

TRABAJO FINAL DE CARRERA

TÍTULO DEL TFC: Implementation And Verification Of A Lunar Mission
Subsystems (II)

TITULACIÓN: Ingeniería Técnica de Telecomunicaciones, especialidad
Sistemas de Telecomunicación

AUTOR: Andrés Petilo Pérez

DIRECTOR: Joshua Tristancho Martínez

FECHA: 26 de marzo de 2010

Título: Implementation And Verification Of A Lunar Mission Subsystems (II)

Autor: Andrés Petilo Pérez

Director: Joshua Tristancho Martínez

Fecha: 26 de marzo de 2010

Resumen

Este Trabajo Final de Carrera (TFC) es la extensión de otro TFC con el mismo
nombre. En el presente documento se amplia el trabajo iniciado por el ya
consolidado grupo PicoRover del equipo Team FREDNET, participante en el
Google Lunar X-Prize.

El proyecto se realiza en colaboración con otros investigadores de múltiples
nacionalidades y disciplinas por lo que requiere formar parte de un equipo en
un proyecto real de exploración lunar.

En este trabajo se realizan tres partes bien diferenciadas entre ellas, pero no
por ello menos importantes para el progreso de los vehículos, tanto del Rover
lunar como del alunizador.

La primera parte está centrada en los protocolos y estándares de los procesos
de verificación y validación de la misión lunar del grupo Team FREDNET así
como la generación de la documentación del Rover lunar llamado PicoRover.

La segunda parte está dedicada a caracterizar un radio-enlace entre un satélite
en Low Earth Orbit (LEO) y una estación de tierra amateur mediante balances
de potencia para diferentes casos.

Por último se realiza una implementación preeliminar del sistema de control de
actitud del alunizador basado en una placa Field Programmable Gate Array
(FPGA) y usando el simulador Moon2.0 de código abierto para probar y validar
dicho subsistema. Este último apartado se realiza en colaboración con uno de
los grupos de Team FREDNET llamado Lunar Lander y que están
construyendo un prototipo de alunizador llamado Mark-I en Texas, Estados
Unidos.

Title: Implementation And Verification Of A Lunar Mission Subsystems (II)

Author: Andrés Petilo Pérez

Director: Joshua Tristancho Martínez

Date: March, 26th 2010

Overview

This bachelor final work is a continuation of another TFC (Trabajo Final de
Carrera) which has the same name as this. It is an improvement of the well
consolidated PicoRover group from the Team FREDNET, contestant for the
Google Lunar X-Prize.

This project is performed in collaboration with other international and
interdisciplinary researchers, it means, belongs to a real team of lunar
exploration. In addition, working team, reports and decision taken are required
skills.

This work consists in three differentiated parts but, at a time, each one is
important for the advancement of the Lunar Rover and Lunar Lander vehicles.

First part is dedicated to verification and validation process for the Team
FREDNET lunar mission as well as documents generation for the so called
PicoRover Lunar Rover.

Second part is focused in a narrow link between a Low Earth Orbit (LEO)
satellite and an amateur ground station. For this reason, a link-budget is done.

Finally, third part is a preliminary implementation of an attitude control system
of the Lunar Lander based on a Field Programmable Gate Array (FPGA) board;
using the open source Moon2.0 simulator in order to test and validate this
subsystem. This last section is done in collaboration of one of the Team
FREDNET groups called Lunar Lander Group as a part of one of the Lunar
Lander prototypes, the Mark-I, in Texas, USA.

ÍNDEX

ÍNDEX .. 7

1 INTRODUCTION.. 1

2 ACRONYMS, ABBREVIATIONS AND DEFINITIONS 1

3 IMPLEMENTATION AND VERIFICATION PROCESS.............................. 3

3.1 Quality control ... 3

3.2 DO-178B.. 3

3.3 DO-254 .. 4

3.4 SAE International Aerospace Recommended Practice ... 4
3.4.1 SAE ARP 4754 ...4
3.4.2 SAE ARP 4761 ...6

3.5 PicoRover LifeCycle.. 6
3.5.1 System engineering process ..7
3.5.2 Spiral Process Life Cycle..7
3.5.3 Program of Documentation...9

3.5.3.1 ConOps Document.. 9
3.5.3.2 System Requirements Document ... 9
3.5.3.3 System Design Document... 9
3.5.3.4 Program Management Plan .. 9
3.5.3.5 System Engineering Management Plan.. 9

4 N-PRIZE LINK BUDGET ... 11

4.1 N-Prize reviews .. 11

4.2 Link budget .. 13

4.3 Direct Sequence Spread Spectrum (DSSS) .. 15

5 FPGA DEVICE ANALYSIS.. 17

5.1 FPGA device description .. 17

5.2 Justification of use of an FPGA ... 17

5.3 FPGA specifications.. 18
5.3.1 The APEX 20K200EFC484 Device ..18
5.3.2 Flash Memory Chip ..19
5.3.3 SRAM Chips 19
5.3.4 Serial Port Connector ...19
5.3.5 Configuration Controller..19
5.3.6 Two-digit 7-segment display...20
5.3.7 Switches, buttons and LEDs...20
5.3.8 Power-supply circuitry ..20
5.3.9 Clock Circuitry 21
5.3.10 Avalon bus 21

5.4 Tools for the use of the FPGA.. 21
5.4.1 Nios SDK Shell ...21
5.4.2 Quartus II 22
5.4.3 System On a Programable Chip Builder ..24

5.5 Thrusters control ... 26
5.5.1 Attitude control..26
5.5.2 Descent control...28

5.6 Attitude Control Algorithm of the landing module... 29
5.6.1 ACA parameters ...30
5.6.2 ACA clarifications ...30

5.7 Landing module system design... 31
5.7.1 Altera Nios 2.2 CPU ...31
5.7.2 GERMS monitor ...32
5.7.3 Universal Asynchronous Receiver/Transmitter ..33
5.7.4 Timer 34
5.7.5 Parallel Input/Output...34
5.7.6 External RAM BUS ...36
5.7.7 External RAM 36
5.7.8 External Flash 36

5.8 Lunar Lander Engine module configuration... 37

5.9 Control module validation .. 41
5.9.1 Software In the Loop ..41
5.9.2 Hardware In the Loop ...42
5.9.3 Real flight test 42

6 CONCLUSIONS... 43

7 ENVIRONMENTAL IMPACT ... 45

8 BIBLIOGRAPHY.. 47

Introduction 1�

1 INTRODUCTION

We are taken part of Google Lunar X Prize[1] competition being active
members of Team FREDNET[2].

The past year, the Rover Group which is part of the Team FREDNET, proposed
a kind of rover competition based on the idea of parallel development. This idea
only could be implemented in an Open Source based team like Team
FREDNET. Other teams have to focus their efforts due to the reduced number
of components while Team FREDNET has a constant flow of involved people.
The first competitor was Joerg Schnyder who developed from the scratch the so
called Wheeled Rover Vehicle 1 (WRV1). This design has four straight wheels
the body rover is divided by the steering unit. The second competitor was
Tobias Krieger who developed and made the so called Just another lunar rover
(JALURO). This rover is based on two wheels and the body is in the bottom of
them. Finally, the third competitor was Joshua Tristancho who developed the so
called Pico-Rover. This rover is based in a single wheel in form of ball self-
driven.

The PicoRover group is formed by a local team of students and a teacher from
the UPC in Spain. Because is a collaborative competition we take part in some
system development in the whole mission. Team FREDNET is organized as a
matrix. Each group has the System, the Hardware and the Software department
which are represented by Joshua, Enric and Raúl. We have added a fourth
member who is in charge of Quality Control represented by Andrés and
independent of the PicoRover group by definition.

Following we present the objectives for the PicoRover group reflected in the
present Bachelor Final Work. Joshua Tristancho will be in charge of system
design and coordinate the PicoRover group. Enric Fernández will be in charge
of some hardware like the Bus CAN-Do Board and the PicoSAR micro-RADAR.
Raúl Cuadrado will be in charge of programming some software like the
PicoRover Short-Range Communication System and the PicoRover Attitude
and Thrust Control. Finally, Andrés Petilo will be in charge of some
documentation like the System Requirements Document, the System Design
Document, the Program Management Plan and the System Engineering
Management Plan and the Lunar Lander Attitude and Thrust Control.

Acronyms, abbreviations and definitions 1�

2 ACRONYMS, ABBREVIATIONS AND DEFINITIONS

DAL Design Assurance Level
CEH Complex Electronic Hardware
ASIC Application Specific Intregrated Circuits
PLD Programmable Logic Device
FPGA Field Programmable Gate Array
COTS Commerial Off The Self
CBA Circuit Board Assemblies
LRU Line Replaceable Units
ARP Aerospace Recommended Practice
FHA Functional Hazard Assessment
PSSA Preliminary System Safety Assessment
SSA System Safety Assessment
CCA Common Cause Analysis

GLXP Google Lunar X-Prize
RV Reusable Vehicle
SSO Single Spend to Orbit
GMT Greenwich Meridian Time
EIRP Equivalent Isotropically Radiated Power
MCU Main Control Unit
LNB Low Noise Block
SNR Signal to Noise Ratio
DSSS Direct Sequence Spread Spectrum
PRN Pseudo-Random Numerical

SRAM Static Random Access Memory
LE Logic Elements
BGA Ball Grid Array
JTAG Joint Test Action Group
AMD Advanced Microprocessor Device
ACA Attitude Control Algorithm
RTS/CTS Request To Send/Clear To Send
LCD Liquid Crystal Display
LED Light Emitting Diode
CPU Central Processing Unit
RS-232 Recommended Standard 232
SDK Software Development Kit
SOPC System On a Programmable Chip
HDL Hardware Description Language
EDA Electronic Device Automation
AHDL Altera Hardware Description Language
VHDL [From Very High-Speed Integrated Circuit (VHSIC)] Hardware

Description Language
GUI Graphical User Interface
UART Universal Asynchronous Receiver/Transmitter
LLEC Lunar Lander Engine Control

RLC/RRC
MSTEP It is a hardware multiplier
GERMS Mnemonic for the minimal command set:
 Go,
 Erase flash,
 Relocate next download,
 Memory set and dump,
 Send S-records
ROM Rean Only Memory
PIO Parallel Input/Output
TCL Tool Command Language
V&V Validation and Verification
SIL Software In the Loop
HIL Hardware In the Loop

Implementation and verification process 3�

3 IMPLEMENTATION AND VERIFICATION PROCESS

3.1 Quality control

To develop an entire project the team must adhere to local, regional, national
and international laws and regulations in all aspects for the different tasks. In
order to qualify the project the PicoRover Group provides the Quality Control.
The aim of this section is to ensure that the performed work meets the
standards. It is important to remark that standards are taken under
consideration since the first stage in the development processes to make easier
the review task. The basic standards in safety to guide the project are explained
below.

3.2 DO-178B

Software Considerations in Airborne Systems and Equipment Certification is the
title given to this document. It is necessary to establish a Design Assurance
Level (DAL) which is determined from the safety assessment process and
hazard analysis by examining the effects of a failure condition in the system.
The failure conditions are categorized by their effects on the aircraft and crew
and passengers.

• Catastrophic: failure may cause a crash.
• Hazardous: failure has a large negative impact on safety or performance,

or reduces the ability of the crew to operate the aircraft due to physical
distress or a higher workload, or causes serious or fatal injuries among
the passengers.

• Major: failure is significant, but has a lesser impact than a Hazardous
failure (for example, leads to passenger discomfort rather than injuries).

• Minor: failure is noticeable, but has a lesser impact than a Major failure
(for example, causing passenger inconvenience or a routine flight plan
change).

• No Effect: failure has no impact on safety, aircraft operation, or crew
workload

Now, processes are intended to support the objectives, according to the
software level. Processes are described as abstract areas of work in DO-178B,
and it is up to the planners to define and document the specifics of how a
process will be carried out. That provides a great deal of flexibility in regard to
following different styles of software life cycle. However, once an activity within
a process has been defined, it is generally expected that the project respect that
documented activity within its process. Furthermore, processes (and their
concrete activities) must have well defined entry and exit criteria and must show
that it is respecting those criteria as it performs the activities in the process.
The intention of DO-178B is not to be prescriptive. Therefore, it allows many
possible and acceptable ways.

4� Maqueta de TFC/PFC

Software can assist, handle or help in the DO-178B processes. All tools used
for DO-178B development must be part of the certification process. Tools
generating embedded code are qualified as development tools, with the same
constraints as the embedded code. Tools used to verify the code (simulators,
test execution tool, coverage tools, reporting tools, etc.) must be qualified as
verification tools.
Outside of this scope, output of any used tool must be manually verified by
humans.

3.3 DO-254

The objective of this document is to provide guidance for those aspects of the
acceptance process for avionic systems impacted by the use of Complex
Electronic Hardware (CEH). This guidance is stated to be applicable, but not
limited, to the following hardware items:

• Custom micro-coded components, such as Application Specific
Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs)
and Programmable Logic Devices (PLDs).

• Integrated technology components, such as hybrids and multi-chip
modules.

• Commercial-Off-The-Shelf (COTS) components.
• Circuit Board Assemblies (CBAs).
• Line Replaceable Units (LRUs).

Is remarkable the fact that there is a huge potential for the replacement of a
microprocessor or obsolete Application Specific Integrated Circuit (ASIC) with
an FPGA, or, indeed, by the replacement of an obsolete circuit board with a
single FPGA.

In conclusion, the full scope stated in DO-254 is that it can be applied to the
development of CEH at all levels of integration from Integrated Circuits to Circuit
Board Assemblies and LRUs.

3.4 SAE International Aerospace Recommended Practice

SAE International - "the Engineering Society for advancing mobility - Land, Sea,
Air, Space" publish various ARPs (Aerospace Recommended Practice) to aid
industry in achieving required standards.

3.4.1 SAE ARP 4754

Certification considerations for highly-integrated or complex aircraft systems is
the name of the document. It discusses the certification aspects of highly-
integrated or complex systems installed on aircraft, taking into account the

Implementation and verification process 5�

overall aircraft operating environment and functions. So, it excludes specific and
detailed systems, software and hardware design processes.
Guidelines are intended to provide a common international basis for
demonstrating compliance with airworthiness requirements applicable to the
systems that integrate multiple level functions and have failure modes with the
potential to result in unsafe aircraft operating conditions.

An important part referring to quality control is the validation process model.
The process includes specific assessments conducted and updated during
system development and interacts with the other system development
supporting processes. The primary safety assessment processes are listed
below.

• Functional Hazard Assessment (FHA): examines aircraft and system
functions to identify potential functional failures and classifies the
hazards associated with specific failure conditions. The FHA is
developed early in the development process and is updated as new
functions or fault conditions are identified.

• Preliminary System Safety Assessment (PSSA): establishes specific
system and item safety requirements and provides preliminary indication
that the anticipated system architecture can meet those safety
requirements. The PSSA is updated throughout the system development
process.

• System Safety Assessment (SSA): collects, analyzes, and documents
verification that the system, as implemented, meets the system safety
requirements established by the FHA and the PSSA.

• Common Cause Analysis (CCA): establishes and validates physical and
functional separation and isolation requirements between systems and
verifies that these requirements have been met.

This section of the document provides guidance and recommendations covering
what safety analyses are most appropriate for each failure condition
classification and how to apply the results of the various safety assessment
processes at each stage of system development. This includes identifying
functional safety requirements and applicable derived safety requirements.
A very graphical representation of which processes would include a real project
development is given below.

6� Maqueta de TFC/PFC

 Fig.1. Certification process

3.4.2 SAE ARP 4761

ARP4761 provides "Guidelines And Methods For Conducting The Safety
Assessment Process On Civil Airborne Systems And Equipment" it defines
processes for using common modeling techniques to asses the safety of a
system. It is usually a companion to ARP 4754.

3.5 PicoRover LifeCycle

It is necessary to represent the sequence of steps in a project life-cycle
development. It describes the activities and results that have to be produced
during product development.
In response to the need of being compliance with the referred standards the
group has configured various measures to establish a work plan.
In the resulting design exists a distinction between system, subsystem and
component, three levels of hierarchy that are relative to each part of the project.

Implementation and verification process 7�

3.5.1 System engineering process

The system engineering development uses a top-down approach. This life-cycle
orientation gives strength to the initial definition of system requirements and an
interdisciplinary team approach. This process involves a series of steps placed
in a logical way based on requirements. So coordination, communication or
traceability are remarkable aspects of the model.

• Identify the need: Win the GLXP based on Mission Requirements
• Feasibility study: Can a Picorover win the GLXP?
• Define requirements and design criteria
• Functional analyses and Functional allocation to subsystems
• Identify the preferred system configuration

3.5.2 Spiral Process Life Cycle

The Spiral Process Life Cycle is a graphical representation of the system
development life-cycle. It represents the main stages to be taken in conjunction
with the corresponding deliverables within system validation framework.
The next figure graphically explains the model that the group has decided to
take as reference.

 Fig.2. Spiral model

8� Maqueta de TFC/PFC

Here is the view of the resulting process being followed:

 Fig.3. Picorover Spiral process

As it is shown in the figure many steps have been done, these are:

• Need: Win the GLXP
• System Requirement Determination
• Feasibility Analysis
• System Analysis
• System Specification
• System Prototype: Picorover1degree
• Conceptual Review
• Function Definition
• Requirements Allocation
• Trade-Off Studies
• Select Design
• Synthesis
• Test and Review
• Detail Requirements
• Component Design Components
• Evaluation and Optimization
• Equipment Definition
• Operational Prototype: Picorover1.3degrees
• Formal Design Review
• Final Implementation
• Operation
• Storage
• Disposal

Implementation and verification process 9�

3.5.3 Program of Documentation

The amount of information obtained during the processes is stored basically on
five documents which form the program of documentation. Current versions of
documentation are included in the Annexes. It is also available the last version
in the Team FREDNET wiki at:
http://wiki.teamfrednet.org/index.php/Picorover_LifeCycle#Program_of_Docume
ntation

3.5.3.1 ConOps Document

The ConOps document is focused on the clients giving them answers to why to
win and where to dedicate the prize.
http://wiki.teamfrednet.org/index.php/Picorover_ConOps

3.5.3.2 System Requirements Document

The System Requirements Document contents the list of the specifications
required for the mission systems and subsystems.
http://wiki.teamfrednet.org/index.php/Picorover_Requirements

3.5.3.3 System Design Document

The System Design Document is a list with the features of each subsystem,
component selection and the preferred configuration. Blueprints and schemes
are also included in this document.
http://wiki.teamfrednet.org/index.php/Picorover_Design

3.5.3.4 Program Management Plan

The Program Management Plan covers the organization design and role
definition for each person in the PicoRover group. Cost analysis is also included
in the plan.
http://wiki.teamfrednet.org/index.php/Picorover_Program_Management_Plan

3.5.3.5 System Engineering Management Plan

The System Engineering Management Plan defines the manufacture of
products and its operation processes.
http://wiki.teamfrednet.org/index.php/Picorover_Engineering_Management_Pla
n

N-Prize link budget 11�

4 N-PRIZE LINK BUDGET

4.1 N-Prize reviews

The N-Prize is a free challenge, in force since November 18, 2008, to launch a
satellite into orbit complying stern budgets in exchange for a cash prize. It is
aimed at amateurs and intendeds to encourage creativity, originality and
inventiveness in the face of severe restrictions.

The N-Prize offers two cash prizes in two categories, each of £9,999.99. One
prize (the "reusable vehicle" or "RV" category) will be awarded to the first
entrant to complete the challenge using a partially or wholly reusable launch
system whose total cost of the launch vehicle exceeds £999.99.The other
prize(called the "single-spend-to-orbit", or "SSO" category) will be awarded to
the first entrant to complete the challenge with a total launch cost equal or less
than £999.99, even if part or all of the launch vehicle is recovered. Like this, no
single entry may win both prizes.

The prizes in each category will be available for entrants whose satellites
complete his 9th orbit before 19:19:09 (GMT) on the 19th September 2011.

Safety is entirely the responsibility of the entrants and it is assumed that are
aware of all risks to themselves, to third parties and to property, whether on the
ground, on water, in the air or in space, arising through preparation for,
participation in, or after completion of the N-Prize Challenge. To disregard of
safety could be a possible reason for exclusion.
In reference to legalties, the entry needs to be compliance with all necessary
regulations though the N-Prize organisers do not require proof of compliance
with them. So any penalties incurred as a result of failure to comply with
relevant local, national or international regulations are entirely a matter for the
entrants.

• For the purposes of this challenge, the following definitions apply:
• The 'Launch Site' is defined as the area from which the launch takes

place.
• The 'Launch Equipment' is defined as all items of hardware required for

the launch, but which remain on the. Any items which are not required
after a time 24 hours prior to the launch are not considered to be part of
the launch equipment.

• The 'Launch Vehicle' is defined as all items of hardware that leave the
ground, including any fuel or other consumables.

• The 'Satellite' is defined as the part of the launch vehicle that enters orbit
around the Earth. If more than one item enters orbit must be defined,
prior to launch, which item is to be considered the 'satellite'.

The artifact must have a mass of between 9.99 and 19.99 grams, including the
weight of any propellant or fuel. It may include shielding or fuel that takes its

12� Maqueta de TFC/PFC

weight over the 19.99 gram limit, but orbits will not count toward the 9 orbit
target until such over-weight items have been jettisoned or consumed. As
noted, other items may enter orbit with the satellite, but must not remain
attached to it. Nor may the satellite be dependent upon the co-orbiting items in
any way during the nine qualifying orbits.

The satellite must complete a minimum of 9 orbits of the Earth, after its
separation from or consumption of any items or consumables which put its
weight over 19.99 grams. The orbits need not be regular, nor do they need to
be at a constant altitude. No part of any orbit may be lower than 99.99 km
above the surface of the earth and any method of attaining orbit is acceptable.

Must be able to provide evidence that the satellite has completed a minimum of
9 orbits of the Earth. The costs of providing this evidence do not form part of the
budget, except for the costs of any equipment mounted on the launch vehicle to
enable detection. There is no need to observe or track the satellite throughout
its orbit, as long as sufficient data is collected to confirm that 9 orbits have taken
place. Note also that proof may be required that a detected signal originates
from the satellite itself.

The budget for each launch is calculated differently for the SSO and RV
categories. Our project is focused in the SSO, for this category the maximum
cost of the launch, £999.99, should be enough to conduct a repeat of a
successful mission, assuming that no part of the launch vehicle is recovered.
The money is entirely the responsibility of the entrant and must cover the
following:

The cost of the launch vehicle, including the satellite itself, and any fuel, gases
or other materials which it carries.
Any items of the launch equipment that could not be re-used for a second
identical launch.

The cost that would be incurred for refurbishing, refilling, re-testing or otherwise
preparing any launch equipment or any aspect of the launch site and any
manufacturing costs for any parts of the launch vehicle; or for any parts of the
launch equipment that would require replacement if a second identical mission
were to be carried out.

Any failed attempts can be considered prototype development, and hence do
not count towards the budget.

Items which need not be covered by the budget include prototyping costs;
launch equipment or the launch site; licence fees, permissions etc; charges
made for attendance by safety personnel; legal costs; medical costs; insurance
costs; fines, penalties or loss of earnings arising from any cause whether prior
to, during or after the mission; travel costs of people associated with the
mission.

Remark that donations of hardware are permitted but will be judged on a case-
by-case basis and entrants may not take benefit from other aerospace projects

N-Prize link budget 13�

or 'share' the cost of common hardware. If entrants seek sponsorship, the
money that is spent on the launch vehicle and non-reusable launch equipment
will be considered part of the budget. The organisers also reserve the right to
exclude those whose primary objective seems to be to promote or advertise.

4.2 Link budget

It is compulsory to establish communication with the satellite to accomplish with
requirements and guarantee that all is working fine. So, the team has decided to
implement a transmitter on board to be able to have some kind of
monitorization.

Obviously, the more restrictive link is the one referred to the uplink due to the
mass and budget restrictions of the satellite, so this is the considered direction
of the link in the next budget.

The radio link budget follows the Friis equation which looks like:

PRX = EIRP – LFS – LMIS + GRX - LRX dBm

EIRP = PTX + GTX - LTX dBm

LFS = 10 * log(4 * π * R / λ) dB

The idea is to reuse some Picorover devices, already available, such as
PicoSAR or eZ430 MCU in order to minimize costs and effort. Then, some
parameters will be defined by the existing machinery. The set parameters to
consider are:

EIRP 10.6 dBm
LMIS 3 dB
GRX 70 dB
LRX 3 dB

The EIRP is obtained from the output power which is able to give the eZ430
MCU (0dBm) and the gain which PicoSAR is able to offer (10.6dB, transmission
losses included).

In reception, when the arriving signal is captured by the antenna it goes through
the Low Noise Block (LNB) whose function is to amplify but also to down-
convert the signal to a lower frequency (specifically in L-band frequency)
whether the frequency was 10GHz (it is much easier too to amplify a signal
working in L-band than in X-band). The more common gains for the current
equipment usually range from 60 to 70 dB, so the maximum value is to be
considered for the present budget.

Whereas, in mismatch and reception losses typical values of 3dB are choosen.

14� Maqueta de TFC/PFC

Now, the only parameter missing in the equation are the free space losses.
Those depend on frequency and distance. Because PicoSAR is designed for
working at 2.4 and 10 GHz we will take these values as reference and will
considerate different distances that could match with different orbit position of
the satellite. The resulting table is shown below:

 5 50 100 200 500 1000 2000 3000 km
2,4 114,03 134,03 140,05 146,07 154,03 160,05 166,07 169,59 dB
10 126,42 146,42 152,44 158,46 166,42 172,44 178,46 181,98 dB

GHz dB dB dB dB dB dB dB dB

Hence, we can apply Friis equation to calculate the power received in the Earth
station:

 5 50 100 200 500 1000 2000 3000 km

2,4 -
39,43

-
59,43

-
65,45

-
71,47 -79,43 -85,45 -91,47 -94,99 dB

10 -
51,82

-
71,82

-
77,84

-
83,86 -91,82

-
97,841

8
-

103,86
-

107,38
dB

GHz dB dB dB dB dB dB dB dB

Now, it is easy to obtain the Signal to Noise Ratio (SNR):

SNR = PRX / PN dB

PN = 10 * log(k * T * B) dBW

For the noise power two main values for the temperature must be taken into
consideration. The first one is the equivalent for a beam pointing to the empty
sky and the second corresponds to the equivalent noise temperature of the
earth. Both cases work with a bandwidth of 1MHz:

 1 MHz
3 -133,83 dB

290 -113,977 dB
K dB

The resultant SNR in downlink considering a bandwidth of 1MHz:

 5 50 100 200 500 1000 2000 3000 km
2,4 94,40 74,40 68,38 62,36 54,40 48,38 42,36 38,84 dB
10 82,01 62,01 55,99 49,97 42,01 35,99 29,97 26,45 dB

GHz dB dB dB dB dB dB dB dB

Note that, the resulting power values come from a signal that has not been
modulated. Typical acceptable values for a correct reception range between 8
and 12dB, which means that the signal would be correctly received for the

N-Prize link budget 15�

different situations exposed in the table. This results, let space for a margin that
could be necessary to fight fading or other losses caused by negative
atmospheric conditions. The margin could reach a value of, for example, 15dB.
Like this even the worst case (3000km with a carrier of 10GHz) would continue
being correctly received.

4.3 Direct Sequence Spread Spectrum (DSSS)

DSSS is a digital modulation technique where transmissions are the
combination of the data stream with a higher rate Pseudo Random Numerical
(PRN) sequence via XOR function, thereby spreading the energy radiated of the
original signal into a much wider band. The fact that uses direct sequence
means it does not implement frequency hopping (jump from frequency to
frequency). This codding modulation would be useful to ensure that the
received signal is coming from our satellite.

The IEEE 802.11 Standard specifies an 11 chip PRN sequence (Barker code).
The value of the autocorrelation function for the Barker sequence is 1, -1, or 0
at all offsets except zero, where it is 11. This makes for a more uniform
spectrum, and better performance in the receivers.

At the receiver, the pseudo random code is used to de-spread the received
data. It is during this process that the matched filter rejects unwanted signals
because it has low cross correlation with other sequences likely to interfere. By
careful selection of the PRN sequence, the matched filter could provide
rejection to multipath signals too.

Three different configurations could be set for both frequencies. The first one
and the second, both use a Barker sequence of length 11 the difference
between them is that in one, the minimum data rate available is considered,
while in the second is the highest rate. The last case considers the maximum
processing gain that can be obtained from the eZ430 MCU device. The
parameters are contained in the table below:

 2.4 2.4 2.4 10 10 10 GHz
Rb 1.2 45.454 1.205 1.2 45.454 1.205 kbps
Rc 13.2 500 500 13.2 500 500 kcps
Gp 10.4 10.4 26.18 10.4 10.4 26.18 dB

Whether no interference is coming from the satellite at the same frequency from
other users with other codes and no multipath signals are considered because
of the use of a directive antenna in the ground station the equivalent Eb/N0 ratio
is easily calculated:

Eb/N0 = GP * (PRX / PN)

Again the more restrictive way is the downlink and its respective noise powers
for the different sets are the following:

16� Maqueta de TFC/PFC

Pn 1,2 45,454 kbps

3 -163,038 -147,254 dB
K dB dB

Note that only two cases are referred for the three possible situations this is
produced because after the de-spreading at the receiver, the bandwidth at
baseband would be restored to the original one and the first case and third have
got almost the same data rate (minimum available).

The SNR are:

SNR 5 10 100 200 500 1000 2000 3000 km

2,4 123,61 103,61 97,59 91,57 83,61 77,59 71,57 68,05 1,2kbps
2,4 107,83 87,83 81,81 75,79 67,83 61,81 55,79 52,27 45,454kbps
10 111,22 91,22 85,20 79,18 71,22 65,20 59,18 55,65 1,2kbps
10 95,43 75,43 69,41 63,39 55,43 49,41 43,39 39,87 45,454kbps

GHz dB dB dB dB dB dB dB dB

The resulting Eb/N0 are equal to the previous SNR plus the processing gain:

Eb/No 5 10 100 200 500 1000 2000 3000 km

2,4 134,01 114,01 107,99 101,97 94,01 87,99 81,97 78,45 1,2kbps
2,4 118,23 98,23 92,21 86,19 78,23 72,21 66,19 62,67 45,454kbps
10 121,62 101,62 95,60 89,58 81,62 75,60 69,58 66,05 1,2kbps
10 105,83 85,83 79,81 73,79 65,83 59,81 53,79 50,27 45,454kbps

 dB dB dB dB dB dB dB dB

Finally, with these values which largely complies with the requirements could be
known the Bit Error Ratio for every modulation such as BPSK, QPSK, etc.

FPGA device analysis 17�

5 FPGA DEVICE ANALYSIS

5.1 FPGA device description

The Field-Programmable Gate Array (FPGA) is an integrated circuit containing
mixes of a wide range of embedded configurable peripherals and components
such as SRAM, microprocessors, transceivers, I/O pins and connectors, diodes,
buttons, diplays and logic blocks or routing. In essence, an FPGA consists of
programmable logic elements (LEs) and a hierarchy of reconfigurable
interconnects that allow the LEs to be physically connected and to perform from
the simplest logic gates to complex combinational functions.

5.2 Justification of use of an FPGA

The team has thought of implementing the device, mainly, because of the
strength to deal with problems relative to embedding systems designed to do
specific task. This is largely due to the modular and extremely flexible nature of
an FPGA. As long as it has enough resources, it could be used in replacement
of any logical function that, for example, an Application-Specific Integrated
Circuit (ASIC) could perform but with a series of advantages that the team has
judged as determinants.

A powerful tool like this accelerates prototyping processes since it incorporates
typical useful modules to develop integrated circuits for signal processing
systems or aerospace. Obviously, since the subsystems to work converge in a
single device, it also carries a shorter time required to launch the desired
system and a lower cost of researching, developping, designing and testing.

Also, instead of being restricted to any predetermined hardware function, an
FPGA allows to program the product features and functions and reconfigure
hardware for specific applications also after the product has been realized.
Then, an FPGA lengthens the life-cycle either to adapt the product over time or
to mitigate the risks of obsolence.

18� Maqueta de TFC/PFC

5.3 FPGA specifications

This section contains an overview of the components mounted on the board
and a brief description of the features for those which have been used.

Fig.4. FPGA components

5.3.1 The APEX 20K200EFC484 Device

It is a 484-pin BGA package. Typical system module often occupies around 25
percent of the logic on this device.

Maximum system gates 526,000
Typical gates 211,000
LEs 8,320
ESBs 52
Maximum RAM bits 106,496
Maximum macrocells 832
Maximum user I/O pins 382

The board provides two separate methods for configuring the APEX device:

• A JTAG connection that can be used with Quartus II software via
download cables.

• A configuration controller that configures the APEX device at power-up
from hexout files stored in the flash memory.

FPGA device analysis 19�

5.3.2 Flash Memory Chip

AMD AM29LV800BB is a 1 Mbyte flash memory chip which is connected to the
APEX device so that the Nios processor can use the flash as readable memory
and non-volatile storage. That functionality must be useful for data storing or
configuration files that implement the ACA32 reference design.

5.3.3 SRAM Chips

They are 256 Kbyte (64 K x 16-bit) asynchronous SRAM chips. They are
connected to the APEX device so they can be used by the processor as zero-
wait-state memory. The two 16-bit devices are used in parallel to implement a
32-bit wide memory subsystem.

5.3.4 Serial Port Connector

It is a standard DB-9 serial connector. The transmit (TXD) from the board,
receive (RXD) by the board, clear to send (CTS) and ready to send (RTS)
signals use standard high-voltage RS-232 logic levels so the buffer accepts
3.3V signals to and from the APEX device. It can support onchip debug
peripheral via a serial Y cable. Both pinout sets are shown in the image.

 Fig.5. Serial port connector

5.3.5 Configuration Controller

The configuration controller is an Altera EPM7064 PLD. It comes factory-
programmed with logic that configures the APEX device from data stored in
flash on power-up.

In the first instance, the configuration controller will attempt to load the APEX
device with user-configuration data. If this process fails the configuration
controller will then load the APEX device with factory configuration data. Both
are expected to be stored at fixed locations in flash memory.

20� Maqueta de TFC/PFC

0x100000 – 0x17FFFF 512 Kbytes Nios instruction and
nonvolatile data space.

0x180000 – 0x1BFFFF 256 Kbytes User-defined APEX
device configuration
data.

0x1C0000 – 0x1FFFFF 256 Kbytes Factory-default APEX
device configuration.

With a jumper if short circuit is detected, the configuration controller will ignore
the user-configuration and will run the factory-configuration to fight against any
valid-but-nonfunctional user configuration.

5.3.6 Two-digit 7-segment display

It is connected to the APEX device so that each segment is individually
controlled by a general-purpose I/O pin.

5.3.7 Switches, buttons and LEDs

Two LEDs are each controlled by an APEX device I/O. Each LED will light-up
when the APEX device drives a logic-1 on its controlling output.
Four push-button switches are also connected to an APEX device I/O. The
APEX device will see a logic-0 when each switch is pressed.
It must be said that the board uses dedicated switches SW2 and SW3 for the
following fixed functions:

• Reset: when SW2 is pressed, a logic-0 value is driven to the power-on
reset controller and when it happens, the configuration controller will
reload the APEX device from flash memory.

• Clear: when SW3 is pressed, a logic-0 is driven onto the corresponding
APEX pin, then the reference CPU will reset and start executing code
from its boot-address.

5.3.8 Power-supply circuitry

The Nios development board runs from a 9-V, unregulated, center-negative
input. On-board circuitry generates 1.8V, 3.3V, and 5V regulated power levels.

• The 1.8-V supply is used exclusively for the APEX device core power
source.

• The 3.3-V supply is used as the power source for all APEX device I/O
pins such as RS-232. Remark that the total load may not exceed 500
mA.

• The 5-V supply is present on JP12 connector and used, for example, to
work with the LCD module. The total load may not exceed 50mA.

FPGA device analysis 21�

5.3.9 Clock Circuitry

The Nios development board includes a 33.333 MHz oscillator and a zero-skew
buffer that drive the APEX device.

5.3.10 Avalon bus

Avalon is an on-chip bus architecture designed for connecting on-chip
processors and peripherals together into a system. It is the interface that
specifies the port connections between master and slave components, and
specifies the timing by which these components communicate. Basic bus
transactions transfer 8, 16, or 32 bits.

The Avalon bus is an active, onchip bus architecture, which consists of logic
and routing resources inside a PLD. Some principles of the architecture are:

• The interface to peripherals is synchronous to the Avalon clock.
• All signals are active LOW or HIGH. Multiplexers (not tri-state buffers)

inside the Avalon bus determine which signals drive which peripheral.
Peripherals are never required to tri-state their outputs, even when the
peripheral is deselected.

• The address, data and control signals use separate dedicated ports.

5.4 Tools for the use of the FPGA

5.4.1 Nios SDK Shell

The Nios SDK Shell command line is developed in the bash environment that
provides a UNIX-like environment on the platform. The tool includes most of the
commands and utilities in UNIX but, additionally, many Nios-specific utilities for
generating and debugging software. The most used commands are:

• nios_bash: startup script to set the bash environment for Nios
development (bash shell)

• nios-build: script that invokes the tools to compile, assemble, and link
source code. It ensures the standard C libraries and standard Nios
libraries are linked with the user source code, and the associated paths
are available. It also generates .dbg files to enable debug.

• nios-run: utility for downloading and running a user file by performing
terminal I/O.

22� Maqueta de TFC/PFC

 Fig.6. Nios SDK shell

5.4.2 Quartus II

The Quartus II development software provides a complete design environment
for System-On-a-Programable-Chip (SOPC) design. The Quartus II software
ensures design entry, processing, and straightforward device programming.

The main Quartus II software logic design capabilities are:

• Design entry using schematics, block diagrams or HDL
• Floorplan editing
• LogicLock incremental design
• Powerful logic synthesis
• Functional and timing simulation
• Timing analysis
• Embedded logic analysis
• Software source file importing, creation, and linking to produce

programming files
• Combined compilation and software projects
• Automatic error location
• Device programming and verification

Finally, here is presented the design flow to show a Quartus II project lyfe cycle.

 Fig.7. Quartus II design flow

FPGA device analysis 23�

Because of the free license capabilities just the first block has been partially
implemented (as it will be explained in the Lunar Lander Engine Control module
design). This first stage is explained below.

It can be used used the Quartus II Block Editor, Text Editor, MegaWizard Plug-
In Manager, and EDA design entry tools to create the design files in a project.
Schematic or block designs can be created with the Block Editor,
or AHDL, VHDL, or Verilog HDL designs with the Text Editor. The MegaWizard
Plug-In Manager is helpfully to create design files for customized
megafunctions. The Quartus II software also supports EDIF Input
Files or Verilog Quartus Mapping Files generated by EDA design entry and
synthesis tools.

Fig.8. Quartus II design entry flow

The Block Editor allows entering and editing graphic design information in the
form of schematics and blocking diagrams. The Block Editor reads and
edits Block Design Files (.bdf) that contain blocks and symbols that represent
logic in the design.
The Block Editor also provides a set of tools that help you connect blocks and
primitives together, including bus and node connections and signal name
mapping. You can change the Block Editor to display options, such as
guidelines and grid spacing, rubberbanding, colors and screen elements, zoom,
and different block and primitive properties to suit your preferences.
The MegaWizard Plug-In Manager helps to create or modify design files that
contain custom megafunction variations, which you can then instantiate in a
design file. These custom megafunction variations are based on Altera provided
megafunctions. It runs a wizard that helps to easily specify options for the
custom megafunction variations. The wizard is able to use SOPC Builder.

24� Maqueta de TFC/PFC

 Fig.9. Quartus II MegaWizard plug-in manager

5.4.3 System On a Programable Chip Builder

SOPC Builder is an accessible tool through the Quartus II software for
composing bus-based systems out of the provided library components. It
creates a single system module that instantiates the list of specified
components and generates automatically the bus logic on all system
components. SOPC Builder provides output files for both synthesis and
simulation.

Its two main parts consist on:

• A graphical user interface (GUI) for listing and arranging system
components. Each component may also, itself, provide a graphical user
interface for its own configuration. The GUI creates the system PTF fil
which describes the system.

FPGA device analysis 25�

Fig.10. Altera SOPC Builder

• A generator program that converts the PTF file into its hardware
implementation. The generator program creates an HDL of the system
and then synthesizes it for the selected target device.

SOPC Builder has a set of built-in library components, including a UART, a
timer, a PIO, an Avalon Tri-state bridge, and several simple memory interfaces.

All valid library components are represented by a component’s class.ptf file
which declares and defines all the information about that component so it can
be recognized by SOPC Builder.

In addition, a component’s library directory may also contain the logic that
implements the component, software libraries and drivers that support the
component.

In summary when the SOPC Builder generates a design the resulting processes
are:

• The system memory map is checked for consistency. Peripheral
addresses and interrupt priorities are verified to be unique and to fall
within the range of valid entries for the CPU. If not, appropriate errors will
be reported.

• A custom software development kit (SDK) is generated for the new
system. The SDK consists of a compiled library of software routines for
the SOPC design, a Makefile for rebuilding the library, and C header files
containing structures for each peripheral.

• An HDL that describes the custom SOPC Module is generated.

26� Maqueta de TFC/PFC

5.5 Thrusters control

5.5.1 Attitude control

Quaternion Λ determinates attitude of a craft relative inertial coordinate system.

i1, i2, i3 are body-fixed axes (X, Y, Z),
Θ is an angle between body-fixed and inertial coordinate systems.

,

For a rigid body subject to external torques the non-linear equation of motion
model are given by:

 ,

Where:

I is the moments of inertia tensor, , Ixy = Iyx, Iyz = Izy, Izx = Ixz,
ω is the body rate,
ωdot is the angular acceleration,
M is the applied torque.
If we use throttle guidance for thrusters, the thrust of k thruster is
Pk=(Pk

nom+∆Pk)*Kthrollte k, k=1..6(?),

where:
Pk

nom is a nominal thrust of a k thruster,
∆Pk is an error of the nominal thrust,
Kthrollte k is a coefficient determined by a throttle (1 – full throttle).

Forces from k thruster are calculated thus:

FPGA device analysis 27�

Fk x= Pk*cos(∆ψk)*cos(∆θk),
Fk y=-Pk*sin(∆θk),
Fk z= Pk*cos(∆ψk)*cos(∆θk),
where ∆ψk, ∆θk are errors of k thruster installation.

Torques (momentum) from thrusters are calculated thus:
Mk = Fk×(Xcenter-of-mass-Xk),
where
Mk={Mx k, Myk, Mz k}T, Fk={Fx k, Fy k, Fz k}T
Xcenter-of-mass = {Xc-o-m, Yc-o-m, Zc-o-m}T are coordinates of center-of-mass,
Xk={Xk, Yk, Zk}T are coordinates of k thruster,
× is crossproduct.

I calculate steering momentum thus:
Mi=-ri*ωdoti – hi*ωi –ki*λ0*λi, i=1(X), 2(Y), 3(Z) (ωdot isa angular acceleration)

Then we need to choose some thrusters which can create momentum
mentioned above.

We know an angle of “moment action”:
α*= MY/MZ
and an angle of an applied force:
α=α*-90º.

Then we can choose 2 thrusters (if there are 6 thrusters on Mark I as I drew on
the picture) which make a positive momentum (thrusters 1 and 2 on the picture)
and 2 opposite thrusters which make a negative momentum (thrusters 4 and 5
on the picture):

 Fig.11. Lunar lander

28� Maqueta de TFC/PFC

MY 1 + MY 2 = 1/2 MY = 1/2 (∆P1*LZ 1 + ∆P2*LZ 2),
MZ 1 + MZ 2 = 1/2 MZ = 1/2 (-∆P1*LY 1 - ∆P2*LY 2),
where LY 1 = Yc-o-m - Y1, LZ 1 = Zc-o-m - Z1, LY 2 = Yc-o-m - Y2, LZ 2 = Zc-o-m - Z2
(we’ll pretend that LY 1 = LY 4, LZ 1 = LZ 4 and LY 2 = LY 5, LZ 2 = LZ 5).
Hence ∆P1 and ∆P2 are
∆P1 = 1/2 (MY*LY 2 + MZ*LZ 2) / (LZ 1*LY 2 - LY 1*LZ 2)
∆P2 = 1/2 (MY*LY 1 + MZ*LZ 1) / (LZ 1*LY 2 - LY 1*LZ 2).

So we need to change a thrust of 1,2 and 4,5 thrusters:
P1

* = P1 + ∆P1, P2
* = P2 + ∆P2

P4
* = P4 - ∆P1, P5

* = P5 - ∆P2
Coefficients of throttles are (k=1,2,4,5): Kthrollte k

* = Kthrollte k + ∆Pk/Pk
nom.

I don’t know how to look a throttle (something which damp a fuel flow) so I just
use a delay of 0.01 second as a throttle model. Also I thought that diapason of
throttling can be 1..0.5.

Also I handled a task of craft attitude stabilization as keeping craft vertical
orientation Λ relative inertial coordinate system of landing (look at picture).

Fig.12. Lunar lander attitude reference system

5.5.2 Descent control

Center-of-mass motion is determined by equation
F=ma (2nd Newton's low)
or

,
where
F={Fx, Fy, Fz}T are applied forces in an inertial coordinate system,
V={Vx, Vy, Vz}T are craft velocities,
X={x, y, z}T are craft coordinates,

FPGA device analysis 29�

g = {0, 0, 9.8}T m/s2.
If we know forces in the body-fixed coordinate system Fbfcs and orientation of a
craft relative the inertial coordinate system Λ, we can calculate forces in the
inertial coordinate system Fics:

If we want to keep constant vertical velocity Vdescent during descent, the steering
low is:
Pctrl = -kv*(Vz-Vdescent) -ka*az
Hence addition thrust is
∆P = Pctrl / 6 (6 thrusters)
Kthrollte k

** = Kthrollte k + ∆P / 6, k=1..6.

5.6 Attitude Control Algorithm of the landing module

For several reasons, including a better develop inicialization it has been decided
to initially work with the standard 32-bit reference system which was previously
implemented and contains a large list of components in his design where are
included the required ones.

This section concerns the Lunar Lander Engine Control (LLEC) and the Attitude
Control Algorith (ACA) that would control the engine servos in a future.
Remarkable is the fact that this is the first algorithm for the LLEC programmed
in C-code, so a much easier Lunar Lander has been considered. So, here are
presented the new considerations to make a more basic algorithm:

• Four motors are available.
• Each of them is placed in XY plane and located simetrically to the origin

over each X/Y sexiamis.
• The numbering of the engines is “motor n”, where “n” is a number from 1

to 4 given to every engine, starting from positive x-axis and following a
counterclockwise rotation.

• Input data are hypothetic angle entrys from accelerometers or targeted
angles in both X and Y axis (Z-axis has been neglected just to simplify
mathemathics calculations).

• Output data are hypothetic thrust for each of the engines expressed in
percentage.

• The current calculation for the thrust is linear to the angle entry.

30� Maqueta de TFC/PFC

5.6.1 ACA parameters

The parameters the algorithm works with are listed and descripted in the given
tables.

• Inputs

Field Range Units Description

IMU_aX -180 to 180 degrees Inertial angle around X axis (Current)

IMU_aY -180 to 180 degrees Inertial angle around Y axis (Current)

Target_aX -180 to 180 degrees Commanded angle around X axis (Desired)

Target_aY -180 to 180 degrees Commanded angle around Y axis (Desired)

• Outputs

Field Range Units Description

Thrust_pX 0 to
100 % Thrust positive X axis pointing towards -Z

direction

Thrust_nX 0 to
100 % Thrust negative X axis pointing towards -Z

direction

Thrust_pY 0 to
100 % Thrust positive Y axis pointing towards -Z

direction

Thrust_nY 0 to
100 % Thrust negative Y axis pointing towards -Z

direction

5.6.2 ACA clarifications

Basically, sets the Lunar Lander angle around X axis and Y axis to achieve a
target angle for each axis depending on IMU_aX and IMU_aY changing the
value of Thrust_pX, Thrust_pY, Thrust_nX and Thrust_nY values.

The sequence diagram of the algorithm is represented in the next image.

FPGA device analysis 31�

Fig.13. ACA sequence diagram

5.7 Landing module system design

Here is described how is created the top-level Block Design File that contains
the Attitude Control Algorithm of the Landing Module schematic. It is also
explained how with SOPC Builder has been possible to create the embedded
processor, configure system peripherals, and connect these elements to result
in the system module.
Before begining to design, a new Quartus II project must have been created
and must have been also specified the working directory for the ACA Landing
Module project, establishing like this the top-level design entity recognizable for
Quartus II and required to start with the system module design.

A complete system module contains an embedded processor and its
associated, and required, system peripherals. Those peripherals allow the
embedded processor to connect and communicate with internal logic in the
APEX device or external hardware on the board. The components and their
configurations are detailed below.

5.7.1 Altera Nios 2.2 CPU

In first instance, and as it has been commented before, the LLEC module
implements an embedded processor in the APEX20KE device. Three proposals
of factory-defined CPU configurations are given. The presets are:

• Minimum features
• Standard features
• Full features

32� Maqueta de TFC/PFC

 Fig.14. CPU

The main differences between them reside on the register file size, the integer
multiplier, the availability of supporting interrupts and/or the RLC/RRC protocol
and the location of the resources to implement the 32-bit instruction decoder.
For the LLEC module the standard features have been choosen which includes
a register file of 256 and the MSTEP multiplier which takes two clock cicles to
have a result.

5.7.2 GERMS monitor

The GERMS monitor is a boot monitor program that provides basic
development facilities for the board. It is included in the default design stored in
flash memory. On power-up, the GERMS monitor is the first code to execute
and it controls the boot process. Once booted, it provides a way to read from
and write to the onboard memories.

 Fig.15. GERMS monitor

FPGA device analysis 33�

It is implemented as a ROM with 32-bit data width occupying a total of 1 Kbytes.
The option to select the GERMS preset appears in the contents tab.

5.7.3 Universal Asynchronous Receiver/Transmitter

The UART implements a RS-232 asynchronous transmit and receive logic
inside the device. The UART sends and receives serial data over RxD and TxD
external pins. Software controls and communicates with the UART through
memory-mapped, 16-bit registers.
To comply with RS-232 voltage-signaling, an external level shifting buffer is
required between the TxD/RxD I/O pins and the corresponding serial port
external connections.
The UART runs on a single synchronous clock input and its internal baud clock
is derived from the same as the system clock. Its rate can be fixed or settable
via the divisor register which is used, as it name says, to divide clock’s period
and generate the desired frequency.

Two different designs, but similar, are required for the LLEC module. Both of
them work at 115200 bps fixed bit rate (which is the maximum allowed) and
have an 8-bit data width with no parity checking, RTS/CTS protocols and end-
of-packet register use either.
So the available methods remaining to detect tx/rx process errors are these:

• Through stop bits which split the frames. When a stop bit is not detected,
the fe bit in the status register shifts from “0” to “1”.

• Overrun detection. That occurs when a character is transmitted/received
before being ready to do so.

 Fig.16. UART

Precisely, the only change from communication UART to debugging is the stop
bits number, which are 2 and 1 respectively.

34� Maqueta de TFC/PFC

5.7.4 Timer

The Timer peripheral is a simple 32-bit interval timer that can be controlled by
software. It generates a single interrupt-request output that can be masked by
an internal control bit. Because all embedded processor accessible registers
are 16 bits wide a 32-bit Nios CPU performs two separate write operations on
two 16-bit registers (periodl and periodh) to set a 32-bit downcount value.
Again, as UART also does, the Timer runs off a single master clock input which
coincides the same clock provided to the CPU.

A single timer, but full-featured, has been decided. The reason to include only
one is the next. Despite requiring one for the input data flow control and a
second for the output data (both needed for the Software-In-the-Loop
verification) they can be implemented as once if it is taken into consideration
that the period of the output data is a multiple of the period of entry.

Full featured stands for a selectable period (whitin the period register
possibilities) and snapshot (capture the current timer value) support. It also
enables the start/stop bits in the control register to be able to play with the
counter.

Fig.17. Timer

5.7.5 Parallel Input/Output
A Parallel Input/Output (PIO) module is a memory-mapped interface between
software and the defined logic. The PIO has two contrary applications:

• Providing an interface between software and the defined logic within the
same device.

• Providing an interface between software and the peripheral logic that
resides outside the device.

Two main different PIO have been used for the module, both as interrupt
monitoring.

FPGA device analysis 35�

The first one is implented for the to LEDs onboard and it is as simple as two bits
configured with output direction to get their lights on.

 Fig.18. PIO LED

Although JP12 connector (detailed before) has 14 pins, the second one is an 11
bidirectional PIO. They are 11 because the pins 1 and 2 are required to provide
the display feeding and the third goes to the monitor reset.
Punctuate that because of the rupture third pin (monitor reset) it is short
circuited to pin 1, it is to say, that a reset to the LCD, then, is only possible
through explicit software deletion.

Fig.19. PIO LCD

Finally, comment that despite beeing used only as a status informater the
answer to choose bidirectional pins is that wheter it was necessary to monitor
some parameter it would be monitorized as well as taken as input for another
device and have it all in once.

36� Maqueta de TFC/PFC

5.7.6 External RAM BUS

For the system to connect on-chip processors and peripherals together, a
bridge between the Avalon bus and the buses to which the external memory is
connected must be added.

 Fig.20. RAM bus

5.7.7 External RAM

A dual Static-RAM interface has been choosen to download the C-code. Note
that the current .srec file downloaded onto the board to run the Software-In-the-
Loop test occupies 121KB, so a 256KB total memory size has been decided,
like this, more than enough memory is available.

Fig.21. SRAM

5.7.8 External Flash

For the flash memory the maximum featured preset has been implemented. It
offers 1MB of memory which can be used as non-volatile storage or to hold PLD
configuration (.hexout files). It is enough memory since, for example, the
standard_32_ext.hexout file used for developping both software/hardware-In-
the-Loop (a design which largely covers the LLEC module requirements)
occupies 505KB.

FPGA device analysis 37�

 Fig.22. Flash memory

5.8 Lunar Lander Engine module configuration

After including all the system components, it is required to check that each
function is developped by the correct module. To make it easier, a tab with the
cpu system settings is provided in the design generating process.

 Fig.23. SOPC Builder CPU settings

The system generator tab reproduces the SOPC Builder design providing all the
SDK headers and libraries required for the selected peripherals, as well as
VHDL files to implement the system logic. The resulting design is shown below.

38� Maqueta de TFC/PFC

Fig.24. ACA landing module

Finally, after the schematic has been realized it would be necessary to make
the pin assignments to enable compilation. The two available methods to do so
are:

• Via a Tool Command Language (tcl) file, as it has a console application
which is able to execute sequentially the standard commands as well as
also the ones from the script.

Fig.25. Tcl script selection

FPGA device analysis 39�

The ACA_pin_assign.tcl is the next one.

########## Set the pin location variables ############
Control Pins
set clk L6
set reset_n F12

Data bus, Address bus, and related control signals
set ext_addr {G17 A8 B8 A7 B7 B6 A6 A5 B5 B4 A3 A4 C3 C1 D3 D2 C2 F3 B3 E3}
set ext_data {C4 H11 G10 D8 E7 D4 D5 G9 F8 E8 C5 D6 C6 F9 H10 D7 C7 E9 E10 D9 C8 F10 G11 C9
C10 H12 D10 G12 G13 F11 B11 B10}
set ext_be_n {F5 F2 F4 H5}
set SRAM_Lo_cs_n E4
set SRAM_Hi_cs_n E2
set SRAM_Lo_oe_n A2
set SRAM_Lo_we_n E6
set FLASH_we_n H13
set FLASH_ce_n E1
set FLASH_a16 D1
set JP12_sel_n V7

PIOs
set lcd_pio {U21 P17 U1 U2 T2 T3 U4 U19 R18 W20 N15}
set led_pio {T18 T19}

UARTs
set rxd W8
set txd D15
set rxd_debug F14
set txd_debug F13

Make the clock and reset signal assignments
cmp add_assignment $top_name "" clk LOCATION "Pin_$clk"
cmp add_assignment $top_name "" reset_n LOCATION "Pin_$reset_n"

Make the external Flash and SRAM assignments
set i 0
foreach {a} $ext_addr {
 cmp add_assignment $top_name "" "ext_addr\[$i\]" LOCATION "Pin_$a"
 set i [expr $i+1]
}
set i 0
foreach {a} $ext_data {
 cmp add_assignment $top_name "" "ext_data\[$i\]" LOCATION "Pin_$a"
 set i [expr $i+1]
}
set i 0
foreach {a} $ext_be_n {
 cmp add_assignment $top_name "" "ext_be_n\[$i\]" LOCATION "Pin_$a"
 set i [expr $i+1]
}
cmp add_assignment $top_name "" "SRAM_Lo_cs_n" LOCATION "Pin_$SRAM_Lo_cs_n"
cmp add_assignment $top_name "" "SRAM_Hi_cs_n" LOCATION "Pin_$SRAM_Hi_cs_n"
cmp add_assignment $top_name "" "SRAM_Lo_oe_n" LOCATION "Pin_$SRAM_Lo_oe_n"
cmp add_assignment $top_name "" "SRAM_Lo_we_n" LOCATION "Pin_$SRAM_Lo_we_n"
cmp add_assignment $top_name "" "FLASH_we_n" LOCATION "Pin_$FLASH_we_n"
cmp add_assignment $top_name "" "FLASH_ce_n" LOCATION "Pin_$FLASH_ce_n"
cmp add_assignment $top_name "" "FLASH_a16" LOCATION "Pin_$FLASH_a16"
cmp add_assignment $top_name "" "JP12_sel_n" LOCATION "Pin_$JP12_sel_n"

40� Maqueta de TFC/PFC

Make the PIO pin assignments
set i 0
foreach {a} $lcd_pio {
 cmp add_assignment $top_name "" "lcd_pio\[$i\]" LOCATION "Pin_$a"
 set i [expr $i+1]
}
set i 0
foreach {a} $led_pio {
 cmp add_assignment $top_name "" "led_pio\[$i\]" LOCATION "Pin_$a"
 set i [expr $i+1]
}

##############################
Make the UART assignments
cmp add_assignment $top_name "" "rxd" LOCATION "Pin_$rxd"
cmp add_assignment $top_name "" "txd" LOCATION "Pin_$txd"
cmp add_assignment $top_name "" "rxd_debug" LOCATION "Pin_$rxd_debug"
cmp add_assignment $top_name "" "txd_debug" LOCATION "Pin_$txd_debug"

• Manually, accessing from compiler settings and introducing the main
device model mounted on the board and its specifications. In this case
and detailed above is the APEX EP20K200EFC484-2x chip.

Fig.26. Manual pinout assignment

But only refer to the implemented connexions could not be enough. At the end,
also through the compiler settings, it could be compulsory to configure the
unused pins in high-impedance mode to emulate an open-circuit, if existing. If
not, the design will not run.

FPGA device analysis 41�

5.9 Control module validation

One of core areas is verification and validation (V&V). As said in the first
pages, V&V is essential for any project to provide quality and robustness of the
model system development process. It can be used to check the accuracy of
the models and algorithms, to test code generation or to test hardware and/or
software interactions.
Remark that in order to ensure that every aspect of the processor code has
been tested, it is necessary to derive an appropriate set of input conditions to
fully exercise the code. Failure to do so leads to hidden bugs in the module
being tested.

Some references are done to the stages of these testing processes. Details for
the Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) are given
below.

5.9.1 Software In the Loop

SIL refers precisely to the kind of testing done to validate the behavior of the
main algorithm. The code is intended to be adapted and integrated into the
simulator implemented in the FPGA.

For this purpose and to simplify the algorithm validation tasks, the algorithm is
incrusted in a C-code program that runs the algorithm using the embedded
processor and the required peripherals.

The sequence diagram for the simulation is the following:

Fig.27. SIL sequence diagram

42� Maqueta de TFC/PFC

5.9.2 Hardware In the Loop

HIL, for its part, refers to the kind of testing done to study the interactions
between the software and the hardware. In a typical HIL setup, one piece of
hardware is connected to a software model of the rest of the system.

It would mainly consist on implementing the entire FPGA board inside the
Moon2.0 simulator. The ACA module would receive data from the simulator
and, after being processed in the embedded CPU, it would transmit the
resulting engine thrusts calculations. The communication would be stablished
via a UART, already reviewed.

5.9.3 Real flight test

Obviously, the last verification for the LLEC module should be to introduce the
system in an aircraft flight as it would be implemented with the real components
and developping its real function, it is to say, controlling thrust engines to permit
a real flight.

Conclusions 43�

6 CONCLUSIONS

Working with Team FREDNET has shown me the way aeronautical industry
follows, its actual situation and what kinds of matters are actually deeply
considered.
Furthermore, it also has taught me learning about self project guiding and to
adapt my work according to team necessities. With that I would like to
emphasize the variety of topics touched and developed along this TFC.

Also critical for our purposes, and maybe increased, because of my rol inside
Picorover team is the fact that team has to show and share the achieved
information, as well as explain the pending work to do. In response for that goal
Wiki posting procedure is basic to enable collaboration with other Team
FREDnet members or to obtain new team or group members in charge of
developping new or pending areas, as it has been shown it is a complete and
real project with real applicatin.

But, of course, some problems like eventual bad team information or
communication insufficient work leaders, collaborators or resources are present
into an open project. An example is the thruster engines control which has been
just integred to the group information because the member in charge of this part
Presented it a week ago or so.

Another example could be the licensing problems which have supposed a big
trouble to deal and which are not solved at the moment. In a first instance, they
have caused a slower development of the project because it was not able to
obtain full capacities from the available tools, such as programming. In a
second place, and even more difficult to save, it is the fact that they have also
trunked the module design which is not complete now, so it has broken this way
of knowledge.

However, a large volume of technical documentation has been dealed and
processed and catalogued to produce prototype developing in this case for the
hardware, which includes the FPGA board or Quartus II software.
Many disciplines have been used for the development of this project. A member
has to work closer to many people of different fields and different countries and
develop a unique project. The help of many teachers known through our studies
make possible such challenger.
Finally, just to say that we, as a team, are glad by the work which has been
already done, but a lot rest of work is to be finished and until final
implementation will be reached we will not see our work been applied, although
our knowledge is being improved everyday.

Environmental impact 45�

7 Environmental impact

The whole project will develop over different environment starting from the
Earth’s surface and until reaching the moon’s surface, but also through several
Earth’s orbits or free-space. So, a lot of environmental reviews must be done at
different levels to consider the possible impacts. As an example, at the end of
its mission, the Lunar Bus will suffer a controlled crash on the moon.
Remark that coordinates of the areas of disposal devices will be published and
catalogued if necessary.

Environment care has been considered for optimizing project process. As it has
already been commented in the FPGA justification, the use of the FPGA is a
clear example of environmental care as it would permit to use a single device to
develop different subsystems inside Team FREDnet organization, as well as
embed those belonging to the same system. So, implicitaly, it will reduce the
number of peripheral needed and used.

Picorover team always considers optimization of the resources on its
procedures in order to reduce the impact on the environment.

Annexes 47�

8 Bibliography

[1] Google Lunar X-Prize
http://www.googlelunarxprize.org/

[2] N-Prize
http://www.n-prize.com/

[3] Team FREDnet
http://www.frednet.com/

[4] Team FREDnet Wiki
http://wiki.teamfrednet.org/index.php/Main_Page

[5] Picorover Wiki
http://wiki.teamfrednet.org/index.php/Portal:Picorover

[6] Lunar Lander Wiki
http://wiki.teamfrednet.org/index.php/Portal:Lunar_Lander

[7] Lunar Bus Wiki
http://wiki.teamfrednet.org/index.php/Portal:Lunar_Bus

[8] Wikipedia
http://en.wikipedia.org/wiki/Main_Page

[9] Altera support
http://www.altera.com/

[10] Altera Nios Documentation

avalon_bus_spec.pdf
nios_board_schematic.pdf
nios_cpu_datasheet.pdf
nios_development_board.pdf
nios_peripherals_reference_manua.pdfl
nios_programmers_reference_32.pdf
nios_software_development_reference.pdf
sopc_builder_datasheet.pdf
pinouts.txt

	Implementation And Verification Of A Lunar Mission
	Resumen
	Overview
	ÍNDEX
	1. INTRODUCTION
	2. ACRONYMS, ABBREVIATIONS AND DEFINITIONS
	3. IMPLEMENTATION AND VERIFICATION PROCESS
	4. N-PRIZE LINK BUDGET
	5. FPGA DEVICE ANALYSIS
	6. CONCLUSIONS
	7. Environmental impact
	8. Bibliography

