 24 bits instead of

16 bits will be required, and a new modification of the FPGA design will be needed.

In Figure(2.6) the new FMCW-Wind profiler block diagram is showed. Parts in color

are modified from the previous design.
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Figure 2.6: New FMCW Wind Profiler block diagram
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CHAPTER 3

RECEIVER DESIGN

3.1 Parameter’s Calculation

3.1.1 Front end

The transmitter leakage received in our receiver is between -20dBm and -30dBm,

depending on the deployment, (-27dBm measured in Tilson farm). It is needed to

amplify the received signal, but being careful to not saturate the mixer (7dBm aprox.).

As shown in Figure[2.4] it can be seen that the receiver’s front end has 17dB +

23dB = 40dB gain. In our case such amplification will saturate the mixer, −27dBm+

40dB = 13dBm, so the new design will have only the 23dB amplification of the LNA.

That means that more gain must be added to the audio module that it is needed to

design.

3.1.2 Audio Module

The audio module needs to have sufficient gain to allow the Acquisition Board to

detect the signal, at the same time needs to attenuate the leakage to not saturate it,

do anti-aliasing filtering to prevent aliasing in the Acquisition sampling, while being

careful with the receiver noise which must lie inside the Acquisition Board range. So

we will have to design the audio section having in mind three main parameters such

as maximum gain, cutoff frequencies and attenuation per decade.

We have 4 currently modes of operation on the radar. The modes are:
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Mode1 Mode2

Tp=6.25 ms Tp=8.33 ms

PRF=100Hz PRF=80Hz

fs=60KHz fs=60KHz

Mode3 Mode4

Tp=9 ms Tp=12.5 ms

PRF=70.86Hz PRF=60Hz

fs=60KHz fs=60KHz

With the possibility to choose different modes and modify the bandwidth is pos-

sible to adapt the radar to several possibilities or scenarios as follows:

1. Nocturnal boundary layer

• Weak and sporadic.

• Range from 30m to 300m

• Fine resolution, 6m (25MHz bandwidth).

2. Convective boundary layer

• Unstable, during daytime, strong echo

• Range below 3Km, typically 2Km in New England.

• Resolution of 10m (15MHz bandwidth).

3. High sensitivity

• Range of 3Km or above.

• Resolution of 60m (2.5MHz bandwidth).

These will be the possible three different scenarios. So will be very important to

chose carefully the mode and the bandwidth depending on the scenario. Apart from
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that is very important to notice that the parameter C2
n will vary depending on the

season and the weather. Going from 10−17 in a cold and dry day in winter, to 10−12 in

a hot, and humid day. In the next plots a C2
n of 10−15 is chosen, which is a reasonable

average value.

Once the characteristics needed for the radar and the theory of operation are

known, is time to choose the different parameters required for the audio module. To

do that an IDL program that simulates the ideal response of our receiver is created,

this program is used later introducing the response of the designed filter and displaying

a more accurate receiver response. As shown in Figure[3.1], the election of a total

gain in our audio moule of 110dB is a good election, theoretically we should be able

to detect until C2
n = 10−16. The blue dashed lines are the Acquisition Board range,

the decreasing line is a idealization of the scatter (decreases depending on the range).

Solid lines represents input variables, doted lines signal and noise after the front-end,

and finally dashed line represents signal after the audio module. During summer 2009

some audio module prototypes were built. That work showed that it was not possible

to meet the specifications needed for the Wind profiler. The high gain and high order

of the filter made it unstable and distorting. The maximum gain achieved was around

85dB, but the filter was still introducing so much distortion.

The solution was to improve the dynamic range of the receiver somehow, in order

to need less amplification in the audio module. To achieve that, a new data acquisition

board was bought. The board was a four-channel low-noise 24-bit delta-sigma PC104-

Plus from General Standards. With that new board the dynamic range was improved

from 16 bits to 24 bits, which means a theoretical improve on 24dB.

An audio module with relaxed parameters it is needed now. To picture the ideal

response of the receiver a new simulation with IDL is done. As seen in figure[3.2], a

gain of 70dB in the audio module should be enough to can capture the data. The
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Figure 3.1: Theoretical response of our receiver with Gam = 110dB and C2
n = 10−15

red dashed lines are the old data acquisition board range, and the green dashed line

is the new minimum range with the new board.

The new data acquisition board have and anti-aliasing filter incorporated, so the

low-pass cut off frequency can be relaxed now, the new cut-off frequency will be

40KHz, so we filter the noise to improve the filter’s performance, but do not care

about the image frequency.

To choose the cut-off frequency it is necesary to review each of the three scenarios,

their requirements depending the available modes we have and see which of of these

requirements are the most constraining ones. Besides, in order to know the attenua-

tion per decade and with that the order of the filters, it will be necesary to analyze

the leakage and the aliasing throughfully.

Audio Module Requirements for Nocturnal Boundary Layer Scenario

That scenario needs a range of 30m to 300m approximately, and a very good

resolution, 6m. To achieve that we will need theoreticaly a cut-off frequency of 800Hz,
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Figure 3.2: Theoretical response of our receiver with Gam = 70dB, C2
n = 10−15 and

the new Data Acquisition Card.

which is so close to the leakage frequency that is usually around 250Hz. The filter will

increase in complexity so much, and have a very steep response in frequency, which

can be fatal to the radar because that means that the filter will ring in time domain

and that can cause the saturation of our data acquisition board, making us lose some

information.

The solution can be done in other way, such as increase the cut-off frequency to

1.5KHz or even 2KHz and creating a new mode with a faster sweep time such as

Tp = 3ms.

Audio Module Requirements for Convective Boundary Layer Scenario

The range needed in that scenario is below 3Km, typically 2Km in New England,

with a resolution of about 10m. With a medium mode such as mode 2 (Tp = 8.333ms),

we can achieve from 125m (at 1.5KHz) to 2Km (at 24KHz). With mode 4 (Tp =
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12.5ms) we can reach 3Km at 24KHz, even though our minimum range detectable

will be theoretically 187.5m. So, the cut-off frequency of 40kHz proposed for the

audio module previously is perfectly suitable.

Leakage and Aliasing

The leakage must be attenuated in order to not saturate the data acquisition

board, so the final power it must be below 30dBm. A good choice will be to attenuate

the leakage to the center to the data acquisition board range, so we can eliminate it

afterwards with the post-processing, and there is also some margin of error left.

Prleakage
+GLNA +Gaudiomod − Laudiomodleakage

=
DAQmax +DAQmin

2
(3.1)

−25dBm+ 23dB + 70dB − Laudiomodleakage
=
−110dBm+ 30dBm

2
(3.2)

Laudiomodleakage
= 110dB (3.3)

With the result in 3.3 we can conclude that it will be needed an attenuation per

decade, assuming a low cut-off frequency of 1.5KHz and the frequency of our leakage

in 300Hz, of 157 dB
decade

. Which means that an order 8 high pass filter will be needed,

but considering that the design will be done with order 2 modules, and that it is

better to have some margin error in case more amplification is used in the front end

in the future, the order of the high pass will be order 10. The anti-aliasing filter will

need the same stages than the high pass, in order to filter noise and be able to amplify

enough.

Once the general parameters are known, will be important to decide the archi-

tecture of the filter deciding in which order the different stages will be placed in the

audio module, and what will the distribution of gain be between all the stages, in

order to improve as much as possible the noise figure of out audio module, always

taking into account the anti-leakage performance.
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3.1.3 Design Architecture

The audio module must have the low-pass filter stages at the beginning in order

to improve the noise performance. It will be needed too to have higher gains in the

first stages, to have a smaller noise figure as possible. The gain in the first low pass

stage should be higher as possible, but there is a problem with the leakage and is that

we cannot amplify so much in the low-pass filter due to there is no attenuation of the

leakage (300Hz) there is only amplification of it and there is the risk of saturating the

operational amplifiers. Amplification in the high pass stage stage is not recommended

due to the amplification of noise.

A new architecture should be used for the audio module due to the specific needs of

the Wind Profiler audio module. To meet the specifications needed the architecture

chosen is made of cells. Every cell will be composed by a low-pass filter followed

by a high-pass filter, the amplification will be done on the low pass-filter. With

that technique the cells with lowest Q can be put at the beginning of the chain.

The maximum amplification on every cell should be chosen carefully in order to not

saturate the operational amplifiers.

3.2 Active Filter Theory

3.2.1 Introduction

Figure 3.3: Basic Second Order Low-Pass Filter

Figure[3.3] shows a two-stage RC network that forms a second order low-pass

filter. This filter is limited because its Q is always less than 1/2. With R1=R2 and
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C1=C2 Q=1/3. Q approaches the maximum value of 1/2 when the impedance of the

second RC stage is much larger than the first. Most filter require Qs larger than 1/2.

Larger Qs are attainable by using a positive feedback amplifier. If the positive

feedback is controlled -localized to the cut-off frequency of the filter- almost any Q

can be realized, limited mainly by the constraints of the power supply and component

tolerances. Figure[3.4] shows a unity gain amplifier used in this manner. Capacitor

C2, no longer connected to ground, provides a positive feedback path. In 1995, R.P.

Sallen and E.L. Key described these filter circuits, and hence they are generally known

as Sallen-Key filters.

Figure 3.4: Unity Gain Sallen-Key Low-Pass Filter

The operation can be described qualitatively:

• At low frequencies, where C1 and C2 appear as open circuits, the signal is

simply buffered to the output.

• At high frequencies, where C1 and C2 appear as short circuits, the signal is

shunted to ground at the amplifier’s input, the amplifier amplifies this input

to its output, and the signal does not appear at Vo.

• Near the cut-off frequency, where the impedance of C1 and C2 is on the same

order as R1 and R2, positive feedback through C2 provides Q enhacement of

the signal

22



Figure 3.5: Generalized Sallen-Key Circuit

3.2.2 Generalized Circuit Analysis

The circuit shown in Figure[3.5] is a generalized form of the Sallen-Key circuit,

where generalized impedance terms, Z, are used for the passive filter components, and

R3 and R4 set the pass-band gain.

To find the circuit solution for this generalized circuit, find the mathematical

relationships between Vi, Vo, Vp, and Vn, and construct a block diagram.

KCL at Vf :

Vf (
1

Z1
+

1

Z2
+

1

Z4
) = Vi(

1

Z1
) + Vp(

1

Z2
) + Vo(

1

Z4
) (3.4)

KCL at Vp:

Vf (
1

Z2
+

1

Z3
+) = Vf (

1

Z2
)⇒ Vf = Vp(1 +

Z2

Z3
) (3.5)

Substitute Equation[3.5] into Equation[3.4] and solve for Vp:

Vp = Vi(
Z2Z3Z4

Z2Z3Z4 + Z1Z2Z4 + Z1Z2Z3 + Z2Z2Z4 + Z2Z2Z1
) +

Vo(
Z1Z2Z3

Z2Z3Z4 + Z1Z2Z4 + Z1Z2Z3 + Z2Z2Z4 + Z2Z2Z1
) (3.6)
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KCL at Vn:

Vn(
1

R3
+

1

R4
+) = Vo(

1

R4
)⇒ Vn = Vo(

R3

R3 +R4
) (3.7)

3.2.2.1 Gain Block Diagram

By letting: a(f)= the open-loop gain of the amplifier, b=( R3
R3+R4

),

c = Z2Z3Z4
Z2Z3Z4+Z1Z2Z4+Z1Z2Z3+Z2Z2Z4+Z2Z2Z1

, d = Z1Z2Z3
Z2Z3Z4+Z1Z2Z4+Z1Z2Z3+Z2Z2Z4+Z2Z2Z1

,

and Ve = Vp−Vn, the generalized Sallen-Key filter circuit is represented in gain-block

form as shown in Figure[3.6].

Figure 3.6: Gain-Block Diagram of the Generalized Sallen-Key Filter

From the gain-block diagram the transfer function can be solved easily by ob-

serving, Vo = a(f)Ve and Ve = cVi + dVo − bVo. Solving for the generalized transfer

function from gain block analysis gives:

Vo
Vi

= (
c

b
)(

1

1 + 1
a(f)b
− d

b

) (3.8)

3.2.2.2 Ideal Transfer Function

Assuming a(f)b is very large over the frequency of operation, 1
a(f)b

≈ 0, the ideal

transfer function from gain block analysis becomes:
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Vo
Vi

= (
c

b
)(

1

1− d
b

) (3.9)

By letting 1
b

= K, c = N1
D

, and d = N2
D

, where N1, N2, and D are the numerators and

denominators shown above, the ideal equation can be rewritten as: Vo

Vi
= ( K

D
N1
−KN2

N1

).

Plugging in the generalized impedance terms gives the ideal transfer function with

impedance terms:

Vo
Vi

=
K

Z1Z2
Z3Z4

+ Z1
Z3

+ Z2
Z3

+ Z1(1−K)
Z4

+ 1
(3.10)

3.2.3 Low-Pass Circuit

The standard frequency domain equation for a second order low-pass filter is:

HLP =
K

− f
fc

2
+ jf

Qfc
+ 1

(3.11)

Where fc is the corner frequency (note that fc is the breakpoint between the pass

band and stop band, and is not necessarily the -3dB point) and Q is the quality

factor. When f � fc Equation[3.11] reduces to K, and the circuit passes signals

multiplied by a gain factor K. When f = fc, Equation[3.11] reduces to -jKQ, and

signals are enhanced by factor Q. When f � fc, Equation[3.11] reduces to −K(fc

f
)2,

and signals are attenuated by the square of the frequency ratio. With attenuation at

higher frequencies increasing by a power of two, the formula describes a second order

low-pass filter.

Figure[3.7] shows the Sallen-Key circuit configured for low-pass.

From Equation[3.10], the ideal low-pass Sallen-Key transfer function is:

Vo
Vi

(Ip) =
K

s2(R1R2C1C2) + s(R1C1 +R2C1 +R1C2(1−K)) + 1
(3.12)

By letting:
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Figure 3.7: Low-Pass Sallen-Key Circuit

s = j2πf , FSF ∗fC = 1
2π
√
R1R2C1C2

, and Q =
√
R1R2C1C2

R1C1+R2C1+R1C2(1−K)
, Equation[3.12]

follows the same form as Equation[3.11]. With some simplifications, these equations

can be dealt with efficiently.

3.2.4 High-Pass Circuit

The standard equation (in frequency domain) for a second order high-pass is:

HHP =
−K f

fc

2

− f
fc

2
+ jf

Qfc
+ 1

(3.13)

When f � fc, Equation[3.13] reduces to −K( f
fc

)2. Below fc signals are attenuated

by the square of the frequency ratio. When f = fc, Equation[3.13] reduces to -jKQ,

and signals are enhanced by the factor Q. When f � fc, Equation[3.13] reduces to

K, and the circuit passes signals multiplied by the gain factor K. With attenuation at

lower frequencies increasing by a power of 2, Equation[3.13] describes a second order

high-pass filter.

Figure[3.8] shows the Sallen-Key circuit configured for high-pass.
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Figure 3.8: High-Pass Sallen-Key Circuit

From Equation[3.10], the ideal high-pass transfer function is:

Vo
Vi

(hp) =
K

1
s2(R1R2C1C2)

+ 1
s
( 1
R1C1

+ 1
R1C2

+ (1−K)
R2C1

) + 1
(3.14)

with some manipulation becomes

Vo
Vi

(hp) =
K(s2(R1R2C1C2))

s2(R1R2C1C2) + s(R2C2 +R2C1 +R1C2(1−K)) + 1
(3.15)

By letting s = j2πf , FSFfo = 1
2πsqrtR1R2C1C2

, and Q =
√
R1R2C1C2

R2C2+R2C1+R1C2(1−K)
,

Equation[3.15] follows the same form as Equation[3.13]. As above, simplfications

make these equations much easier to deal with.

3.2.5 Filter Tables

Typically, filter books list the zeroes or the coefficients of the particular polyno-

mial being used to define the filter type. It takes a certain amount of mathematical

manipulation to turn this information into a circuit realization. It is implicit that

higher-order filters are constructed by cascading second order stages for even-order
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filters (one for each complex-zero pair). A first-order stage is then added if the filter

order is odd. With the filter tables on Figures (3.9), (3.10) and (3.12), the preliminary

work is done, and the proper circuit components can be calculated with just three

formulas.

For a low-pass Sallen-Key filter with cut-off frequency fc and pass band gain K,

set K = R3+R4
R3

, FSF ∗ fc = 1
2π
√
R1R2C1C2

, and Q =
√
R1R2C1C2

R1C1+R2C1+R1C2(1−K)
for each

second order stage. If an odd order is required, set FSF ∗ fc = 1
2πRC

for that stage.

The tables are arranged so that increasing Q is associated with increasing stage order.

High-order filters are normally arranged in this manner to help prevent clipping.

Figure 3.9: Butterworth Filter Table
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Figure 3.10: Bessel Filter Table

Figure 3.11: 1-dB Chebyshev Filter Table

3.3 Active Filter Design

The first step is to deign the low-pass filter and the high-pass filter, using the

Sallen-Key active filter theory, and the filter tables. With the specifications calculated

before at the beginning of the receiver design chapter. Once the filters are designed,

their stages will be cascaded creating low-pass with high-pass stages that will form

the band-pass filter. Using Spice simulations the filter will be check in order to find

out if it satisfies the requirements and to check its performance.

The filter type used on the design is Butterworth because it has the flatest possible

pass-band magnitude response. Attenuation is -3dB at the design cut-off frequency.
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Attenuation above the cutoff frequency is a moderately steep 20-dB per decade per

pole. And it has moderate overshoot and ringing.

Figure 3.12: Transient Response of the Three Filters Type

As it will be seen in the next chapter ringing and overshooting is a very important

issue in the audio module performance. So a Bessel type filter was built, due to its

linear phase response, and minimal overshoot and ringing. But the improvement in

performance was not noteworthy. Besides it takes a higher-order Bessel filter to give

a magnitude response which approaches that of a given Butterworth filter. So in the

next sections it will be explained the design of the Butterworth filter type, that is

currently working on the radar.

3.3.1 Component selection

Theoretically, any value of R and C can be used, but practical considerations

should take into account. Given a specific cut-off frequency R and C are inversely

proportional. In the case of low-pass Sallen-Key filter, the larger the value of R the

lower the transmission of signals at high frequency. Making R too large make C

become so small that the parasitic capacitances cause errors.

30



For the high-pass filter, stray capacitance in the circuit, including the input capac-

itance of the amplifier, makes the choice of small capacitors and thus large resistors,

undesirable. Also, being high-pass circuit the band-pass is potentially very large, and

resistor noise associated with increased values can become an issue.

So, capacitors of less than 1nF and low quality dielectrics such as electrolytic

capacitors will be avoided. Resistor values will be in the range of few hundred ohms

to few thousand ohms whenever it is possible, metal film resistors will be used in

order to achieve good temperature coefficients, and 1% tolerance E96 values will be

used.

3.3.2 Low-Pass Filter

The low-pass filter needs a total of 70dB of amplification, a cut-off frequency of

fc = 40KHz (the new data acquisition board has its own anti-aliasing filter), and

order ten (same order as high pass so the band-pass filter can be implemented).

The first stage will be designed with 0dB gain in order to be sure the leakage will

not saturate in any of the stages of the final filter. The next stages will start with

decreasing gains, always taking into account the equations K = R3+R4
R3

, FSF ∗ fC =

1
2π
√
R1R2C1C2

, and Q =
√
R1R2C1C2

R1C1+R2C1+R1C2(1−K)
, to design the stages with the proper gain

so the leakage will not saturate the next stages. In addition appropriate commercial

values of R and C are chosen. The gains chosen for each stage are G1 = 0dB,

G2 = 20dB, G3 = 20dB, G4 = 17dB and G5 = 13dB.

With all the parameters calculated before, the gain for every stage, the previous

equations and the filter tables. It is proceed to design the low-pass filter. The design

of that filter had a problem due to the due to the high quality factor required on the

last stage Q = 3.1969 the cut-off frequency of fc = 40KHz, and the amplification of

13dB. Taking into account the parameters required for the last stage, an operational
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amplifier of a Gain-Bandwidth product exceeding 40MHz would be needed. As seen

in [7] the LT1115 operational amplifier used in the design has a GBP of 40MHz. So

the last stage is modified in order to can achieve a better performance. The cut-off

frequency of the last stage is reduced to fc5 = 28KHz and its quality factor is reduced

too to Q = 1.2962. The resultant low-pass filter is showed in Figure(3.13).

Figure 3.13: Low-Pass Filter implementation

The frequency response of the low-pass filter is depicted in Figure(3.14). It can be

observed that the resultant cut-off frequency is not 40KHz, it is 28KHz, the response is

flat in the pass-band, and besides the frequencies of interest are all below fs

2
= 30KHz,

so the filter is suitable.

3.3.3 High-Pass Filter

The high-pass filter has a 0dB amplification in order to have a better noise perfor-

mance, a cut-off frequency of fc = 2.2KHz (the previously calculated fc = 1.5KHz

turned out to be too low), and order ten in order to attenuate the leakage enough.

32



Figure 3.14: Low-Pass Filter response

The stages are designed following the filter tables and the following equations

K = R3+R4
R3

, FSFfo = 1
2πsqrtR1R2C1C2

, and Q =
√
R1R2C1C2

R2C2+R2C1+R1C2(1−K)
. With all the

parameters calculated it is proceed to design the high-pass filter with the following

results, Figure(3.15).

The frequency response of the high-pass filter is depicted in Figure(3.16).

3.3.4 Band-Pass Filter

The band-pass filter is created by cascading the low-pass filter and the high-pass

filter designed before. So the first stage of the band-pass will be the first of the low-

pass, the second will be the first of the high-pass and so on. Before implementation,

a spice simulation is done, adding the resistor of 50Ω of the input impedance and the

RDAQ = 1MΩ with the following results, Figure(3.17).
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Figure 3.15: High-Pass Filter implementation

Figure 3.16: High-Pass Filter response

The gain in the pass-band is about 71.3dB, which is close to the 70dB goal it was

proposed. The final cut-off frequencies are fclow = 2.17KHz and fchigh = 29.3KHz.

The gain at fleakage = 300Hz is -101dB.
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Figure 3.17: Band-Pass Filter response

With that results it can be concluded that the design satisfied the requirements.

Now the response of the filter is introduced in the IDL program to see the theo-

retical response of the receiver adding the filter response.

The Figure 3.18 shows the response of the receiver with a C2
n = 10−15. The signal

is put into the DAQ range, as desire, with a minimum detectable frequency around

1KHz which is better than the 1.5KHz expected, but with lower C2
n this minimum

value will increase.

3.3.4.1 Noise analysis

A noise analysis is performed with Spice for the audio module, with the result

shown in Figure[3.19]. The result is given in µV 2, with a maximum of 982µV 2 which

is around -53dBm (at 50Ω), still in the DAQ range but as we can see. The noise

results are not as good as expected, and it is so because the design of the filter does
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Figure 3.18: Receiver theoretical response with designed filter.

not follow the conventional design rules. The filter is designed in a way that it can

satisfy the FMCW-Wind Profiler specifications and for doing so a special architecture

was needed as it was explained, not allowing the audio module designed to achieve

an optimal noise performance. The results should be sufficient, due to the SNR is

highly improved after processing.

3.3.4.2 Analysis of component tolerances effects

Before building and testing the filter in the lab, a final analysis is performed in

order to know the effect of the tolerances of the components that will be used later.

The resistors are assumed to have a tolerance of ±1% while the capacitors will be

suppose to have a ±15% tolerance even though we will try to mount the final filter

with ±10% capacitors, but with that choice we can try to have a more realistic

analysis because when mounting the filter another problems will come up, such as

stray capacitances.
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Figure 3.19: Output noise spectrum of the Band-pass filter

Figure 3.20: Analysis of the effect of the component tolerances

The results are shown in Firgure[3.20], the response of the filter will be with a

90% of probability inside the limits higain and logain. These limits are: Gmax ∈

[69.1, 77]dB, which are suitable for the design. The next step will be build and test
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the audio module in the lab, and when positive results are obtained apply the audio

module to the radar and make the necesary modifications in order to test the radar.
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CHAPTER 4

AUDIO MODULE IMPLEMENTATION AND TESTS

After designing and simulating the audio module, a prototype was built. First,

the frequency response was tested and was introduced into the IDL program in order

to see the theoretical performance with the prototype. After that the audio module

was tested with real radar signal, simulating the leakage and calibration signal, and

observing the output.

4.1 Laboratory Tests and Results

The audio module prototype was built in a breadboard Figure(4.1), and then its

frequency response was tested. The results obtained are showed in Figure(4.2),

where it is observed the response is quite similar to the previously spice simulated

response.

Once the frequency response is obtained, a simulation of the receiver response with

IDL is done including it. The results can be seen in Figure(4.3). All the frequencies

of interest are within the data acquisition card range, which is the main goal. Also

it can be seen that very low frequency are theoretically inside the range, but that is

not a big problem as far as it does not saturate either the audio module or the data

acquisition card, because with signal processing the non-desired low-frequencies or

leakage can be erased.

At this point it is time to utilize real radar signal to test the audio module. To

do so, the radar is set up in the lab, and a leakage signal is simulated by introducing
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Figure 4.1: Audio Module Prototype Implementation

attenuation and delay of the same magnitude range of the real leakage received on the

antennas when the radar is deployed on the field. The results obtained are showed

in Figure(4.4). It can be seen that the filter eliminates the leakage, because no lower

frequencies are contained on the signal. Only frequencies of 5KHz and 15KHz are

detected, that is so because of the calibration signal (delay line) that it is added to

the received signal, see block diagram, figure(2.6). On the other hand, it is observed

that there is quite a long transient, that can even saturate the data acquisition card

at the beginning of the chirp. To improve that, what it can be done is to increase

the duty cycle of the chirp, to nearly 100%, so the transient will be lower due to

the elimination of the step response of the original radar signal. To achieve that, a

modification of the current FPGA design was done, that modification is explained in

the next section.

With the transmitting chirp of 100% duty cycle, the response improved as seen in

Figure(4.5). Now the transient is shorter and it does not saturate that much at the

beginning of the chirp. The calibration signal can be observed in Figure(4.6) where
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Figure 4.2: Audio Module Prototype frequency response

Figure 4.3: Theoretical Receiver Response with Audio Module Prototype.

a zoomed in picture of the filtered signal is showed, the FFT included on that plot

also shows the 5KHz and 15KHz frequency components of the calibration signal.
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Figure 4.4: Audio module output of an entire chirp

4.2 FPGA Modification

4.2.1 DDS Description

The DDS AD9858 from Analog Devices provides an automated frequency sweeping

capability. The frequency sweep is implemented through the use of a frequency accu-

mulator, where a fixed incremental quantity is added repeatedly over time, creating

new frequency tuning word, and so generating new frequencies. The first frequency

is loaded in FTW register, the frequency increment, or step size, is loaded into the

delta frequency tuning word (DTFW) register. The rate at which the frequency is

incremented is set by the delta frequency ramp rate word (DFRRW) register. That

registers enable the AD9858 to sweep from a beginning frequency set by FTW, up-

wards or downwards, at a desired rate and frequency step.
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Figure 4.5: Audio module output of a entire chirp and FFT with 100% duty cycle
chirp

Figure 4.6: Audio module output and FFT with 100% duty cycle
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The original frequency tuning word (FTW), written into the register, does not

change over time. So it is possible to return to the initial frequency any time during

a sweep. Clearing the frequency accumulator to 0, the DDS instantly returns to the

frequency stored as FTW.

4.2.2 DDS Configuration Process

The communication with the DDS is a 2-step process in which data written to

the I/O buffer and after it it is latched to the memory registers. To do so it is

needed to toggle the FUD pins in order to update all the elements of the I/O buffer

memory to the DDS’s core memory registers. For the FMCW Wind Profiler parallel

programming is used. In this mode the I/O port uses eight bidirectional data pins

(D0 to D7), six address input pins (A0 to A5), a read input pin (RD*), and a write

input pin (WR*). The write cycle is illustrated in Figure (4.7).

Figure 4.7: DDS write cycle timimg [from AD9858 manual]
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4.2.3 FPGA Design

To be able to generate a 100% duty cycle, the FPGA needed to be modified. In

the prior design, for every chirp the frequency accumulator of the DDS was cleared

while the radar was not transmitting. Now to achieve the 100% duty cycle, the

procedure used is different. Because now the ”auto-clear frequency accumulator”

and ”auto-clear phase accumulator” will be used, see Table(4.1). Activating that

bits, the frequency and phase accumulator will clear synchronously the accumulators

for one cycle upon reception of the FUD sequence indicator, refer to [1] for more

information. The phase accumulator is cleared too, in order to have a phase coherent

signal, needed in order to can detect stationary targets. The DDS changes of phase

are always continuous, but in order to have a coherent signal the phase accumulator

is cleared too, Figure(4.8).

Figure 4.8: Difference between a Phase Continuous Frequency Change and a Phase
Coherent Change

In addition the trigger signals were modified too, the DDS trigger needed to change

drastically in order to can achieve the 100% goal. The DAQ trigger was adapted to
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the new board, having now the PRF signal as a trigger, because due to the 100%

duty cycle the PRF signal is totally synchronized with the chirp now.

Finally after all that modifications on the FPGA, the c program that sends via

RS-232 transceiver all the data needed for the FPGA in order to run the radar. For

further information see appendix B.

Table 4.1: DDS AD9858 register map (from AD9858 manual [1])
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The results of the new FPGA can be observed in Figures(4.9)(4.10), where the

spectrum of a chirp is depicted, and a received signal before the audio module is

showed in the latter.

Figure 4.9: Spectrum of RF signal

Figure 4.10: IF signal before audio module
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CHAPTER 5

CONCLUSIONS

5.1 Summary

This thesis has described the FMCW Wind Profiler state as of Fall 2009. The

previous configurations and problems have been explained and then solutions pro-

vided. Thanks to the previous work done with the radar, the sources of error can be

identified and the radar receiver was upgraded in order to improve its performance.

The receiver front end was modified, and the leakage cancellation loop used before

is now avoided. A new audio module was specifically designed. After decreasing the

gain in the front end, and avoiding the use of the leakage cancellation loop, a high

gain in the IF stage is needed. Simulations were performed and a prototype was built

and tested on the radar.

Later on, the FPGA and .c programs were modified in order to achieve a 100%

duty cycle chirp, which improves the performance of the receiver, due to the reduction

of the transient response on the audio module or IF stage.

5.2 Future Work

The radar still needs some work in order to can be tested on field deployments.

The new data acquisition card 24DSI6LN from General Standards is being tested.

A data acquisition program using that board needs to be done. That program have
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to acquire data synchronized with the transmitted signal, so Doppler velocities can

be correctly detected.

Also a new data processing program needs to be implemented, adapted to new

data obtained from the new data acquisition card. With all that radar tests and

maybe upgrades to the radar can be done before field deployment tests.

After having checked the correct performance on the lab, real data should be

acquired from field deployments. Processing the data collected the performance of

the radar can be checked, and modifications can be added in case the data collected

is not satisfactory.

In a second phase, it is planned to use a space antenna technique [9] to be able to

analyze horizontal winds too. These techniques can obtain more rapid wind estimates

compared to Doppler beam swinging systems.
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APPENDIX A

BAND-PASS FILTER SPICE

*Band pass filter module.mod

********************************************

BAND PASS FILTER MODULE.MOD

********************************************

* Vcc 10 and 11

* Gnd 0

* Input 100

* Output 251

***Stage 1

Rg 100 101 50

RL11 101 102 1050

RL21 102 103 6810

CL11 103 0 1n

CL21 102 111 2.2n
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RL41 111 104 0.1

XL21 103 104 10 11 111 LT1115

Vj1 111 201 0

CH11 201 202 22e-9

CH21 202 203 4.7e-9

RH11 203 0 9530

RH21 202 211 5360

RH41 211 204 0.1

XH21 203 204 10 11 211 LT1115

Vj2 211 311 0

*** Stage 2

RL12 311 312 1150

RL22 312 313 4220

CL12 313 0 3.3n

CL22 312 321 1n

RL42 321 314 90.9e3

RL32 314 0 10e3

XL22 313 314 10 11 321 LT1115

Vj3 321 411 0

CH12 411 412 22e-9
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CH22 412 413 4.7e-9

RH12 413 0 10500

RH22 412 421 4870

RH42 421 414 0.1

XH22 413 414 10 11 421 LT1115

Vj4 421 121 0

***Stage 3

RL13 121 122 1240

RL23 122 123 3830

CL13 123 0 3.3n

CL23 122 131 1n

RL43 131 124 90.9e3

RL33 124 0 10e3

XL23 123 124 10 11 131 LT1115

Vj5 131 221 0

CH13 221 222 22e-9

CH23 222 223 4.7e-9

RH13 223 0 13300

RH23 222 231 3830

RH43 231 224 0.1

XH23 223 224 10 11 231 LT1115
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Vj6 231 331 0

***Stage 4

RL14 331 332 1470

RL24 332 333 10700

CL14 333 0 1n

CL24 332 341 1n

RL44 341 334 60.4e3

RL34 334 0 10e3

XL24 333 334 10 11 341 LT1115

Vj7 431 341 0

CH14 431 432 22e-9

CH24 432 433 4.7e-9

RH14 433 0 20500

RH24 432 441 2430

RH44 441 434 0.1

XH24 433 434 10 11 441 LT1115

Vj8 441 141 0

*** Stage 5

RL15 141 142 2670

RL25 142 143 8060
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CL15 143 0 1.5n

CL25 142 151 1n

RL45 151 144 43.2e3

RL35 144 0 10e3

XL25 143 144 10 11 151 LT1115

Vj9 151 241 0

CH15 241 242 22e-9

CH25 242 243 4.7e-9

RH15 243 0 59000

RH25 242 251 845

RH45 251 244 0.1

XH25 243 244 10 11 251 LT1115

RDAQ 251 0 1e6

vin 100 0 DC 0 AC 1 SIN(0,1,50e3)

*Decoupling capacitors.

CC1 10 0 1E-6

CC2 11 0 1E-6
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*Band pass filter module.cir

********************************************************

BAND PASS FILTER MODULE.CIR

********************************************************

*.options abstol=1n vntol=1m reltol=0.01

.include LT1115.lib

.include Band pass filter module.mod

* Power sources

vcc1 10 0 15

vcc2 11 0 -15

*Simulation

*.AC LIN 100 266.667 26666.7

*.ac dec 300 200 50k

*.control

*run

*set

*let H=db(v(251))

*plot db(v(251))

************************** MC analysis, 90%*************************

.control
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* Illustrative example by CDHW of using SENS instead of monte carlo to

* investigate the effect of component tolerances.

*

ac dec 30 200 40e3

sens v(251) ac dec 30 200 40e3

* set the tolerances here:

let restol = 1e-2

let captol =15e-2

* set the number of standard deviations here

*

* 1.645 gives a 90% confidence band between lo gain and hi gain

*

let stdevs = 1.645

let sumsq = 0*v(ac.251)

set res= ( RL11 RL21 RL41 RH11 RH21 RH41 RL12 RL22 RL42 RL32 RH12 RH22

RH42 RL13 RL23 RL43 RL33 RH13 RH23 RH43 RL14 RL24 RL44 RL34 RH14

RH24 RH44 RL15 RL25 RL45 RL35 RH15 RH25 RH45)

set cap = ( CL11 CL21 CH11 CH21 CL12 CL22 CH12 CH22 CL13 CL23 CH13 CH23

CL14 CL24 CH14 CH24 CL15 CL25 CH15 CH25 )

foreach device $res

let thisDev = restol * sqrt(1/3) * abs($device) * @{$device}[resistance]

let sumsq = sumsq + thisDev*thisDev

end

foreach device $cap

let thisDev = captol * sqrt(1/3) * abs($device) * @{$device}[capacitance]

let sumsq = sumsq + thisDev*thisDev
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end

let gain = db(v(ac.251)) - db(v(ac.100))

let lo gain = db(abs(v(ac.251)) - stdevs * sqrt(sumsq) ) - db(v(ac.100))

let hi gain = db(abs(v(ac.251)) + stdevs * sqrt(sumsq) ) - db(v(ac.100))

plot lo gain hi gain gain xlabel ”Frequency” ylabel ”Gain” ylimit -20 80

************************************************** Noise simulation!!!!!!!!!!!!!!

*.control

*run

* echo ”At the start of this script, the current plot is ’$curplot’.”

* echo ”Perform an ’op’ analysis...”

*op

* echo ” ... done. It created plot ’$curplot’ ($curplotname).”

* echo ”Perform a noise analysis...”

*noise v(251) vin dec 100 100 100k 1

* echo ” ... done. It created two plots and has set the current plot”

* echo ” to the second of these ’$curplot’ ($curplotname).”

* echo ”Use ’print all’ to display the contents of the current plot:”

*print all

* echo ”Next, use the ’destroy’ command to remove the current plot ($curplot) ...”

*destroy

* echo ” ... done. Now the current plot is ’$curplot’ ($curplotname),”

* echo ” this is the first of the two plots created by the above ’noise’ command.”

* echo ”Create a graph of v(onoise spectrum) which is in ’$curplot’...”

*plot v(onoise spectrum)

* echo ” ... done.”
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.endc

.END
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APPENDIX B

FPGA MODIFIED MODULES CODE FILES

B.1 dds run.tdf

TITLE ”Init and run DDS in three modes”;

–% **********************%

–% Wind Profiler Radar %

–% ********************** %

–% April 2008 written by D. Perkovic, perfected by David Garrido%

–% Filename: dds run.tdf %

–% Description: This module inits and runs the DDS system: AD9858 chirp genera-

tor %

–% 1) Once the module is enabled, it sends the different parameters to the dds chip

%

–% 2) After this initization, this module takes care to trigger the DDS system

– at the rate given by the incoming trigger (PRF) %

–

–% The outputs of this module match with the parallel interface of the AD9858

– evaluation board %

–

–% Parameters: %

–% INPUTS: %

59



–% clk: Clock frequency - active by rising edges (40 MHz)%

–% /enable: validates the data at the input and begins the DDS inialization process

%

–% if /enable =0 then the module is enabled otherwise it is OFF %

–% trigger: PRF signal %

–% DFTW[31..0] : DDS delta frequency register %

–% DFRRW[15..0] : DDS ramp rate register%

–% FTW0[31..0]: DDS starting frequency register%

–

–% OUTPUTS: %

–% address[5..0] - see AD9858 specs

– data[7..0] - see AD9858 specs

– /wr - see AD9858 specs active low write signal

– fud - see AD9858 specs %

SUBDESIGN dds run

(

clk, enable :INPUT;

trigger :INPUT;

trigger pulse :INPUT;

reset :INPUT;

DFTW[31..0] :INPUT;

DFRRW[15..0] :INPUT;

FTW0[31..0] :INPUT;

address[5..0] :OUTPUT;

data[7..0] :OUTPUT;

wr :OUTPUT;
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fud :OUTPUT;

)

VARIABLE

state: MACHINE OF BITS (s[5..0])

WITH STATES (

xIDLE = B”000000”,

xDFTW1 = B”000001”,

xWR1 = B”000010”,

xDFTW2 = B”000011”,

xWR2 = B”000100”,

xDFTW3 = B”000101”,

xWR3 = B”000110”,

xDFTW4 = B”000111”,

xWR4 = B”001000”,

xDFRRW1 = B”001001”,

xWR5 = B”001010”,

xDFRRW2 = B”001011”,

xWR6 = B”001100”,

xFTW01 = B”001101”,

xWR7 = B”001110”,

xFTW02 = B”001111”,

xWR8 = B”010000”,

xFTW03 = B”010001”,

xWR9 = B”010010”,

xFTW04 = B”010011”,

xWR10 = B”010100”,
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xCFR0 = B”010101”,

xWR11 = B”010110”,

xCFR1 = B”010111”,

xWR12 = B”011000”,

xCFR2 = B”011001”,

xWR13 = B”011010”,

xCFR3 = B”011011”,

xWR14 = B”011100”,

xWAITTRIGUP = B”011101”,

xRUN1 = B”011110”,

xRUN = B”011111”,

xWAITTRIGDOWN = B”100000”,

xTRIGDOWN = B”100001”);

regadd[5..0] :DFF;

regdata[7..0] :DFF;

wr reg :DFF;

fud reg :DFF;

–%DFTW[31..0] :NODE;

–DFRRW[15..0] :NODE;

–FTW0[31..0] :NODE;

–FTW1[31..0] :NODE;%
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BEGIN

regadd[].(clk,clrn)=(clk,!enable);

regdata[].(clk,clrn)=(clk,!enable);

wr reg.(clk,clrn)=(clk,!enable);

fud reg.(clk,clrn)=(clk,!enable);

address[]=regadd[].q;

data[]=regdata[].q;

wr=!wr reg.q or clk;

fud=fud reg.q and clk;

state.(clk,reset)=(clk,enable or !reset);

CASE(state)IS

WHEN xIDLE =>

regadd[].d = H”4”;

regdata[].d = DFTW[7..0];

wr reg.d = gnd;

fud reg.d = gnd;

if(enable or !reset) then

state = xIDLE;

else

state = xDFTW1;

end if;

63



WHEN xDFTW1 =>

regadd[].d = H”4”;

regdata[].d = DFTW[7..0];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR1;

WHEN xWR1 =>

regadd[].d = H”5”;

regdata[].d = DFTW[15..8];

wr reg.d = gnd;

fud reg.d = vcc;

state = xDFTW2;

WHEN xDFTW2 =>

regadd[].d = H”5”;

regdata[].d = DFTW[15..8];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR2;

WHEN xWR2 =>

regadd[].d = H”6”;

regdata[].d = DFTW[23..16];

wr reg.d = gnd;

fud reg.d = vcc;

state = xDFTW3;
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WHEN xDFTW3 =>

regadd[].d = H”6”;

regdata[].d = DFTW[23..16];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR3;

WHEN xWR3 =>

regadd[].d = H”7”;

regdata[].d = DFTW[31..24];

wr reg.d = gnd;

fud reg.d = vcc;

state = xDFTW4;

WHEN xDFTW4 =>

regadd[].d = H”7”;

regdata[].d = DFTW[31..24];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR4;

WHEN xWR4 =>

regadd[].d = H”8”;

regdata[].d = DFRRW[7..0];

wr reg.d = gnd;

fud reg.d = vcc;
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state = xDFRRW1;

WHEN xDFRRW1 =>

regadd[].d = H”8”;

regdata[].d = DFRRW[7..0];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR5;

WHEN xWR5 =>

regadd[].d = H”9”;

regdata[].d = DFRRW[15..8];

wr reg.d = gnd;

fud reg.d = vcc;

state = xDFRRW2;

WHEN xDFRRW2 =>

regadd[].d = H”9”;

regdata[].d = DFRRW[15..8];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR6;

WHEN xWR6 =>

regadd[].d = H”A”;

regdata[].d = FTW0[7..0];

wr reg.d = gnd;
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fud reg.d = vcc;

state = xFTW01;

WHEN xFTW01 =>

regadd[].d = H”A”;

regdata[].d = FTW0[7..0];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR7;

WHEN xWR7 =>

regadd[].d = H”B”;

regdata[].d = FTW0[15..8];

wr reg.d = gnd;

fud reg.d = vcc;

state = xFTW02;

WHEN xFTW02 =>

regadd[].d = H”B”;

regdata[].d = FTW0[15..8];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR8;

WHEN xWR8 =>

regadd[].d = H”C”;

regdata[].d = FTW0[23..16];
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wr reg.d = gnd;

fud reg.d = vcc;

state = xFTW03;

WHEN xFTW03 =>

regadd[].d = H”C”;

regdata[].d = FTW0[23..16];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR9;

WHEN xWR9 =>

regadd[].d = H”D”;

regdata[].d = FTW0[31..24];

wr reg.d = gnd;

fud reg.d = vcc;

state = xFTW04;

WHEN xFTW04 =>

regadd[].d = H”D”;

regdata[].d = FTW0[31..24];

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR10;

WHEN xWR10 =>

regadd[].d = H”0”;
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regdata[].d = H”78”;

wr reg.d = gnd;

fud reg.d = vcc;

state = xCFR0;

%End adding FTW0%

WHEN xCFR0 =>

regadd[].d = H”0”;

regdata[].d = H”78”;

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR11;

WHEN xWR11 =>

regadd[].d = H”1”;

regdata[].d = H”80”; –H”80”;

wr reg.d = gnd;

fud reg.d = vcc;

state = xCFR1; —-state = xCFR0;

WHEN xCFR1 =>

regadd[].d = H”1”;

regdata[].d = H”80”;

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR12;
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WHEN xWR12 =>

regadd[].d = H”2”;

regdata[].d = H”0”; – H”80”;

wr reg.d = gnd;

fud reg.d = vcc;

state = xCFR2;

WHEN xCFR2 =>

regadd[].d = H”2”;

regdata[].d = H”0”;

wr reg.d = vcc;

fud reg.d = gnd;

state = xWR13;

WHEN xWR13 =>

regadd[].d = H”3”;

regdata[].d = H”0”;

wr reg.d = gnd;

fud reg.d = vcc;

state = xCFR3;

WHEN xCFR3 =>

regadd[].d = H”3”;

regdata[].d = H”0”;

wr reg.d = vcc;

fud reg.d = gnd;
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state = xWR14;

WHEN xWR14 =>

regadd[].d = H”2”;

regdata[].d = H”C0”; % H”80”; Now clearing phase accum too

wr reg.d = gnd;

fud reg.d = vcc;

state = xWAITTRIGUP;

WHEN xWAITTRIGUP =>

wr reg.d = gnd;

fud reg.d = vcc;

regadd[].d = H”2”;

regdata[].d = H”C0”;

if(!trigger) then

state = xWAITTRIGUP;

else

regadd[].d = H”2”;

regdata[].d = H”C0”;

wr reg.d = vcc;

fud reg.d = gnd;

state = xWAITTRIGDOWN;

end if;

WHEN xWAITTRIGDOWN =>

regadd[].d = H”2”;
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regdata[].d = H”0”;

wr reg.d = gnd;

fud reg.d = gnd;

if(trigger) then

state = xWAITTRIGDOWN;

else

regadd[].d = H”2”;

regdata[].d = H”0”;

wr reg.d = gnd;

fud reg.d = gnd;

state = xWAITTRIGUP;

end if;

end case;

end;

B.2 profiler control2.tdf

TITLE ”Init and run the Wind Profiler”;

–% ********************** %

–% Wind Profiler radar %

–% ********************** %

–% March 2008 written by Dragana Perkovic, perfected by Joe McManus%

–% Modified by David - Mar 2009 %
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–% Filename: profiler control.tdf %

–% Description: This module inits and runs the radar %

–% 1) Once the module is enabled, it starts looping through the states to produce

the various signals %

–

–% Parameters: %

–% INPUTS: %

–% clk: Clock frequency - active by rising edges 10 MHz for now%

–% /enable: validates the data at the input and begins operation %

–% if /enable =0 then the module is enabled otherwise it is OFF %

–% WAIT0[15..0] - wait state 0 in no. of clk cycle of the FPGA clk%

–% WAIT1[15..0] - wait state 1 in no. of clk cycle of the FPGA clk%

–% WAIT2[15..0] - wait state 2 in no. of clk cycle of the FPGA clk%

–% WAIT3[15..0] - wait state 3 in no. of clk cycle of the FPGA clk%

–% WAIT4[15..0] - wait state 4 in no. of clk cycle of the FPGA clk%

–

–

–% OUTPUTS: %

–% switches[3..0] - PRF, DAQ trigger, AO trigger, DDS trigger%

–% state[3..0] - outputs the current state of this state machine for testing purposes.%

SUBDESIGN profiler control2

(

clk :INPUT;

enable :INPUT;

WAIT0[15..0] :INPUT;

WAIT1[15..0] :INPUT;
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WAIT2[15..0] :INPUT;

WAIT3[15..0] :INPUT;

WAIT4[15..0] :INPUT;

reset :INPUT;

DAQ FREQ[6..0] :INPUT;

AO FREQ[6..0] :INPUT;

state out[2..0] :OUTPUT;

counter value[15..0] :OUTPUT;

switches[3..0] :OUTPUT;

DAQ clock :OUTPUT;

AO clock :OUTPUT;

wait out AO[6..0] :OUTPUT;

)

VARIABLE

state: MACHINE OF BITS (s[2..0])

WITH STATES (

IDLE = B”000”,

STATE 1 = B”001”,

STATE 2 = B”010”,

STATE 3 = B”011”,

STATE 4 = B”100”,

STATE 5 = B”101”,

STATE 6 = B”110”);

AO state: MACHINE OF BITS (s1[1..0])

WITH STATES (
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IDLE AO = B”00”,

STATE 1 AO = B”01”,

STATE 2 AO = B”10”);

DAQ state: MACHINE OF BITS (s2[1..0])

WITH STATES (

IDLE DAQ = B”00”,

STATE 1 DAQ = B”01”,

STATE 2 DAQ = B”10”);

reg switches[3..0] :DFF;

wait count[15..0] :DFF;

reg switches DAQ :DFF;

wait count DAQ[6..0] :DFF;

reg switches AO :DFF;

wait count AO[6..0] :DFF;

BEGIN

reg switches[].(clk,clrn)=(clk,!enable);

wait count[].(clk,clrn)=(clk,!enable);

state.(clk,reset)=(clk,enable or !reset);

switches[]=reg switches[].q;

state out[]=s[];

counter value[]=wait count[].q;

reg switches DAQ.(clk,clrn)=(clk,!enable);
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wait count DAQ[].(clk,clrn)=(clk,!enable);

DAQ state.(clk,reset)=(clk,enable or !reset);

DAQ clock=reg switches DAQ.q;

reg switches AO.(clk,clrn)=(clk,!enable);

wait count AO[].(clk,clrn)=(clk,!enable);

AO state.(clk,reset)=(clk,enable or !reset);

AO clock=reg switches AO.q;

wait out AO[]=wait count AO[].q;

CASE(state)IS

WHEN IDLE =>

reg switches[].d = H”3”;

wait count[15..0].d = WAIT0[15..0];

if (enable or !reset) then state = IDLE;

else

state = STATE 1;

end if;

WHEN STATE 1 =>

reg switches[].d = H”3”;

if (wait count[15..0].q == H”1”) then

state = STATE 2;

wait count[15..0].d = WAIT1[15..0];

else

wait count[15..0].d = wait count[15..0].q-1;
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state = STATE 1;

end if;

WHEN STATE 2 =>

reg switches[].d = H”B”;

if (wait count[15..0].q == H”1”) then

state=STATE 3;

wait count[15..0].d = WAIT2[15..0];

else

wait count[15..0].d = wait count[15..0].q-1;

state = STATE 2;

end if;

WHEN STATE 3 =>

reg switches[].d = H”D”;

if (wait count[15..0].q == H”1”) then

state=STATE 4;

wait count[15..0].d = WAIT0[15..0];

else

wait count[15..0].d = wait count[15..0].q-1;

state = STATE 3;

end if;

WHEN STATE 4 =>

reg switches[].d = H”A”; –H”2”;

if (wait count[15..0].q == H”1”) then

state=STATE 5;
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wait count[15..0].d = WAIT1[15..0];

else

wait count[15..0].d = wait count[15..0].q-1;

state = STATE 4;

end if;

WHEN STATE 5 =>

reg switches[].d = H”A”;

if (wait count[15..0].q == H”1”) then

state = STATE 6;

wait count[15..0].d = WAIT2[15..0];

else

wait count[15..0].d = wait count[15..0].q-1;

state = STATE 5;

end if;

WHEN STATE 6 =>

reg switches[].d = H”C”;

if (wait count[15..0].q == H”1”) then

state = STATE 1;

wait count[15..0].d = WAIT0[15..0];

else

wait count[15..0].d = wait count[15..0].q-1;

state = STATE 6;

end if;

end case;
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CASE(DAQ state)IS

WHEN IDLE DAQ =>

reg switches DAQ.d = B”0”;

wait count DAQ[6..0].d = DAQ FREQ[6..0];

if (enable or !reset) then DAQ state = IDLE DAQ;

else

DAQ state = STATE 1 DAQ;

end if;

WHEN STATE 1 DAQ =>

reg switches DAQ.d = B”1”;

if (wait count DAQ[6..0].q == H”1”) then

DAQ state = STATE 2 DAQ;

wait count DAQ[6..0].d = DAQ FREQ[6..0];

else

wait count DAQ[6..0].d = wait count DAQ[6..0].q-1;

DAQ state = STATE 1 DAQ;

end if;

WHEN STATE 2 DAQ =>

reg switches DAQ.d = B”0”;

if (wait count DAQ[6..0].q == H”1”) then

DAQ state = STATE 1 DAQ;

wait count DAQ[6..0].d = DAQ FREQ[6..0];

else

wait count DAQ[6..0].d = wait count DAQ[6..0].q-1;

DAQ state = STATE 2 DAQ;
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end if;

end case;

CASE(AO state)IS

WHEN IDLE AO =>

reg switches AO.d = B”0”;

wait count AO[6..0].d = AO FREQ[6..0];

if (enable or !reset) then AO state = IDLE AO;

else

AO state = STATE 1 AO;

end if;

WHEN STATE 1 AO =>

reg switches AO.d = B”1”;

if (wait count AO[6..0].q == H”1”) then

AO state = STATE 2 AO;

wait count AO[6..0].d = AO FREQ[6..0];

else

wait count AO[6..0].d = wait count AO[6..0].q-1;

AO state = STATE 1 AO;

end if;

WHEN STATE 2 AO =>

reg switches AO.d = B”0”;

if (wait count AO[6..0].q == H”1”) then

AO state = STATE 1 AO;
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wait count AO[6..0].d = AO FREQ[6..0];

else

wait count AO[6..0].d = wait count AO[6..0].q-1;

AO state = STATE 2 AO;

end if;

end case;

end;
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APPENDIX C

CONTROL SUBSYSTEM .C PROGRAM

/* —————————————————————————–

* C program for WIND PROFILER

* Read data from a parameter file and send it to serial port

* D. Garrido – Sep 2009

* (using ”sonic” - S.J. Frasier - Sept 2000 & ”trial c code” from Marine Radar)

*

* usage: windprofiler <file name>

* —————————————————————————–

*/

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <string.h>

#include <time.h>

#include <termios.h>

#include <sys/stat.h>

#include <stdint.h>

#include <stdlib.h>

#include <signal.h>

#include <math.h>
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#include <errno.h>

#include <ctype.h>

#include <stddef.h>

#define FALSE 0

#define TRUE 1

#define COMM ”/dev/ttyS0” /* default serial port */

#define NUM PARAM 10

int main (int argc, char *argv[])

{

/* variable definition */

float num;

char datafile[40], commport[40], line[256], day[4], month[4], date[3], time[9], year[5],

var[5],c; FILE *fp;

float params[NUM PARAM];

char *sign ptr;

int port,cntr line,i;

struct termios termio;

size t param check;

double fpga clk freq,daq freq, ao freq, dds cntr freq,chirp bw, dds clk;

float txPulse, txPulse numb,extra pulse width,prf, prf numb, ddsStart, delay;

unsigned int DFTW, DFRRW,FTWO;

unsigned int WAIT0,WAIT1,WAIT2,WAIT3,WAIT4,WAIT5, WAIT6, WAIT7;
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u int16 t txPulse reg, daq freq reg, numb sampls reg, ao freq reg ;

u int8 t DFTW0, DFTW1, DFTW2, DFTW3, DFRRW0, DFRRW1, FTWO0, FTWO1,

FTWO2, FTWO3;

u int8 t WAIT00 reg,WAIT01 reg,WAIT10 reg,WAIT11 reg,WAIT20 reg;

u int8 t WAIT21 reg,WAIT30 reg,WAIT31 reg,WAIT40 reg,WAIT41 reg;

u int8 t WAIT50 reg,WAIT51 reg, WAIT60 reg, WAIT61 reg, WAIT70 reg,WAIT71 reg;

u int8 t txPulse reg0, txPulse reg1, daq freq reg0, daq freq reg1, ao freq reg0, ao freq reg1,

delay reg;

/* use ”wind params.dh” as a default file */

if (argc == 1)

strcpy(datafile, ”wind params.dh”);

/* use first argument in command line as parameter file */

if (argc == 2)

strcpy(datafile, argv[1]);

/* check for too many arguments */

if (argc > 2)

{

printf(”Wrong number of arguments. n”);

printf(”Calling syntax: windprofiler <file name> n”);

return(FALSE);

}
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/* open parameter file for reading only*/

if ((fp = fopen(datafile, ”r”)) == NULL)

{

printf(”Error opening %s n”, datafile);

fclose(fp);

close(port);

return(FALSE);

}

/* read from parameter file to obtain the Wind Profiler parameters */

for (cntr line = 0; cntr line < NUM PARAM; cntr line++)

{

/* lets get the lines */

if (fgets(line,sizeof line,fp) == NULL)

{

printf(”Error: File line cannot be read”);

fclose(fp);

return 0;

}

/* Searching for ’= sign in line */

if ((sign ptr = strchr(line,’:’)) == NULL)

{

printf(”Error: Line improperly written. It is missing a ’: sign. n”);

fclose(fp);

return 0;
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}

/* Reading in Parameters */

/*if(cntr line == 0)

{

param check = sscanf(sign ptr+sizeof(char),”%s %s %s %s %s”, day,month,date,time,year);

}

else

{*/

param check = sscanf(sign ptr+sizeof(char),”%s”,var);

//}

if (param check <= 0 )

{

printf(”Error: Wind Profiler Radar parameter incorrectly set in %s:%d n”,datafile,cntr line);

fclose(fp);

return 0;

}

/*if(cntr line > 0)

{*/

params[cntr line]=atof(var);

//}

}

/* close parameter file */

fclose(fp);
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printf(”*************Entering FPGA programming routine*********** n”);

/* copy parameter values to variables */

fpga clk freq = 10*1e6;

dds cntr freq = params[0]*1e6;

chirp bw = params[1]*1e6;

txPulse = params[2]*1e-3;

prf = params[3];

ao freq=params[5]*1e3;

daq freq = params[4]*1e3;

delay=6*1e-6;

/* print out parameter values */

//printf(”Day Month Date Time and Year: %s %s %s %s %s n”,day,month,date,time,year);

printf(”dds cntr freq: %f MHz n”, dds cntr freq*1e-6);

printf(”chirp bw: %f MHz n”, chirp bw*1e-6);

printf(”txPulse: %f ms n”, txPulse*1e3);

printf(”PRF: %f Hz n”,prf);

printf(”fpga clk freq: %f MHz n”,fpga clk freq*1e-6);

printf(”daq freq: %f KHz n”, daq freq*1e-3);

/* calculate values to send */

ddsStart = dds cntr freq - (chirp bw/2.0);

87



dds clk = 8e8;

/* DFRRW Calculation */

DFRRW=2;// we are setting it to 1 for fastest update. Set to 0 if you want single

tone at starting f.

/* DFTW Calculation */

DFTW = (int)ceil((ldexp(chirp bw*DFRRW*prf/(dds clk*dds clk),35)));

printf(” n DFTW calculated value: %d”,DFTW);

/* FTWO Calculation */

FTWO = (int)ceil(ldexp(ddsStart/dds clk,32));

printf(” n FTWO calculated value: %d”,FTWO);

/* DFTW */

DFTW0 = DFTW & 0x00ff;

DFTW1 = (DFTW >> 8) & 0x00ff;

DFTW2 = (DFTW >> 16) & 0x00ff;

DFTW3 = (DFTW >> 24) & 0x00ff;

printf(” n DFTW0 calculated value: %d”,DFTW & 0xff);

printf(” n DFTW1 calculated value: %d”,(DFTW >> 8) & 0xff);

printf(” n DFTW2 calculated value: %d”,(DFTW >> 16) & 0xff);

printf(” n DFTW3 calculated value: %d”,(DFTW >> 24) & 0xff);

/* DFRRW */

DFRRW0 = (DFRRW & 0x00ff);
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DFRRW1 = ((DFRRW >> 8) & 0x00ff);

/* FTWO */

FTWO0 = FTWO & 0x00ff;

FTWO1 = (FTWO >> 8) & 0x00ff;

FTWO2 = (FTWO >> 16) & 0x00ff;

FTWO3 = (FTWO >> 24) & 0x00ff;

printf(” n FTWO0 calculated value: %d”,FTWO & 0xff);

printf(” n FTWO1 calculated value: %d”,(FTWO >> 8) & 0xff);

printf(” n FTWO2 calculated value: %d”,(FTWO >> 16) & 0xff);

printf(” n FTWO3 calculated value: %d”,(FTWO >> 24) & 0xff);

/* DAQ Sampling Frequency (16 bits) */

daq freq reg = ceil(fpga clk freq/(daq freq*2));//If we use David’s blocks to generate

the clocks

printf(” daq freq reg = %d n”,daq freq reg);

daq freq reg0 = daq freq reg & 0x00ff;

daq freq reg1 = (daq freq reg >> 8) & 0x00ff;

/* AO Sample frequency (16 bits) */

ao freq reg = ceil(fpga clk freq/(ao freq*2)); //If we use David’s blocks to generate

the clocks

printf(” ao freq reg = %d n”,ao freq reg);

ao freq reg0 = ao freq reg & 0x00ff;

ao freq reg1 = (ao freq reg >> 8) & 0x00ff;

/* Calculate the delay between PRF and the trigger for the DDS*/
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delay reg = (unsigned int)round(delay*fpga clk freq) & 0xffff;

printf(”The delay between PRF and the transmit pulse is: %d n”,delay reg);

/* Calculate the number of clock cycles in the PRF period*/

prf numb = ceil(fpga clk freq/prf);

printf(”The number of clock cycles in a PRF is: %f n”, prf numb);

/*Calculate the number of clock cycles in the txPulse width*/

txPulse numb = ceil(fpga clk freq / prf);

printf(”The number of cycles in the transmit pulse is: %f n”,txPulse numb);

/* Calculate the wait for each of the states and the DDS parameters*/

WAIT1=(unsigned int) round(prf numb/4)-delay reg;

WAIT00 reg = delay reg & 0x00ff;//LSB

WAIT01 reg = (delay reg >> 8) & 0x00ff;//MSB

printf(”WAIT0 is: %d n”,prf numb/2);

//Define the first delay (between PRF and DDS Trigger) - WAIT1

printf(”WAIT1 is: %d n”,WAIT1);

WAIT10 reg = WAIT1 & 0x00ff; // LSB

WAIT11 reg = (WAIT1 >> 8) & 0x00ff; //MSB

//Define the 2nd delay

WAIT2= (unsigned int) round(prf numb/4);
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printf(”WAIT2 is: %d n”,WAIT2);

WAIT20 reg = WAIT2 & 0x00ff;//LSB

WAIT21 reg = (WAIT2 >> 8) & 0x00ff;//MSB

//Define the third delay

WAIT3 = WAIT2;

printf(”WAIT3 is: %d n”,WAIT3);

WAIT30 reg = WAIT3 & 0x00ff; //LSB

WAIT31 reg = (WAIT3 >> 8) & 0x00ff; //MSB

//Define the forth delay

WAIT4 = WAIT3;

printf(”WAIT4 is: %d n”,WAIT4);

WAIT40 reg = WAIT4 & 0x00ff; //LSB

WAIT41 reg = (WAIT4 >> 8) & 0x00ff; //MSB

//Define the fifth delay

WAIT5 = (unsigned int) round((prf numb - (txPulse numb + delay reg))/2);

printf(”WAIT5 is: %d n”,WAIT5);

WAIT50 reg = WAIT5 & 0x00ff; //LSB

WAIT51 reg = (WAIT5 >> 8) & 0x00ff; //MSB

//Define the sixth delay -

WAIT60 reg = WAIT5 & 0x00ff;

WAIT61 reg = (WAIT5 >> 8) & 0x00ff;

printf(”WAIT6 is: %d n”,WAIT5);

//Define the seventh delay - it’s unused now
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printf(”WAIT7 is: %d n”,WAIT3);

WAIT70 reg = WAIT3 & 0x00ff;

WAIT71 reg = (WAIT3 >> 8) & 0x00ff;

/* open serial port */

strcpy(commport, COMM);

//printf(”Opening serial port %s n”, commport);

if ((port = open(commport, O WRONLY — O SYNC)) < 1)

{

printf(”Error opening %s n”, commport);

return(0);

}

/* set I/O baud rate to 9600 */
tcflush(port, TCIOFLUSH);
tcgetattr(port, &termio);
cfsetispeed(&termio, B9600);
cfsetospeed(&termio, B9600);
/* set serial port configuration */

termio.c cflag —=(CLOCAL—CREAD);
termio.c cflag &= PARENB;
termio.c cflag &= CSTOPB;
termio.c cflag &= CSIZE;
termio.c cflag —= CS8;
termio.c lflag &= (ICANON—ECHO—ECHOE—ISIG);
termio.c iflag &= INPCK;
termio.c iflag —= IGNPAR;
termio.c iflag &= ISTRIP;
termio.c iflag &= (IXON—IXOFF—IXANY);
termio.c oflag &= OPOST;

if (tcsetattr(port, TCSANOW, &termio) == -1)
{
printf(”Error setting port speed n”);
close(port);
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return(0);
}

/* 3 starting bytes necessary for the FPGA */
c=0x00;
write(port, &c, 1);
usleep(1000);
write(port, &c, 1);
usleep(1000);
write(port, &c, 1);
usleep(1000);

/* Parameters */
c=0x01;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT00 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT01 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x02;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT10 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT11 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x03;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT20 reg;
write(port, &c, sizeof(c));
usleep(1000);
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c=(char) WAIT21 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x04;

write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT30 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT31 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x05;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT40 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT41 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x06;
write(port, &c, sizeof(c));
c=(char) WAIT50 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT51 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);
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c=0x07;
write(port, &c, sizeof(c));
c=(char) WAIT60 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT61 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x08;
write(port, &c, sizeof(c));
c=(char) WAIT70 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) WAIT71 reg;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x09;
//c=0x09;
write(port, &c, sizeof(c));
c=(char) DFTW0;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) DFTW1;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x0a;
//c=0x0a;
write(port, &c, sizeof(c));
c=(char) DFTW2;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) DFTW3;
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write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x0b;
//c=0x0b;
write(port, &c, sizeof(c));
c=(char) DFRRW0;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) DFRRW1;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x0c;
//c=0x0c;
write(port, &c, sizeof(c));
c=(char) FTWO0;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) FTWO1;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x0d;
//c=0x0d;
write(port, &c, sizeof(c));
c=(char) FTWO2;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) FTWO3;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);
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c=0x0e;
write(port, &c, sizeof(c));
c=(char) daq freq reg0;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) daq freq reg1;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

c=0x0f;
write(port, &c, sizeof(c));
c=(char) ao freq reg0;
write(port, &c, sizeof(c));
usleep(1000);
c=(char) ao freq reg1;
write(port, &c, sizeof(c));
usleep(1000);
c=0x00;
write(port, &c, sizeof(c));
usleep(1000);

/* control byte meaning end of parameters this will start indicate the end of writing
to memory from serial
port and the availability of data for reading */
c=0xfe;
//write(port, &c, sizeof(c));
write(port, &c, sizeof(c));
usleep(1000);
/* close serial port */
close(port);

return(TRUE);
}
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