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Resumen 
 
Este Trabajo Final de Carrera (TFC) es la extensión de otro TFC con el mismo 
nombre. En el presente documento se amplia el trabajo iniciado por el ya 
consolidado grupo PicoRover del equipo Team FREDNET, participante en el 
Google Lunar X-Prize. 
 
El proyecto se realiza en colaboración con otros investigadores de múltiples 
nacionalidades y disciplinas por lo que requiere formar parte de un equipo en 
un proyecto real de exploración lunar. 
 
En este trabajo se realizan tres partes bien diferenciadas entre ellas, pero no 
por ello menos importantes para el progreso de los vehículos, tanto del Rover 
lunar como del alunizador. 
 
La primera parte está centrada en los protocolos y estándares de los procesos 
de verificación y validación de la misión lunar del grupo Team FREDNET así 
como la generación de la documentación del Rover lunar llamado PicoRover. 
 
La segunda parte está dedicada a caracterizar un radio-enlace entre un satélite 
en Low Earth Orbit (LEO) y una estación de tierra amateur mediante balances 
de potencia para diferentes casos. 
 
Por último se realiza una implementación preeliminar del sistema de control de 
actitud del alunizador basado en una placa Field Programmable Gate Array 
(FPGA) y usando el simulador Moon2.0 de código abierto para probar y validar 
dicho subsistema. Este último apartado se realiza en colaboración con uno de 
los grupos de Team FREDNET llamado Lunar Lander y que están 
construyendo un prototipo de alunizador llamado Mark-I en Texas, Estados 
Unidos.  
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Overview 
 
 
This bachelor final work is a continuation of another TFC (Trabajo Final de 
Carrera) which has the same name as this. It is an improvement of the well 
consolidated PicoRover group from the Team FREDNET, contestant for the 
Google Lunar X-Prize. 
 
This project is performed in collaboration with other international and 
interdisciplinary researchers, it means, belongs to a real team of lunar 
exploration. In addition, working team, reports and decision taken are required 
skills. 
 
This work consists in three differentiated parts but, at a time, each one is 
important for the advancement of the Lunar Rover and Lunar Lander vehicles. 
 
First part is dedicated to verification and validation process for the Team 
FREDNET lunar mission as well as documents generation for the so called 
PicoRover Lunar Rover. 
 
Second part is focused in a narrow link between a Low Earth Orbit (LEO) 
satellite and an amateur ground station. For this reason, a link-budget is done. 
 
Finally, third part is a preliminary implementation of an attitude control system 
of the Lunar Lander based on a Field Programmable Gate Array (FPGA) board; 
using the open source Moon2.0 simulator in order to test and validate this 
subsystem. This last section is done in collaboration of one of the Team 
FREDNET groups called Lunar Lander Group as a part of one of the Lunar 
Lander prototypes, the Mark-I, in Texas, USA. 
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1 INTRODUCTION 
 
We are taken part of Google Lunar X Prize[1] competition being active 
members of Team FREDNET[2]. 
 
The past year, the Rover Group which is part of the Team FREDNET, proposed 
a kind of rover competition based on the idea of parallel development. This idea 
only could be implemented in an Open Source based team like Team 
FREDNET. Other teams have to focus their efforts due to the reduced number 
of components while Team FREDNET has a constant flow of involved people. 
The first competitor was Joerg Schnyder who developed from the scratch the so 
called Wheeled Rover Vehicle 1 (WRV1). This design has four straight wheels 
the body rover is divided by the steering unit. The second competitor was 
Tobias Krieger who developed and made the so called Just another lunar rover 
(JALURO). This rover is based on two wheels and the body is in the bottom of 
them. Finally, the third competitor was Joshua Tristancho who developed the so 
called Pico-Rover. This rover is based in a single wheel in form of ball self-
driven. 
 
The PicoRover group is formed by a local team of students and a teacher from 
the UPC in Spain. Because is a collaborative competition we take part in some 
system development in the whole mission. Team FREDNET is organized as a 
matrix. Each group has the System, the Hardware and the Software department 
which are represented by Joshua, Enric and Raúl. We have added a fourth 
member who is in charge of Quality Control represented by Andrés and 
independent of the PicoRover group by definition. 
 
Following we present the objectives for the PicoRover group reflected in the 
present Bachelor Final Work. Joshua Tristancho will be in charge of system 
design and coordinate the PicoRover group. Enric Fernández will be in charge 
of some hardware like the Bus CAN-Do Board and the PicoSAR micro-RADAR. 
Raúl Cuadrado will be in charge of programming some software like the 
PicoRover Short-Range Communication System and the PicoRover Attitude 
and Thrust Control. Finally, Andrés Petilo will be in charge of some 
documentation like the System Requirements Document, the System Design 
Document, the Program Management Plan and the System Engineering 
Management Plan and the Lunar Lander Attitude and Thrust Control. 
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2 ACRONYMS, ABBREVIATIONS AND DEFINITIONS 
 
 
DAL Design Assurance Level 
CEH Complex Electronic Hardware 
ASIC Application Specific Intregrated Circuits 
PLD Programmable Logic Device 
FPGA Field Programmable Gate Array 
COTS Commerial Off The Self 
CBA Circuit Board Assemblies 
LRU Line Replaceable Units 
ARP Aerospace Recommended Practice 
FHA Functional Hazard Assessment 
PSSA Preliminary System Safety Assessment 
SSA System Safety Assessment 
CCA Common Cause Analysis 
 
GLXP Google Lunar X-Prize 
RV Reusable Vehicle 
SSO Single Spend to Orbit 
GMT Greenwich Meridian Time 
EIRP Equivalent Isotropically Radiated Power 
MCU Main Control Unit 
LNB Low Noise Block 
SNR Signal to Noise Ratio 
DSSS Direct Sequence Spread Spectrum 
PRN Pseudo-Random Numerical 
 
SRAM Static Random Access Memory 
LE Logic Elements 
BGA Ball Grid Array 
JTAG Joint Test Action Group 
AMD Advanced Microprocessor Device 
ACA Attitude Control Algorithm 
RTS/CTS Request To Send/Clear To Send 
LCD Liquid Crystal Display 
LED Light Emitting Diode 
CPU Central Processing Unit 
RS-232 Recommended Standard 232 
SDK Software Development Kit 
SOPC System On a Programmable Chip 
HDL Hardware Description Language 
EDA Electronic Device Automation 
AHDL Altera Hardware Description Language 
VHDL  [From Very High-Speed Integrated Circuit (VHSIC)] Hardware 

Description Language 
GUI Graphical User Interface 
UART Universal Asynchronous Receiver/Transmitter 
LLEC Lunar Lander Engine Control 



  

 

 
 
RLC/RRC  
MSTEP It is a hardware multiplier 
GERMS Mnemonic for the minimal command set: 
 Go, 
 Erase flash, 
 Relocate next download, 
 Memory set and dump, 
 Send S-records 
ROM Rean Only Memory 
PIO Parallel Input/Output 
TCL Tool Command Language 
V&V Validation and Verification 
SIL Software In the Loop 
HIL Hardware In the Loop
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3 IMPLEMENTATION AND VERIFICATION PROCESS 
 

3.1 Quality control 
 
To develop an entire project the team must adhere to local, regional, national 
and international laws and regulations in all aspects for the different tasks. In 
order to qualify the project the PicoRover Group provides the Quality Control.  
The aim of this section is to ensure that the performed work meets the 
standards. It is important to remark that standards are taken under 
consideration since the first stage in the development processes to make easier 
the review task. The basic standards in safety to guide the project are explained 
below. 
 

3.2 DO-178B 
 
Software Considerations in Airborne Systems and Equipment Certification is the 
title given to this document. It is necessary to establish a Design Assurance 
Level (DAL) which is determined from the safety assessment process and 
hazard analysis by examining the effects of a failure condition in the system. 
The failure conditions are categorized by their effects on the aircraft and crew 
and passengers. 

• Catastrophic: failure may cause a crash. 
• Hazardous: failure has a large negative impact on safety or performance, 

or reduces the ability of the crew to operate the aircraft due to physical 
distress or a higher workload, or causes serious or fatal injuries among 
the passengers. 

• Major: failure is significant, but has a lesser impact than a Hazardous 
failure (for example, leads to passenger discomfort rather than injuries). 

• Minor: failure is noticeable, but has a lesser impact than a Major failure 
(for example, causing passenger inconvenience or a routine flight plan 
change). 

• No Effect: failure has no impact on safety, aircraft operation, or crew 
workload 

 
Now, processes are intended to support the objectives, according to the 
software level. Processes are described as abstract areas of work in DO-178B, 
and it is up to the planners to define and document the specifics of how a 
process will be carried out. That provides a great deal of flexibility in regard to 
following different styles of software life cycle. However, once an activity within 
a process has been defined, it is generally expected that the project respect that 
documented activity within its process. Furthermore, processes (and their 
concrete activities) must have well defined entry and exit criteria and must show 
that it is respecting those criteria as it performs the activities in the process. 
The intention of DO-178B is not to be prescriptive. Therefore, it allows many 
possible and acceptable ways. 
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Software can assist, handle or help in the DO-178B processes. All tools used 
for DO-178B development must be part of the certification process. Tools 
generating embedded code are qualified as development tools, with the same 
constraints as the embedded code. Tools used to verify the code (simulators, 
test execution tool, coverage tools, reporting tools, etc.) must be qualified as 
verification tools.  
Outside of this scope, output of any used tool must be manually verified by 
humans. 
 

3.3 DO-254 
 
The objective of this document is to provide guidance for those aspects of the 
acceptance process for avionic systems impacted by the use of Complex 
Electronic Hardware (CEH). This guidance is stated to be applicable, but not 
limited, to the following hardware items: 
 

• Custom micro-coded components, such as Application Specific 
Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) 
and Programmable Logic Devices (PLDs). 

• Integrated technology components, such as hybrids and multi-chip 
modules. 

• Commercial-Off-The-Shelf (COTS) components. 
• Circuit Board Assemblies (CBAs). 
• Line Replaceable Units (LRUs). 

 
Is remarkable the fact that there is a huge potential for the replacement of a 
microprocessor or obsolete Application Specific Integrated Circuit (ASIC) with 
an FPGA, or, indeed, by the replacement of an obsolete circuit board with a 
single FPGA. 
 
In conclusion, the full scope stated in DO-254 is that it can be applied to the 
development of CEH at all levels of integration from Integrated Circuits to Circuit 
Board Assemblies and LRUs. 
 

3.4 SAE International Aerospace Recommended Practice 
 
SAE International - "the Engineering Society for advancing mobility - Land, Sea, 
Air, Space" publish various ARPs (Aerospace Recommended Practice) to aid 
industry in achieving required standards. 
 

3.4.1 SAE ARP 4754 
 
Certification considerations for highly-integrated or complex aircraft systems is 
the name of the document. It discusses the certification aspects of highly-
integrated or complex systems installed on aircraft, taking into account the 
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overall aircraft operating environment and functions. So, it excludes specific and 
detailed systems, software and hardware design processes. 
Guidelines are intended to provide a common international basis for 
demonstrating compliance with airworthiness requirements applicable  to the 
systems that integrate multiple level functions and have failure modes with the 
potential to result in unsafe aircraft operating conditions. 
 
An important part referring to quality control is the validation process model. 
The process includes specific assessments conducted and updated during 
system development and interacts with the other system development 
supporting processes. The primary safety assessment processes are listed 
below. 

• Functional Hazard Assessment (FHA): examines aircraft and system 
functions to identify potential functional failures and classifies the 
hazards associated with specific failure conditions. The FHA is 
developed early in the development process and is updated as new 
functions or fault conditions are identified. 

• Preliminary System Safety Assessment (PSSA): establishes specific 
system and item safety requirements and provides preliminary indication 
that the anticipated system architecture can meet those safety 
requirements. The PSSA is updated throughout the system development 
process. 

• System Safety Assessment (SSA): collects, analyzes, and documents 
verification that the system, as implemented, meets the system safety 
requirements established by the FHA and the PSSA. 

• Common Cause Analysis (CCA): establishes and validates physical and 
functional separation and isolation requirements between systems and 
verifies that these requirements have been met. 

 
This section of the document provides guidance and recommendations covering 
what safety analyses are most appropriate for each failure condition 
classification and how to apply the results of the various safety assessment 
processes at each stage of system development. This includes identifying 
functional safety requirements and applicable derived safety requirements. 
A very graphical representation of which processes would include a real project 
development is given below. 
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         Fig.1. Certification process 

3.4.2 SAE ARP 4761 
 
ARP4761 provides "Guidelines And Methods For Conducting The Safety 
Assessment Process On Civil Airborne Systems And Equipment" it defines 
processes for using common modeling techniques to asses the safety of a 
system. It is usually a companion to ARP 4754. 
 
 

3.5 PicoRover LifeCycle 
 
It is necessary to represent the sequence of steps in a project life-cycle 
development. It describes the activities and results that have to be produced 
during product development.  
In response to the need of being compliance with the referred standards the 
group has configured various measures to establish a work plan. 
In the resulting design exists a distinction between system, subsystem and 
component, three levels of hierarchy that are relative to each part of the project. 
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3.5.1 System engineering process 
 
The system engineering development uses a top-down approach. This life-cycle 
orientation gives strength to the initial definition of system requirements and an 
interdisciplinary team approach. This process involves a series of steps placed 
in a logical way based on requirements. So coordination, communication or 
traceability are remarkable aspects of the model.  
 

 
• Identify the need: Win the GLXP based on Mission Requirements 
• Feasibility study: Can a Picorover win the GLXP? 
• Define requirements and design criteria  
• Functional analyses and Functional allocation to subsystems 
• Identify the preferred system configuration  

 

3.5.2 Spiral Process Life Cycle  
 
The Spiral Process Life Cycle is a graphical representation of the system 
development life-cycle. It represents the main stages to be taken in conjunction 
with the corresponding deliverables within system validation framework. 
The next figure graphically explains the model that the group has decided to 
take as reference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Fig.2. Spiral model 
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Here is the view of the resulting process being followed: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig.3. Picorover Spiral process 
 

As it is shown in the figure many steps have been done, these are: 

• Need: Win the GLXP  
• System Requirement Determination  
• Feasibility Analysis  
• System Analysis  
• System Specification  
• System Prototype: Picorover1degree  
• Conceptual Review  
• Function Definition  
• Requirements Allocation  
• Trade-Off Studies  
• Select Design  
• Synthesis  
• Test and Review  
• Detail Requirements  
• Component Design Components  
• Evaluation and Optimization  
• Equipment Definition  
• Operational Prototype: Picorover1.3degrees  
• Formal Design Review  
• Final Implementation  
• Operation  
• Storage 
• Disposal 
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3.5.3 Program of Documentation  
 
The amount of information obtained during the processes is stored basically on 
five documents which form the program of documentation. Current versions of 
documentation are included in the Annexes. It is also available the last version 
in the Team FREDNET wiki at: 
http://wiki.teamfrednet.org/index.php/Picorover_LifeCycle#Program_of_Docume
ntation  
 

3.5.3.1 ConOps Document 
 
The ConOps document is focused on the clients giving them answers to why to 
win and where to dedicate the prize. 
http://wiki.teamfrednet.org/index.php/Picorover_ConOps  
 

3.5.3.2 System Requirements Document 
 
The System Requirements Document contents the list of the specifications 
required for the mission systems and subsystems. 
http://wiki.teamfrednet.org/index.php/Picorover_Requirements  

3.5.3.3 System Design Document 
 
The System Design Document is a list with the features of each subsystem, 
component selection and the preferred configuration. Blueprints and schemes 
are also included in this document. 
http://wiki.teamfrednet.org/index.php/Picorover_Design  
 

3.5.3.4 Program Management Plan 
 
The Program Management Plan covers the organization design and role 
definition for each person in the PicoRover group. Cost analysis is also included 
in the plan. 
http://wiki.teamfrednet.org/index.php/Picorover_Program_Management_Plan  
 

3.5.3.5 System Engineering Management Plan 
 
The System Engineering Management Plan defines the manufacture of 
products and its operation processes. 
http://wiki.teamfrednet.org/index.php/Picorover_Engineering_Management_Pla
n 
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4 N-PRIZE LINK BUDGET 
 

4.1 N-Prize reviews 
 
The N-Prize is a free challenge, in force since November 18, 2008, to launch a 
satellite into orbit complying stern budgets in exchange for a cash prize. It is 
aimed at amateurs and intendeds to encourage creativity, originality and 
inventiveness in the face of severe restrictions. 
 
The N-Prize offers two cash prizes in two categories, each of £9,999.99. One 
prize (the "reusable vehicle" or "RV" category) will be awarded to the first 
entrant to complete the challenge using a partially or wholly reusable launch 
system whose total cost of the launch vehicle exceeds £999.99.The other 
prize(called the "single-spend-to-orbit", or "SSO" category) will be awarded to 
the first entrant to complete the challenge with a total launch cost equal or less 
than £999.99, even if part or all of the launch vehicle is recovered. Like this, no 
single entry may win both prizes. 
 
The prizes in each category will be available for entrants whose satellites 
complete his 9th orbit before 19:19:09 (GMT) on the 19th September 2011. 
 
Safety is entirely the responsibility of the entrants and it is assumed that are 
aware of all risks to themselves, to third parties and to property, whether on the 
ground, on water, in the air or in space, arising through preparation for, 
participation in, or after completion of the N-Prize Challenge. To disregard of 
safety could be a possible reason for exclusion. 
In reference to legalties, the entry needs to be compliance with all necessary 
regulations though the N-Prize organisers do not require proof of compliance 
with them. So any penalties incurred as a result of failure to comply with 
relevant local, national or international regulations are entirely a matter for the 
entrants. 
 

• For the purposes of this challenge, the following definitions apply: 
• The 'Launch Site' is defined as the area from which the launch takes 

place. 
• The 'Launch Equipment' is defined as all items of hardware required for 

the launch, but which remain on the. Any items which are not required 
after a time 24 hours prior to the launch are not considered to be part of 
the launch equipment. 

• The 'Launch Vehicle' is defined as all items of hardware that leave the 
ground, including any fuel or other consumables. 

• The 'Satellite' is defined as the part of the launch vehicle that enters orbit 
around the Earth. If more than one item enters orbit must be defined, 
prior to launch, which item is to be considered the 'satellite'. 

 
The artifact must have a mass of between 9.99 and 19.99 grams, including the 
weight of any propellant or fuel. It may include shielding or fuel that takes its 
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weight over the 19.99 gram limit, but orbits will not count toward the 9 orbit 
target until such over-weight items have been jettisoned or consumed. As 
noted, other items may enter orbit with the satellite, but must not remain 
attached to it. Nor may the satellite be dependent upon the co-orbiting items in 
any way during the nine qualifying orbits. 
 
The satellite must complete a minimum of 9 orbits of the Earth, after its 
separation from or consumption of any items or consumables which put its 
weight over 19.99 grams. The orbits need not be regular, nor do they need to 
be at a constant altitude. No part of any orbit may be lower than 99.99 km 
above the surface of the earth and any method of attaining orbit is acceptable. 
 
Must be able to provide evidence that the satellite has completed a minimum of 
9 orbits of the Earth. The costs of providing this evidence do not form part of the 
budget, except for the costs of any equipment mounted on the launch vehicle to 
enable detection. There is no need to observe or track the satellite throughout 
its orbit, as long as sufficient data is collected to confirm that 9 orbits have taken 
place. Note also that proof may be required that a detected signal originates 
from the satellite itself. 
 
The budget for each launch is calculated differently for the SSO and RV 
categories. Our project is focused in the SSO, for this category the maximum 
cost of the launch, £999.99, should be enough to conduct a repeat of a 
successful mission, assuming that no part of the launch vehicle is recovered. 
The money is entirely the responsibility of the entrant and must cover the 
following: 
 
The cost of the launch vehicle, including the satellite itself, and any fuel, gases 
or other materials which it carries. 
Any items of the launch equipment that could not be re-used for a second 
identical launch. 
 
The cost that would be incurred for refurbishing, refilling, re-testing or otherwise 
preparing any launch equipment or any aspect of the launch site and any 
manufacturing costs for any parts of the launch vehicle; or for any parts of the 
launch equipment that would require replacement if a second identical mission 
were to be carried out. 
 
Any failed attempts can be considered prototype development, and hence do 
not count towards the budget. 
 
Items which need not be covered by the budget include prototyping costs; 
launch equipment or the launch site; licence fees, permissions etc; charges 
made for attendance by safety personnel; legal costs; medical costs; insurance 
costs; fines, penalties or loss of earnings arising from any cause whether prior 
to, during or after the mission; travel costs of people associated with the 
mission. 
 
Remark that donations of hardware are permitted but will be judged on a case-
by-case basis and entrants may not take benefit from other aerospace projects 
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or 'share' the cost of common hardware. If entrants seek sponsorship, the 
money that is spent on the launch vehicle and non-reusable launch equipment 
will be considered part of the budget. The organisers also reserve the right to 
exclude those whose primary objective seems to be to promote or advertise. 
 

4.2 Link budget 
 
It is compulsory to establish communication with the satellite to accomplish with 
requirements and guarantee that all is working fine. So, the team has decided to 
implement a transmitter on board to be able to have some kind of 
monitorization. 
 
Obviously, the more restrictive link is the one referred to the uplink due to the 
mass and budget restrictions of the satellite, so this is the considered direction 
of the link in the next budget. 
 
The radio link budget follows the Friis equation which looks like: 

 
PRX = EIRP – LFS – LMIS + GRX - LRX dBm 

 
EIRP = PTX + GTX - LTX dBm 

 
LFS = 10 * log(4 * π * R / λ) dB 

 
 
The idea is to reuse some Picorover devices, already available, such as 
PicoSAR or eZ430 MCU in order to minimize costs and effort. Then, some 
parameters will be defined by the existing machinery. The set parameters to 
consider are: 
 
EIRP 10.6 dBm 
LMIS 3 dB 
GRX 70 dB 
LRX 3 dB 
 
The EIRP is obtained from the output power which is able to give the eZ430 
MCU (0dBm) and the gain which PicoSAR is able to offer (10.6dB, transmission 
losses included). 
 
In reception, when the arriving signal is captured by the antenna it goes through 
the Low Noise Block (LNB) whose function is to amplify but also to down-
convert the signal to a lower frequency (specifically in L-band frequency) 
whether the frequency was 10GHz (it is much easier too to amplify a signal 
working in L-band than in X-band). The more common gains for the current 
equipment usually range from 60 to 70 dB, so the maximum value is to be 
considered for the present budget. 
 
Whereas, in mismatch and reception losses typical values of 3dB are choosen. 
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Now, the only parameter missing in the equation are the free space losses. 
Those depend on frequency and distance. Because PicoSAR is designed for 
working at 2.4 and 10 GHz we will take these values as reference and will 
considerate different distances that could match with different orbit position of 
the satellite. The resulting table is shown below: 
 

 5 50 100 200 500 1000 2000 3000 km
2,4 114,03 134,03 140,05 146,07 154,03 160,05 166,07 169,59 dB
10 126,42 146,42 152,44 158,46 166,42 172,44 178,46 181,98 dB

GHz dB dB dB dB dB dB dB dB  
 
 
Hence, we can apply Friis equation to calculate the power received in the Earth 
station: 
 

 5 50 100 200 500 1000 2000 3000 km 

2,4 -
39,43 

-
59,43 

-
65,45 

-
71,47 -79,43 -85,45 -91,47 -94,99 dB 

10 -
51,82 

-
71,82 

-
77,84 

-
83,86 -91,82

-
97,841

8 
-

103,86 
-

107,38 
dB 

GHz dB dB dB dB dB dB dB dB  
 
Now, it is easy to obtain the Signal to Noise Ratio (SNR): 
 

SNR = PRX / PN dB 
 

PN = 10 * log(k * T * B) dBW 
 
For the noise power two main values for the temperature must be taken into 
consideration. The first one is the equivalent for a beam pointing to the empty 
sky and the second corresponds to the equivalent noise temperature of the 
earth. Both cases work with a bandwidth of 1MHz: 
 

 1 MHz 
3 -133,83 dB 

290 -113,977 dB 
K dB  

 
The resultant SNR in downlink considering a bandwidth of 1MHz: 
 

 5 50 100 200 500 1000 2000 3000 km
2,4 94,40 74,40 68,38 62,36 54,40 48,38 42,36 38,84 dB
10 82,01 62,01 55,99 49,97 42,01 35,99 29,97 26,45 dB

GHz dB dB dB dB dB dB dB dB  
 
 
Note that, the resulting power values come from a signal that has not been 
modulated. Typical acceptable values for a correct reception range between 8 
and 12dB, which means that the signal would be correctly received for the 
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different situations exposed in the table. This results, let space for a margin that 
could be necessary to fight fading or other losses caused by negative 
atmospheric conditions. The margin could reach a value of, for example, 15dB. 
Like this even the worst case (3000km with a carrier of 10GHz) would continue 
being correctly received. 
 

4.3 Direct Sequence Spread Spectrum (DSSS) 
 
DSSS is a digital modulation technique where  transmissions are the 
combination of the data stream with a higher rate Pseudo Random Numerical 
(PRN) sequence via XOR function, thereby spreading the energy radiated of the 
original signal into a much wider band. The fact that uses direct sequence 
means it does not implement frequency hopping (jump from frequency to 
frequency). This codding modulation would be useful to ensure that the 
received signal is coming from our satellite. 
 
The IEEE 802.11 Standard specifies an 11 chip PRN sequence (Barker code). 
The value of the autocorrelation function for the Barker sequence is 1, -1, or 0 
at all offsets except zero, where it is 11. This makes for a more uniform 
spectrum, and better performance in the receivers. 
 
At the receiver, the pseudo random code is used to de-spread the received 
data. It is during this process that the matched filter rejects unwanted signals 
because it has low cross correlation with other sequences likely to interfere. By 
careful selection of the PRN sequence, the matched filter could provide 
rejection to multipath signals too. 
 
Three different configurations could be set for both frequencies. The first one 
and the second, both use a Barker sequence of length 11 the difference 
between them is that in one, the minimum data rate available is considered, 
while in the second is the highest rate. The last case considers the maximum 
processing gain that can be obtained from the eZ430 MCU device. The 
parameters are contained in the table below: 
 

 2.4 2.4 2.4 10 10 10 GHz 
Rb 1.2 45.454 1.205 1.2 45.454 1.205 kbps 
Rc 13.2 500 500 13.2 500 500 kcps 
Gp 10.4 10.4 26.18 10.4 10.4 26.18 dB 

 
Whether no interference is coming from the satellite at the same frequency from 
other users with other codes and no multipath signals are considered because 
of the use of a directive antenna in the ground station the equivalent Eb/N0 ratio 
is easily calculated:   
 

Eb/N0 = GP * (PRX / PN) 
 
Again the more restrictive way is the downlink and its respective noise powers 
for the different sets are the following: 
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Pn 1,2 45,454 kbps 

3 -163,038 -147,254 dB 
K dB dB  
 
Note that only two cases are referred for the three possible situations this is 
produced because after the de-spreading at the receiver, the bandwidth at 
baseband would be restored to the original one and the first case and third have 
got almost the same data rate (minimum available). 
 
The SNR are: 
 
SNR 5 10 100 200 500 1000 2000 3000 km 

2,4 123,61 103,61 97,59 91,57 83,61 77,59 71,57 68,05 1,2kbps 
2,4 107,83 87,83 81,81 75,79 67,83 61,81 55,79 52,27 45,454kbps
10 111,22 91,22 85,20 79,18 71,22 65,20 59,18 55,65 1,2kbps 
10 95,43 75,43 69,41 63,39 55,43 49,41 43,39 39,87 45,454kbps

GHz dB dB dB dB dB dB dB dB  
 
The resulting Eb/N0 are equal to the previous SNR plus the processing gain: 
 
Eb/No 5 10 100 200 500 1000 2000 3000 km 

2,4 134,01 114,01 107,99 101,97 94,01 87,99 81,97 78,45 1,2kbps 
2,4 118,23 98,23 92,21 86,19 78,23 72,21 66,19 62,67 45,454kbps
10 121,62 101,62 95,60 89,58 81,62 75,60 69,58 66,05 1,2kbps 
10 105,83 85,83 79,81 73,79 65,83 59,81 53,79 50,27 45,454kbps

 dB dB dB dB dB dB dB dB  
 
 
Finally, with these values which largely complies with the requirements could be 
known the Bit Error Ratio for every modulation such as BPSK, QPSK, etc. 
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5 FPGA DEVICE ANALYSIS 
 

5.1 FPGA device description 
 
The Field-Programmable Gate Array (FPGA) is an integrated circuit containing 
mixes of a wide range of embedded configurable peripherals and components 
such as SRAM, microprocessors, transceivers, I/O pins and connectors, diodes, 
buttons, diplays and logic blocks or routing. In essence, an FPGA consists of 
programmable logic elements (LEs) and a hierarchy of reconfigurable 
interconnects that allow the LEs to be physically connected and to perform from 
the simplest logic gates to complex combinational functions. 
 

5.2 Justification of use of an FPGA 
 
The team has thought of implementing the device, mainly, because of the 
strength to deal with problems relative to embedding systems designed to do 
specific task. This is largely due to the modular and extremely flexible nature of 
an FPGA. As long as it has enough resources, it could be used in replacement 
of any logical function that, for example, an Application-Specific Integrated 
Circuit (ASIC) could perform but with a series of advantages that the team has 
judged as determinants. 
 
A powerful tool like this accelerates prototyping processes since it incorporates 
typical useful modules to develop integrated circuits for signal processing 
systems or aerospace. Obviously, since the subsystems to work converge in a 
single device, it also carries a shorter time required to launch the desired 
system and a lower cost of researching, developping, designing and testing. 
 
Also, instead of being restricted to any predetermined hardware function, an 
FPGA allows to program the product features and functions and reconfigure 
hardware for specific applications also after the product has been realized. 
Then, an FPGA lengthens the life-cycle either to adapt the product over time or 
to mitigate the risks of obsolence. 
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5.3 FPGA specifications 
 
This section contains an overview of the components mounted on the board 
and a brief description of the features for those which have been used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. FPGA components 
 

5.3.1 The APEX 20K200EFC484 Device 
 
It is a 484-pin BGA package. Typical system module often occupies around 25 
percent of the logic on this device. 
 
Maximum system gates 526,000 
Typical gates 211,000 
LEs 8,320 
ESBs 52 
Maximum RAM bits 106,496 
Maximum macrocells  832 
Maximum user I/O pins  382 
 
The board provides two separate methods for configuring the APEX device: 

• A JTAG connection that can be used with Quartus II software via 
download cables. 

• A configuration controller that configures the APEX device at power-up 
from hexout files stored in the flash memory. 
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5.3.2 Flash Memory Chip 
 
AMD AM29LV800BB is a 1 Mbyte flash memory chip which is connected to the 
APEX device so that the Nios processor can use the flash as readable memory 
and non-volatile storage. That functionality must be useful for data storing or 
configuration files that implement the ACA32 reference design. 
 

5.3.3 SRAM Chips 
 
They are 256 Kbyte (64 K x 16-bit) asynchronous SRAM chips. They are 
connected to the APEX device so they can be used by the processor as zero-
wait-state memory. The two 16-bit devices are used in parallel to implement a 
32-bit wide memory subsystem. 
 

5.3.4 Serial Port Connector 
 
It is a standard DB-9 serial connector. The transmit (TXD) from the board, 
receive (RXD) by the board, clear to send (CTS) and ready to send (RTS) 
signals use standard high-voltage RS-232 logic levels so the buffer accepts 
3.3V signals to and from the APEX device. It can support onchip debug 
peripheral via a serial Y cable. Both pinout sets are shown in the image. 
 

    Fig.5. Serial port connector 
 

5.3.5 Configuration Controller 
 
The configuration controller is an Altera EPM7064 PLD. It comes factory-
programmed with logic that configures the APEX device from data stored in 
flash on power-up.  
 
In the first instance, the configuration controller will attempt to load the APEX 
device with user-configuration data. If this process fails the configuration 
controller will then load the APEX device with factory configuration data. Both 
are expected to be stored at fixed locations in flash memory. 
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0x100000 – 0x17FFFF 512 Kbytes Nios instruction and 
nonvolatile data space. 

0x180000 – 0x1BFFFF 256 Kbytes User-defined APEX 
device configuration 
data. 

0x1C0000 – 0x1FFFFF 256 Kbytes Factory-default APEX 
device configuration. 

 
With a jumper if short circuit is detected, the configuration controller will ignore 
the user-configuration and will run the factory-configuration to fight against any 
valid-but-nonfunctional user configuration. 
 

5.3.6 Two-digit 7-segment display 
 
It is connected to the APEX device so that each segment is individually 
controlled by a general-purpose I/O pin. 
 

5.3.7 Switches, buttons and LEDs 
 
Two LEDs are each controlled by an APEX device I/O. Each LED will light-up 
when the APEX device drives a logic-1 on its controlling output. 
Four push-button switches are also connected to an APEX device I/O. The 
APEX device will see a logic-0 when each switch is pressed. 
It must be said that the board uses dedicated switches SW2 and SW3 for the 
following fixed functions: 

• Reset: when SW2 is pressed, a logic-0 value is driven to the power-on 
reset controller and when it happens, the configuration controller will 
reload the APEX device from flash memory. 

• Clear: when SW3 is pressed, a logic-0 is driven onto the corresponding 
APEX pin, then the reference CPU will reset and start executing code 
from its boot-address. 

 

5.3.8 Power-supply circuitry 
 
The Nios development board runs from a 9-V, unregulated, center-negative 
input. On-board circuitry generates 1.8V, 3.3V, and 5V regulated power levels. 

• The 1.8-V supply is used exclusively for the APEX device core power 
source. 

• The 3.3-V supply is used as the power source for all APEX device I/O 
pins such as RS-232. Remark that the total load may not exceed 500 
mA. 

• The 5-V supply is present on JP12 connector and used, for example, to 
work with the LCD module. The total load may not exceed 50mA. 
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5.3.9 Clock Circuitry 
 
The Nios development board includes a 33.333 MHz oscillator and a zero-skew 
buffer that drive the APEX device. 
 

5.3.10 Avalon bus 
 
Avalon is an on-chip bus architecture designed for connecting on-chip 
processors and peripherals together into a system.  It is the interface that 
specifies the port connections between master and slave components, and 
specifies the timing by which these components communicate. Basic bus 
transactions transfer 8, 16, or 32 bits.  
 
The Avalon bus is an active, onchip bus architecture, which consists of logic 
and routing resources inside a PLD. Some principles of the architecture are: 

• The interface to peripherals is synchronous to the Avalon clock. 
• All signals are active LOW or HIGH. Multiplexers (not tri-state buffers) 

inside the Avalon bus determine which signals drive which peripheral. 
Peripherals are never required to tri-state their outputs, even when the 
peripheral is deselected. 

• The address, data and control signals use separate dedicated ports. 
 
 

5.4 Tools for the use of the FPGA 
 

5.4.1 Nios SDK Shell 
 
The Nios SDK Shell command line is developed in the bash environment that 
provides a UNIX-like environment on the platform. The tool includes most of the 
commands and utilities in UNIX but, additionally, many Nios-specific utilities for 
generating and debugging software. The most used commands are: 
 

• nios_bash: startup script to set the bash environment for Nios 
development (bash shell) 

• nios-build: script that invokes the tools to compile, assemble, and link 
source code. It ensures the standard C libraries and standard Nios 
libraries are linked with the user source code, and the associated paths 
are available. It also generates .dbg files to enable debug. 

• nios-run: utility for downloading and running a user file by performing 
terminal I/O. 
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     Fig.6. Nios SDK shell 
 

5.4.2 Quartus II 
 
The Quartus II development software provides a complete design environment 
for System-On-a-Programable-Chip (SOPC) design. The Quartus II software 
ensures design entry, processing, and straightforward device programming. 
 
The main Quartus II software logic design capabilities are: 

• Design entry using schematics, block diagrams or HDL 
• Floorplan editing 
• LogicLock incremental design 
• Powerful logic synthesis 
• Functional and timing simulation 
• Timing analysis 
• Embedded logic analysis 
• Software source file importing, creation, and linking to produce 

programming files 
• Combined compilation and software projects 
• Automatic error location 
• Device programming and verification  

 
Finally, here is presented the design flow to show a Quartus II project lyfe cycle. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

        Fig.7. Quartus II design flow 
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Because of the free license capabilities just the first block has been partially 
implemented (as it will be explained in the Lunar Lander Engine Control module 
design). This first stage is explained below. 
 
It can be used used the Quartus II Block Editor, Text Editor, MegaWizard Plug-
In Manager, and EDA design entry tools to create the design files in a project. 
Schematic or block designs can be created with the Block Editor, 
or AHDL, VHDL, or Verilog HDL designs with the Text Editor. The MegaWizard 
Plug-In Manager is helpfully to create design files for customized 
megafunctions. The Quartus II software also supports EDIF Input 
Files or Verilog Quartus Mapping Files generated by EDA design entry and 
synthesis tools. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. Quartus II design entry flow 
 
The Block Editor allows entering and editing graphic design information in the 
form of schematics and blocking diagrams. The Block Editor reads and 
edits Block Design Files (.bdf) that contain blocks and symbols that represent 
logic in the design. 
The Block Editor also provides a set of tools that help you connect blocks and 
primitives together, including bus and node connections and signal name 
mapping. You can change the Block Editor to display options, such as 
guidelines and grid spacing, rubberbanding, colors and screen elements, zoom, 
and different block and primitive properties to suit your preferences. 
The MegaWizard Plug-In Manager helps to create or modify design files that 
contain custom megafunction variations, which you can then instantiate in a 
design file. These custom megafunction variations are based on Altera provided 
megafunctions. It runs a wizard that helps to easily specify options for the 
custom megafunction variations. The wizard is able to use SOPC Builder. 
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   Fig.9. Quartus II MegaWizard plug-in manager 
 

5.4.3 System On a Programable Chip Builder 
 
SOPC Builder is an accessible tool through the Quartus II software for 
composing bus-based systems out of the provided library components. It 
creates a single system module that instantiates the list of specified 
components and generates automatically the bus logic on all system 
components. SOPC Builder provides output files for both synthesis and 
simulation. 
 
Its two main parts consist on: 

• A graphical user interface (GUI) for listing and arranging system 
components. Each component may also, itself, provide a graphical user 
interface for its own configuration. The GUI creates the system PTF fil 
which describes the system. 

 



FPGA device analysis   25� 

 

Fig.10. Altera SOPC Builder 
 

• A generator program that converts the PTF file into its hardware 
implementation. The generator program creates an HDL of the system 
and then synthesizes it for the selected target device. 

 
SOPC Builder has a set of built-in library components, including a UART, a 
timer, a PIO, an Avalon Tri-state bridge, and several simple memory interfaces. 
 
All valid library components are represented by a component’s class.ptf file 
which declares and defines all the information about that component so it can 
be recognized by SOPC Builder.  
 
In addition, a component’s library directory may also contain the logic that 
implements the component, software libraries and drivers that support the 
component. 
 
In summary when the SOPC Builder generates a design the resulting processes 
are: 

• The system memory map is checked for consistency. Peripheral 
addresses and interrupt priorities are verified to be unique and to fall 
within the range of valid entries for the CPU. If not, appropriate errors will 
be reported. 

• A custom software development kit (SDK) is generated for the new 
system. The SDK consists of a compiled library of software routines for 
the SOPC design, a Makefile for rebuilding the library, and C header files 
containing structures for each peripheral. 

• An HDL that describes the custom SOPC Module is generated. 
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5.5 Thrusters control 
 

5.5.1 Attitude control  
 
Quaternion Λ determinates attitude of a craft relative inertial coordinate system. 
 
 
 
 
 
 
 
 
 
i1, i2, i3 are body-fixed axes (X, Y, Z), 
Θ is an angle between body-fixed and inertial coordinate systems. 
 

, 
 
For a rigid body subject to external torques the non-linear equation of motion 
model are given by: 
 

 , 
 
Where: 
 
 
 
 
 
I is the moments of inertia tensor, , Ixy = Iyx, Iyz = Izy, Izx = Ixz, 
ω is the body rate, 
ωdot is the angular acceleration, 
M is the applied torque. 
If we use throttle guidance for thrusters, the thrust of k thruster is 
Pk=(Pk

nom+∆Pk)*Kthrollte k, k=1..6(?), 
 
where: 
Pk

nom is a nominal thrust of a k thruster, 
∆Pk is an error of the nominal thrust, 
Kthrollte k is a coefficient determined by a throttle (1 – full throttle). 
 
Forces from k thruster are calculated thus: 
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Fk x= Pk*cos(∆ψk)*cos(∆θk), 
Fk y=-Pk*sin(∆θk), 
Fk z= Pk*cos(∆ψk)*cos(∆θk), 
where ∆ψk, ∆θk are errors of k thruster installation. 
 
Torques (momentum) from thrusters are calculated thus: 
Mk = Fk×(Xcenter-of-mass-Xk), 
where 
Mk={Mx k, Myk, Mz k}T, Fk={Fx k, Fy k, Fz k}T 
Xcenter-of-mass = {Xc-o-m, Yc-o-m, Zc-o-m}T are coordinates of center-of-mass, 
Xk={Xk, Yk, Zk}T are coordinates of k thruster, 
× is crossproduct. 
 
I calculate steering momentum thus: 
Mi=-ri*ωdoti – hi*ωi –ki*λ0*λi, i=1(X), 2(Y), 3(Z) (ωdot isa angular acceleration) 
 
Then we need to choose some thrusters which can create momentum 
mentioned above. 
 
We know an angle of “moment action”: 
α*= MY/MZ 
and an angle of an applied force: 
α=α*-90º. 
 
Then we can choose 2 thrusters (if there are 6 thrusters on Mark I as I drew on 
the picture) which make a positive momentum (thrusters 1 and 2 on the picture) 
and 2 opposite thrusters which make a negative momentum (thrusters 4 and 5 
on the picture): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Fig.11. Lunar lander 
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MY 1 + MY 2 = 1/2 MY = 1/2 ( ∆P1*LZ 1 + ∆P2*LZ 2 ), 
MZ 1 + MZ 2 = 1/2 MZ = 1/2 ( -∆P1*LY 1 - ∆P2*LY 2), 
where LY 1 = Yc-o-m - Y1, LZ 1 = Zc-o-m - Z1, LY 2 = Yc-o-m - Y2, LZ 2 = Zc-o-m - Z2 
(we’ll pretend that LY 1 = LY 4, LZ 1 = LZ 4 and LY 2 = LY 5, LZ 2 = LZ 5). 
Hence ∆P1 and ∆P2 are 
∆P1 = 1/2 (MY*LY 2 + MZ*LZ 2) / ( LZ 1*LY 2 - LY 1*LZ 2 ) 
∆P2 = 1/2 (MY*LY 1 + MZ*LZ 1) / ( LZ 1*LY 2 - LY 1*LZ 2 ). 
 
So we need to change a thrust of 1,2 and 4,5 thrusters: 
P1

* = P1 + ∆P1, P2
* = P2 + ∆P2 

P4
* = P4 - ∆P1, P5

* = P5 - ∆P2 
Coefficients of throttles are (k=1,2,4,5): Kthrollte k

* = Kthrollte k + ∆Pk/Pk
nom. 

 
I don’t know how to look a throttle (something which damp a fuel flow) so I just 
use a delay of 0.01 second as a throttle model. Also I thought that diapason of 
throttling can be 1..0.5. 
 
Also I handled a task of craft attitude stabilization as keeping craft vertical 
orientation Λ relative inertial coordinate system of landing (look at picture). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Lunar lander attitude reference system 
 

5.5.2 Descent control 
 
Center-of-mass motion is determined by equation 
F=ma (2nd Newton's low) 
or 

, 
where 
F={Fx, Fy, Fz}T are applied forces in an inertial coordinate system, 
V={Vx, Vy, Vz}T are craft velocities, 
X={x, y, z}T are craft coordinates, 
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g = {0, 0, 9.8}T m/s2. 
If we know forces in the body-fixed coordinate system Fbfcs and orientation of a 
craft relative the inertial coordinate system Λ, we can calculate forces in the 
inertial coordinate system Fics: 

 
If we want to keep constant vertical velocity Vdescent during descent, the steering 
low is: 
Pctrl = -kv*(Vz-Vdescent) -ka*az 
Hence addition thrust is 
∆P = Pctrl / 6 (6 thrusters) 
Kthrollte k

** = Kthrollte k + ∆P / 6, k=1..6. 
 
 

5.6 Attitude Control Algorithm of the landing module 
 
For several reasons, including a better develop inicialization it has been decided 
to initially work with the standard 32-bit reference system which was previously 
implemented and contains a large list of components in his design where are 
included the required ones. 
 
This section concerns the Lunar Lander Engine Control (LLEC) and the Attitude 
Control Algorith (ACA) that would control the engine servos in a future. 
Remarkable is the fact that this is the first algorithm for the LLEC programmed 
in C-code, so a much easier Lunar Lander has been considered. So, here are 
presented the new considerations to make a more basic algorithm: 

• Four motors are available. 
• Each of them is placed in XY plane and located simetrically to the origin 

over each X/Y sexiamis. 
• The numbering of the engines is “motor n”, where “n” is a number from 1 

to 4 given to every engine, starting from positive x-axis and following a 
counterclockwise rotation. 

• Input data are hypothetic angle entrys from accelerometers or targeted 
angles in both X and Y axis (Z-axis has been neglected just to simplify 
mathemathics calculations). 

• Output data are hypothetic thrust for each of the engines expressed in 
percentage. 

• The current calculation for the thrust is linear to the angle entry. 
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5.6.1 ACA parameters 

The parameters the algorithm works with are listed and descripted in the given 
tables. 

• Inputs 

Field Range Units Description 

IMU_aX -180 to 180 degrees Inertial angle around X axis (Current) 

IMU_aY -180 to 180 degrees Inertial angle around Y axis (Current) 

Target_aX -180 to 180 degrees Commanded angle around X axis (Desired)

Target_aY -180 to 180 degrees Commanded angle around Y axis (Desired)

 

• Outputs 

Field Range Units Description 

Thrust_pX 0 to 
100 % Thrust positive X axis pointing towards -Z 

direction 

Thrust_nX 0 to 
100 % Thrust negative X axis pointing towards -Z 

direction 

Thrust_pY 0 to 
100 % Thrust positive Y axis pointing towards -Z 

direction 

Thrust_nY 0 to 
100 % Thrust negative Y axis pointing towards -Z 

direction 

 

5.6.2 ACA clarifications 
 
Basically, sets the Lunar Lander angle around X axis and Y axis to achieve a 
target angle for each axis depending on IMU_aX and IMU_aY changing the 
value of Thrust_pX, Thrust_pY, Thrust_nX and Thrust_nY values. 
 
The sequence diagram of the algorithm is represented in the next image. 
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Fig.13. ACA sequence diagram 
 

5.7 Landing module system design 
 
Here is described how is created the top-level Block Design File that contains 
the Attitude Control Algorithm of the Landing Module schematic. It is also 
explained how with SOPC Builder has been possible to create the embedded 
processor, configure system peripherals, and connect these elements to result 
in the system module. 
Before begining to design, a new Quartus II project must have been created 
and must have been also specified the working directory for the ACA Landing 
Module project, establishing like this the top-level design entity recognizable for 
Quartus II and required to start with the system module design. 
 
A complete system module contains an embedded processor and its 
associated, and required, system peripherals. Those peripherals allow the 
embedded processor to connect and communicate with internal logic in the 
APEX device or external hardware on the board. The components and their 
configurations are detailed below. 
 

5.7.1 Altera Nios 2.2 CPU 
 
In first instance, and as it has been commented before, the LLEC module 
implements an embedded processor in the APEX20KE device. Three proposals 
of factory-defined CPU configurations are given. The presets are: 

• Minimum features 
• Standard features 
• Full features 
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       Fig.14. CPU 
 
The main differences between them reside on the register file size, the integer 
multiplier, the availability of supporting interrupts and/or the RLC/RRC protocol 
and the location of the resources to implement the 32-bit instruction decoder. 
For the LLEC module the standard features have been choosen which includes 
a register file of 256 and the MSTEP multiplier which takes two clock cicles to 
have a result. 
 

5.7.2 GERMS monitor 
 
The GERMS monitor is a boot monitor program that provides basic 
development facilities for the board. It is included in the default design stored in 
flash memory. On power-up, the GERMS monitor is the first code to execute 
and it controls the boot process. Once booted, it provides a way to read from 
and write to the onboard memories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig.15. GERMS monitor 
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It is implemented as a ROM with 32-bit data width occupying a total of 1 Kbytes. 
The option to select the GERMS preset appears in the contents tab. 
 

5.7.3 Universal Asynchronous Receiver/Transmitter 
 
The UART implements a RS-232 asynchronous transmit and receive logic 
inside the device. The UART sends and receives serial data over RxD and TxD 
external pins. Software controls and communicates with the UART through 
memory-mapped, 16-bit registers. 
To comply with RS-232 voltage-signaling, an external level shifting buffer is 
required between the TxD/RxD I/O pins and the corresponding serial port 
external connections. 
The UART runs on a single synchronous clock input and its internal baud clock 
is derived from the same as the system clock. Its rate can be fixed or settable 
via the divisor register which is used, as it name says, to divide clock’s period 
and generate the desired frequency. 
 
Two different designs, but similar, are required for the LLEC module. Both of 
them work at 115200 bps fixed bit rate (which is the maximum allowed) and 
have an 8-bit data width with no parity checking, RTS/CTS protocols and end-
of-packet register use either. 
So the available methods remaining to detect tx/rx process errors are these: 

• Through stop bits which split the frames. When a stop bit is not detected, 
the fe bit in the status register shifts from “0” to “1”. 

• Overrun detection. That occurs when a character is transmitted/received 
before being ready to do so. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Fig.16. UART 
 
Precisely, the only change from communication UART to debugging is the stop 
bits number, which are 2 and 1 respectively. 
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5.7.4 Timer 
 
The Timer peripheral is a simple 32-bit interval timer that can be controlled by 
software. It generates a single interrupt-request output that can be masked by 
an internal control bit. Because all embedded processor accessible registers 
are 16 bits wide a 32-bit Nios CPU performs two separate write operations on 
two 16-bit registers (periodl and periodh) to set a 32-bit downcount value. 
Again, as UART also does, the Timer runs off a single master clock input which 
coincides the same clock provided to the CPU. 
 
A single timer, but full-featured, has been decided. The reason to include only 
one is the next. Despite requiring one for the input data flow control and a 
second for the output data (both needed for the Software-In-the-Loop 
verification) they can be implemented as once if it is taken into consideration 
that the period of the output data is a multiple of the period of entry. 
 
Full featured stands for a selectable period (whitin the period register 
possibilities) and snapshot (capture the current timer value) support. It also 
enables the start/stop bits in the control register to be able to play with the 
counter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.17. Timer 
 

5.7.5 Parallel Input/Output 
A Parallel Input/Output (PIO) module is a memory-mapped interface between 
software and the defined logic. The PIO has two contrary applications: 

• Providing an interface between software and the defined logic within the 
same device. 

•  Providing an interface between software and the peripheral logic that 
resides outside the device. 

 
Two main different PIO have been used for the module, both as interrupt 
monitoring. 
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The first one is implented for the to LEDs onboard and it is as simple as two bits 
configured with output direction to get their lights on. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
          Fig.18. PIO LED 
 

Although JP12 connector (detailed before) has 14 pins, the second one is an 11 
bidirectional PIO. They are 11 because the pins 1 and 2 are required to provide 
the display feeding and the third goes to the monitor reset. 
Punctuate that because of the rupture third pin (monitor reset) it is short 
circuited to pin 1, it is to say, that a reset to the LCD, then, is only possible 
through explicit software deletion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.19. PIO LCD 

 
 
Finally, comment that despite beeing used only as a status informater the 
answer to choose bidirectional pins is that wheter it was necessary to monitor 
some parameter it would be monitorized as well as taken as input for another 
device and have it all in once. 
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5.7.6 External RAM BUS 
 
For the system to connect on-chip processors and peripherals together, a 
bridge between the Avalon bus and the buses to which the external memory is 
connected must be added.  
 
 
 
 
 
 
 
 
 
 
 

      Fig.20. RAM bus 
 

5.7.7 External RAM 
 
A dual Static-RAM interface has been choosen to download the C-code. Note 
that the current .srec file downloaded onto the board to run the Software-In-the-
Loop test occupies 121KB, so a 256KB total memory size has been decided, 
like this, more than enough memory is available. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.21. SRAM 

 

5.7.8 External Flash 
 
For the flash memory the maximum featured preset has been implemented. It 
offers 1MB of memory which can be used as non-volatile storage or to hold PLD 
configuration (.hexout files). It is enough memory since, for example, the 
standard_32_ext.hexout file used for developping both software/hardware-In-
the-Loop (a design which largely covers the LLEC module requirements) 
occupies 505KB. 
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     Fig.22. Flash memory 
 
 

5.8 Lunar Lander Engine module configuration 
 
After including all the system components, it is required to check that each 
function is developped by the correct module. To make it easier,  a tab with the 
cpu system settings is provided in the design generating process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

     Fig.23. SOPC Builder CPU settings 
 
 
The system generator tab reproduces the SOPC Builder design providing all the 
SDK headers and libraries required for the selected peripherals, as well as 
VHDL files to implement the system logic. The resulting design is shown below. 
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Fig.24. ACA landing module 
 
Finally, after the schematic has been realized it would be necessary to make 
the pin assignments to enable compilation. The two available methods to do so 
are: 

• Via a Tool Command Language (tcl) file, as it has a console application 
which is able to execute sequentially the standard commands as well as 
also the ones from the script. 

Fig.25. Tcl script selection 
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The ACA_pin_assign.tcl is the next one. 
 
########## Set the pin location variables ############ 
### Control Pins 
set clk L6 
set reset_n F12 
 
### Data bus, Address bus, and related control signals 
set ext_addr {G17 A8 B8 A7 B7 B6 A6 A5 B5 B4 A3 A4 C3 C1 D3 D2 C2 F3 B3 E3} 
set ext_data {C4 H11 G10 D8 E7 D4 D5 G9 F8 E8 C5 D6 C6 F9 H10 D7 C7 E9 E10 D9 C8 F10 G11 C9 
C10 H12 D10 G12 G13 F11 B11 B10} 
set ext_be_n {F5 F2 F4 H5} 
set SRAM_Lo_cs_n E4 
set SRAM_Hi_cs_n E2 
set SRAM_Lo_oe_n A2 
set SRAM_Lo_we_n E6 
set FLASH_we_n H13 
set FLASH_ce_n E1 
set FLASH_a16 D1 
set JP12_sel_n V7 
 
### PIOs 
set lcd_pio {U21 P17 U1 U2 T2 T3 U4 U19 R18 W20 N15} 
set led_pio {T18 T19} 
 
### UARTs 
set rxd W8 
set txd D15 
set rxd_debug F14 
set txd_debug F13 
 
#### Make the clock and reset signal assignments 
cmp add_assignment $top_name "" clk LOCATION "Pin_$clk" 
cmp add_assignment $top_name "" reset_n LOCATION "Pin_$reset_n" 
 
#### Make the external Flash and SRAM assignments 
set i 0 
foreach {a} $ext_addr { 
 cmp add_assignment $top_name "" "ext_addr\[$i\]" LOCATION "Pin_$a" 
 set i [expr $i+1]  
} 
set i 0 
foreach {a} $ext_data { 
 cmp add_assignment $top_name "" "ext_data\[$i\]" LOCATION "Pin_$a"  
 set i [expr $i+1] 
} 
set i 0 
foreach {a} $ext_be_n { 
 cmp add_assignment $top_name "" "ext_be_n\[$i\]" LOCATION "Pin_$a" 
 set i [expr $i+1]  
} 
cmp add_assignment $top_name "" "SRAM_Lo_cs_n" LOCATION "Pin_$SRAM_Lo_cs_n" 
cmp add_assignment $top_name "" "SRAM_Hi_cs_n" LOCATION "Pin_$SRAM_Hi_cs_n" 
cmp add_assignment $top_name "" "SRAM_Lo_oe_n" LOCATION "Pin_$SRAM_Lo_oe_n" 
cmp add_assignment $top_name "" "SRAM_Lo_we_n" LOCATION "Pin_$SRAM_Lo_we_n" 
cmp add_assignment $top_name "" "FLASH_we_n" LOCATION "Pin_$FLASH_we_n" 
cmp add_assignment $top_name "" "FLASH_ce_n" LOCATION "Pin_$FLASH_ce_n" 
cmp add_assignment $top_name "" "FLASH_a16" LOCATION "Pin_$FLASH_a16" 
cmp add_assignment $top_name "" "JP12_sel_n" LOCATION "Pin_$JP12_sel_n" 
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#### Make the PIO pin assignments 
set i 0 
foreach {a} $lcd_pio { 
 cmp add_assignment $top_name "" "lcd_pio\[$i\]" LOCATION "Pin_$a"  
 set i [expr $i+1] 
} 
set i 0 
foreach {a} $led_pio { 
 cmp add_assignment $top_name "" "led_pio\[$i\]" LOCATION "Pin_$a"  
 set i [expr $i+1] 
} 
 
############################## 
#### Make the UART assignments 
cmp add_assignment $top_name "" "rxd" LOCATION "Pin_$rxd" 
cmp add_assignment $top_name "" "txd" LOCATION "Pin_$txd" 
cmp add_assignment $top_name "" "rxd_debug" LOCATION "Pin_$rxd_debug" 
cmp add_assignment $top_name "" "txd_debug" LOCATION "Pin_$txd_debug" 
 
 

• Manually, accessing from compiler settings and introducing the main 
device model mounted on the board and its specifications. In this case 
and detailed above is the APEX EP20K200EFC484-2x chip. 

 

Fig.26. Manual pinout assignment 
 
But only refer to the implemented connexions could not be enough. At the end, 
also through the compiler settings, it could be compulsory to configure the 
unused pins in high-impedance mode to emulate an open-circuit, if existing. If 
not, the design will not run. 
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5.9 Control module validation 
 
One of core areas is verification and validation (V&V).  As said in the first 
pages, V&V is essential for any project to provide quality and robustness of the 
model system development process.  It can be used to check the accuracy of 
the models and algorithms, to test code generation or to test hardware and/or 
software interactions.   
Remark that in order to ensure that every aspect of the processor code has 
been tested, it is necessary to derive an appropriate set of input conditions to 
fully exercise the code. Failure to do so leads to hidden bugs in the module 
being tested. 
 
Some references are done to the stages of these testing processes. Details for 
the Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) are given 
below. 
 
 

5.9.1 Software In the Loop 
 
SIL refers precisely to the kind of testing done to validate the behavior of the 
main algorithm. The code is intended to be adapted and integrated into the 
simulator implemented in the FPGA.  
 
For this purpose and to simplify the algorithm validation tasks, the algorithm is 
incrusted in a C-code program that runs the algorithm using the embedded 
processor and the required peripherals. 
 
The sequence diagram for the simulation is the following: 

 
 
 

 
 
 

 

 
 
 
 
 

 
Fig.27. SIL sequence diagram 
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5.9.2 Hardware In the Loop 
 
HIL, for its part, refers to the kind of testing done to study the interactions 
between the software and the hardware.  In a typical HIL setup, one piece of 
hardware is connected to a software model of the rest of the system. 
 
It would mainly consist on implementing the entire FPGA board inside the 
Moon2.0 simulator. The ACA module would receive data from the simulator 
and, after being processed in the embedded CPU, it would transmit the 
resulting engine thrusts calculations. The communication would be stablished 
via a UART, already reviewed. 
 

5.9.3 Real flight test 
 
Obviously, the last verification for the LLEC module should be to introduce the 
system in an aircraft flight as it would be implemented with the real components 
and developping its real function, it is to say, controlling thrust engines to permit 
a real flight. 
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6 CONCLUSIONS 
 
 
Working with Team FREDNET has shown me the way aeronautical industry 
follows, its actual situation and what kinds of matters are actually deeply 
considered. 
Furthermore, it also has taught me learning about self project guiding and to 
adapt my work according to team necessities. With that I would like to 
emphasize the variety of topics touched and developed along this TFC.  
 
Also critical for our purposes, and maybe increased, because of my rol inside 
Picorover team is the fact that team has to show and share the achieved 
information, as well as explain the pending work to do. In response for that goal 
Wiki posting procedure is basic to enable collaboration with other Team 
FREDnet members or to obtain new team or group members in charge of 
developping new or pending areas, as it has been shown it is a complete and 
real project with real applicatin. 
 
But, of course, some problems like eventual bad team information or 
communication insufficient work leaders, collaborators or resources are present 
into an open project. An example is the thruster engines control which has been 
just integred to the group information because the member in charge of this part 
Presented it a week ago or so. 
 
Another example could be the licensing problems which have supposed a big 
trouble to deal and which are not solved at the moment. In a first instance, they 
have caused a slower development of the project because it was not able to 
obtain full capacities from the available tools, such as programming. In a 
second place, and even more difficult to save, it is the fact that they have also 
trunked the module design which is not complete now, so it has broken this way 
of knowledge. 
 
However, a large volume of technical documentation has been dealed and 
processed and catalogued to produce prototype developing in this case for the 
hardware, which includes the FPGA board or Quartus II software. 
Many disciplines have been used for the development of this project. A member 
has to work closer to many people of different fields and different countries and 
develop a unique project. The help of many teachers known through our studies 
make possible such challenger. 
Finally, just to say that we, as a team, are glad by the work which has been 
already done, but a lot rest of work is to be finished and until final 
implementation will be reached we will not see our work been applied, although 
our knowledge is being improved everyday. 
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7 Environmental impact 
 
The whole project will develop over different environment starting from the 
Earth’s surface and until reaching the moon’s surface, but also through several 
Earth’s orbits or free-space. So, a lot of environmental reviews must be done at 
different levels to consider the possible impacts. As an example, at the end of 
its mission, the Lunar Bus will suffer a controlled crash on the moon. 
Remark that coordinates of the areas of disposal devices will be published and 
catalogued if necessary. 
 
Environment care has been considered for optimizing project process. As it has 
already been commented in the FPGA justification, the use of the FPGA is a 
clear example of environmental care as it would permit to use a single device to 
develop different subsystems inside Team FREDnet organization, as well as 
embed those belonging to the same system. So, implicitaly, it will reduce the 
number of peripheral needed and used.  
 
Picorover team always considers optimization of the resources on its 
procedures in order to reduce the impact on the environment. 
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